SESUG 2020 Paper 101
Getting Started with SAS® Viya and the R SWAT Package

Brian Varney, Experis Solutions

ABSTRACT

SAS Viya® gives SAS® and R developers the ability to collaborate and work off the same
data sitting in memory on a SAS Viya server. This paper intends to show how to set up the
connection from RStudio and process data using SAS Cloud Analytic Services (CAS).
Examples will also be shown comparing the execution of analytics using R Studio and SAS
Viya.

INTRODUCTION

SWAT stands for SAS Wrapper for Analytics Transfer. This package enables you to connect
from R to a SAS Cloud Analytic Services host, run actions on in-memory tables, and work
with the results of the actions.

The purpose of this paper is to help SAS Viya users that have a basic understanding of R get
started in using this technology.

WHAT IS NEEDED TO GET STARTED WITH THE R SWAT PACKAGE?
The following is needed to get started using the R SWAT Package with SAS Viya:

1) A 64 bit SAS Viya programming-only environment either in Windows or Linux. A full
SAS Viya deployment will also work. You must be on SAS Viya 3.1 or later.

2) A 64 bit R environment either on Linux or Windows. I would highly recommend using
RStudio® as the development environment.

3) The ability for the SAS Viya and R environment servers to communicate with each
other. Specifically, the R environment will need to be able to authenticate into the
SAS Viya environment.

4) The R SWAT Package downloaded, installed, loaded in the R environment.
5) The dplyr, jsonlite, and httr packages installed and loaded in the R environment.

6) A basic understanding of coding in R.

GETTING SAS VIYA READY TO ACCEPT A CONNECTION

An active CAS session must be run on the SAS Viya server for R to connect to. Included
below are a few lines of code that will start up a cas session for R to connect to.

/* initiate a CAS server connection listening for connection requests */
options cashost="localhost" casport=5570;

casy;

cas mySession sessopts=(caslib=casuser timeout=1800 locale="en US");

METHODS TO CONNECT TO SAS VIYA USING THE R SWAT PACKAGE

As far as authentication goes, it is recommended to set up an authinfo file. Otherwise, you
will need to supply your credentials in your connection code.

AUTHINFO FILE DOCUMENTATION
https://documentation.sas.com/?docsetIld=authinfo&docsetTarget=n0x06z7e98y63dn1fj0g9

[2ij7oyg.htm&docsetVersion=9.4&locale=en#n1stv9zynsyf6rnlwbr3ejga6ozf

There are two different methods for connecting to SAS Viya: binary and rest
communication.

BINARY COMMUNICATION

This can only be used if your R environment is in Linux. An excerpt from the SAS
documentation below shows advantages and disadvantages of using binary communication.

An example of a binary connection is:

conn_binary <- CAS("cloud.example.com", 5570)

There are no credentials in the connection definition above so an authinfo file is assumed to
be set up. The following is an example of a binary connection with the credentials
embedded.

conn_binary <- CAS('localhost', 5570, username="<username", password="password")

Advantages Disadvantages
Communication is fast and efficient. There are fewer Platform support is limited because the SAS Threaded
conversions between data types. Kernel subsystem is a requirement.
Data message handlers can be implemented to perform The download and installation size is larger due to the
custom data loading. addition of the SAS Threaded Kernel subsystem.
Automatic encryption of communication if CAS is
configured to perform TLS.
The SAS Threaded Kernel subsystem adds support for
SAS data formats.

REST COMMUNICATION

This will work if your R environment is in Linux or Windows. An excerpt from the SAS
documentation below shows advantages and disadvantages of using rest communication.

Following is an example of a rest connection:
conn_binary <- CAS('localhost', 8777, protocol='http')

https://documentation.sas.com/?docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm&docsetVersion=9.4&locale=en#n1stv9zynsyf6rn1wbr3ejga6ozf
https://documentation.sas.com/?docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm&docsetVersion=9.4&locale=en#n1stv9zynsyf6rn1wbr3ejga6ozf

There are no credentials in the connection definition so an authinfo file is assumed to be set
up. The following is an example of a rest connection with the credentials embedded.

conn_rest <- CAS('localhost', 8777, protocol='http',
username="<username>", password="password")

Advantages Disadvantages
Connections use standard HTTP and HTTPS The conversion of objects to and from JSOM is slower
communication. than binary.
The package uses R code only. It can be used on any HTTP is a less efficient communication protocol than
platform that is supported by R. binary.
The download and installation are smaller because the C Data message handlers for custom data loaders are not
libraries and SAS Threaded Kernel subsystem are not supported.
installed.

Extra data farmatting features are not available, unless
SAS Threaded Kemel is also installed.

The rest of the examples in this paper will leverage the binary connection. Submit the
binary connection line of code below in R. The code and console results are shown below.

R Code to connect to SAS Viya CAS
conn_binary <- CAS('localhost', 8777, protocol='http')
conn_binary

R Console excerpt:

NOTE: Connecting to CAS and generating CAS action functions for loaded
action sets...

NOTE: To generate the functions with signatures (for tab completion), set
options(cas.gen.function.sig=TRUE) .

conn _binary

CAS (hostname=localhost, port=5570, username=bvarney, session=44f86478-d497-bd

49-bc21-2a7782ee2494, protocol=cas)

UNDERSTANDING CAS, CASL. ACTIONS, AND ACTION SETS

To effectively write code, we must first have a basic understanding of the mechanisms necessary to
interact with SAS Viya from R. A brief explanation of the components follow:

CAS stands for Cloud Analytics Services. It is a cloud-based run-time environment for data management
and analytics in SAS Viya.

CASL stands for Cloud Analytics Services Language. This is a language that can be used by SAS via
PROC CAS or by other clients that can interact with CAS such as R, Python, & Lua. CASL is used to run
code in CAS.

Actions are single tasks in CAS.
Action Sets are actions that are grouped together based on common functionality.

When we use the SAS R SWAT Package, it allows us to run processes in the SAS Viya CAS server from
R using the functions from the action sets.

Many function names in CASL are typically constructed using the convention cas.<action set>.<action>().

For example, there is an action set for “Tables”. It contains actions such as “recordCount”. It would be
called from R using syntax such as:

cas.table.recordCount(conn_binary, table='HMEQ')

$RecordCount
M

The above code would return the following result to the RStudio console. 1 5068

The documentation for the action sets can be found at:

SAS® VIYA® 3.5 ACTIONS AND ACTION SETS BY NAME AND PRODUCT

https://documentation.sas.com/?cdcld=pgmcdc&cdcVersion=8.11&docsetld=allprodsactions&docsetTarg
et=titlepage.htmé&locale=en

SHARING DATA

The connected R session can access the data on the SAS Viya server’s CAS session. The
following SAS Viya code loads a SAS Data Set into the SAS Viya server’s memory. The
promote option is important to allow the R session to be able to access the data.

libname mycaslib cas caslib=casuser;
proc casutil;

load data=sampsio.hmeq casout="hmeq" outcaslib=casuser promote;

run;

SAS Viya Log Excerpt

72 libname mycaslib cas caslib=casuser;
NOTE: Libref MYCASLIB was successfully assigned as follows:
Engine: CAS
Physical Name: 2d7f£f5c6-82a0-f04c-9b75-2187e4ca23f9
73 proc casutil;

NOTE: The UUID '2d7f£f5c6-82a0-f04c-9b75-2187e4ca23f9"' is connected using
session MYSESSION.

74 load data=sampsio.hmeq casout="hmeq" outcaslib=casuser
promote;
NOTE: SAMPSIO.HMEQ was successfully added to the "CASUSER" caslib as "hmeqg".

75 run;

https://documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=allprodsactions&docsetTarget=titlepage.htm&locale=en
https://documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=allprodsactions&docsetTarget=titlepage.htm&locale=en

The HMEQ Data Set in the MYCASLIB SAS Library
w Libraries
=] (%]
4 &8 my Libraries
- &R maPs
b &8 MAPSGFK
b 2B MAPSSAS
4 ¥ MYCASLIB
» F7 HMEQ
b & SAMPSIO
b S8 sASHELP
b & WORK

ACCESSING THE SAS VIYA DATA FROM R

Now that the HMEQ data is sitting in the memory of the SAS Viya server and we have
already established the connection from R, we can run a cas.table.tableinfo() function to list
the contents of the SAS CAS library. The output is wrapped but you should be able to see
the HMEQ table in there with 5,960 rows, 13 columns, etc.

Showing Available Data Sets in SAS Viya CAS Library

cas.table.tableInfo(connection_binary)
$TableInfo

Name Rows Columns IndexedColumns Encoding CreateTimeFormatted ModTim
eFormatted AccessTimeFormatted
1 HMEQ 5960 13 0 utf-8 2020-09-22T16:48:09-04:00 2020-09-22T16:4
8:09-04:00 2020-09-22T16:59:56-04:00

JavaCharSet CreateTime ModTime AccessTime Global Repeated View SourceName Source
Caslib Compressed Creator Modifier
1 UTF8 1916426889 1916426889 1916427596 1 0 0
@ bvarney

SourceModTimeFormatted SourceModTime
1 NaN

Using HMEQ from the SAS Viya CAS Library

The command below sets up an R Object that is a pointer and can be accessed as you would
an R data frame for some R functions.

hmeq fromcas <- defCasTable(conn binary,

Mame

& hmeqg_fromcas

| CONN 54 [1] (swart :CAS)
thame character [1] 'HMEQ'
caslib character [1] "
where character [1] "
orderby list [O] List of length 0
groupby list [0] List of length 0
gbmaode character [1] "
computedOnDemand logical [1] FALSE
computedyvars character [1] "
computedvarsProgram character [1] "
XcomputedyvarsProg... character [1] "
XKeomputedyars character [1] "
narmes character [13] '‘BAD' 'LOAN' "MORTDUE' "VALUE' 'REASON' 'JOB" ..
COMpComp lagical [1] FALSE

Type

S4 [5960 x 13] (swat::CASTab

" HMEQ ")

Value

54 ohject of class CASTable

The command below downloads the data into R List Object

hmeq fromcasl <- to.casDataFrame (hmeq fromcas)

Name

& hmeg_fromcas]

Type
list [3980 x 13] (swat::casDat

Value

A data.frame with 5960 rows and 13 columns

EAD double [5960] 111101 ...

LOAMN double [5960] 1100 13001500 1500 17001700 _.
MORTDUE double [5960] 25860 70053 13500 NaN 97800 30548 _.
VALUE double [5960] 39025 68400 16700 NaN 112000 40320 .
REASON character [5960] 'Homelmp' ‘Homelmp' "Homelmp' ™ 'Homelmp' 'Homelmp' ...
JOB character [5960] ‘Other’ 'Other’ 'Other’ ” "Office’ "Other’ ...
YO) double [5960] 10.57.040MNaN 3090 .

DEROG double [5960] 00DONaNQO ...

DELING double [5960] D20NaNOO

CLAGE double [5960] 94.4 121.8 1495 NaN 93.3 101.5 ...

MNING double [5960] 101 NaNOT .

CLNO double [5960] QT4 10NaN 148 .

DEBTINC double [5960] Mah MNaN NaN NaM NaN 37.1 ...

The command below downloads the data into an R Data Frame Object

hmeq fromcas2 <- data.frame (to.casDataFrame (hmeq fromcas))

Filter
“ BAD LOAN MORTDUE VALUE REASON JOB You DEROG DELING CLAGE NINQ CLNO DEBTINC
11 1100 25860 330250 Homelmp Other 105 0 0 9436667 1 3 NaN
21 1300 70053 £8400.0 Homelmp Other 7.0 0 2 12183333 © 14 NaN
301 1500 13500 167000 Homelmp Other | 40 0 0 14946667 | 1 10 Nah
4 1 1500 NaM NaM NaN NaN NaN NaN NaN NaN Nah
50 1700 37500 1120000 | Homelmp Dffice 30 0 0 9333333 0O 14 Nah
6 1 1700 30548 403200 Homelmp Other 2.0 0 0 10146600 | 1 8 371136136
71 1800 48649 57037.0 Homelmp Other 50 3 2 7710000 |1 17 NaN
8 1 1800 28502 430340 Homelmp Other 110 0 0 8876603 | O 8 36.5848941
9 1 2000 32700 467400 Homelmp Other 30 0 2 21693333 1 12 Nah
10 1 2000 NaM £22500 Homelmp Sales 160 0 0 115.80000 O 13 Nah
1 1 2000 22608 NaM 180 NaN NaN NaN NaN NaN Nah
12 1 2000 20627 295000 Homelmp Dffice 110 0 1 12253333 1 3 Nah
13 1 2000 45000 55000.0 Homelmp Other 30 0 0 86.06667 2 25 Nah
14 0 2000 64536 874000 Mgr 23 0 0 14713333 0 24 Nah
15 1 2100 71000 838500 Homelmp Other 8.0 0 1 123.00000 | O 16 NaN
16 1 2200 24280 34687.0 Homelmp Other NaN 0 1 300.86667 | O 8 NaN
17 1 2200 90957 1026000 | Homelmp Mar 7.0 2 3 122.90000 | 1 22 NaN
Showing 1 to 19 of 5,960 entries, 13 total columns
Using R summary() function on the downloaded data
summary(hmeq_fromcas2)
selecting by Freguency
BAD LOAN MORTDUE VALUE REASON JOoB ¥O3J
Min. @.8a68 Min. : 1188 Min. 2863 Min. 2088 DebtCon: 3928 Other :2388 Min. 6.aee
1st Qu.:8.8e88 1st Qu.:1116e 1st Qu.: 46268 1st Qu.: 6b6@6% HomeImp:1788 ProfExe:1278 1st Qu.: 3.a8e
Median :@.8888 Median :16388 Median 65819 Median : 89236 MNA's 252 Office : 948 Median : 7.888
Mean :@.1995 Mean :18688 Mean : 73761 Mean 1181776 Mgr : 767 Mean o 8.922
3rd Qu.:@.0ese 3rd Qu.:2336@0 3rd Qu.: 91491 3rd Qu.:119832 Self : 193 3rd Qu.: 13.@8@
Max. 1.82886 Max. 185988 Max. 1359558 Max. 1855985 NA'S : 279 Max. 1 41.a88
NA' s 518 NA's 112 NA" 5 :515.688
DEROG DELINQ CLAGE MINQ CLNO DEBTINC
Min. 8.00a88 Min. @.0e68 Min. 6.8 Min. 6.0ee Min. 8.8 Min. B.5245
1st Qu.: B©.88886 1st Qu.: ©&.888d 1st Qu.: 115.1 1st Qu.: ©.888 1st Qu.: 15.8 1=t Qu.: 29.1488
Madian : ©.8088 Median 2.908@ Median : 173.5 Median : 1.e8@ Median : 20.@ Median : 324.8183
Mean : B.2546 Mean @.4404 Mean : 179.8 Mean :1.186 Mean :021.3 Mean 1 33.779¢
3rd Qu.: ©.5688 3rd Qu.: ©.Beee 3rd Qu.: 231.6 3rd Qu.: 2.882 3rd Qu.: 26.8 3rd Qu.: 3%9.8831
Max. : 18.68866 Max. : 15.8868 Max. :1168.2 Max. : 17.688 Max. :71.8 Max. : 283.3121
MNA' S :788.0080 NA'S :LE8.Bese NA'S 388.0 NA" s :510. 688 MNA' S 1222.8 NA' S :1267.68@88
}
Similarly in SAS Viya
proc summary data=mycaslib.hmeq print min gl median mean g3 max;

var _numeric ;

run;

proc freq data=mycaslib.hmeqg;

table character ;

run;

Yields the following output like we produced in R.

The SUMMARY Procedure

Wariable Minimum | Lower Quartile Median Mean | Upper Quartile Maximum
BAD a ad a 0. 1824085 0 10000000
LCAM 110:0.00 1110000 18300.00 185807.87 23300.00 BE8800.00
MORTDUE 2063.00 4526800 G5018.00 TATED.82 21481.00 38855000
WVALUE 2000.00 Ge0Ga. 00 2022550 101778.05 118831.50 855008 00
O a 3. 0000000 7. 0000000 28222681 130000000 41.0000000
DEROQG a 1] a 0.2545587 0 10.0:000000
DELING a ad a 04404424 il 15.0000000
CLAGE a 1151031888 | 173.45868687 | 178.78562752 231.57483325 116823
MM a d 10000000 1.1860:550 20000000 17.0000000
CLND a 15.0000000 20.0000000 21.28600482 26.0000000 T1.0000000
DEBTINGC 0.5244082 281400314 34.81826138 33.7798153 3800314040 | 203.2121487
The FREG Procedure
Cumulative | Cumulative
REASCON | Frequency | Percent | Freguency Percent
DebtCon 3828 53.82 28zE 53.82
Homelmp 1780 31.18 5708 100.00
Frequency Missing = 252
Cumulative | Cumulative
JOB Frequency @ Percent | Freguency Percent
Mgr a7 13.50 TET 13.50
Office oz 16.62 1715 3012
Other 2388 42.03 4103 T2.22
ProfExe 1276 2248 5372 B4.82
Sales 102 1.82 5482 BE.50
Self 183 3.40 56881 100.00

Frequency Missing = 279

LOADING R DATA FRAMES TO SAS VIYA CAS LIBRARY

If you have data in R and would like to upload it to a SAS Viya CAS library, you can use the
as.casTable() function.

mtcars_cas <- as.casTable(conn_binary, mtcars,
casOut =list(name="mtcars_cas", promote=TRUE))

4 2 MYCASLIE
b F HMEQ
b B MTCARS_CAS

Loading Action Sets that are not Loaded by Default

There are some action sets that are loaded by default when you load the R SWAT package
but some are not. For example, the decisionTree action set is not loaded automatically but
you can use the loadActionSet() function to load the desired action sets.

loadActionSet (conn binary, 'decisionTree')

MNOTE: Added action set 'decisionTres’.
MNOTE: Information for action set 'decisionTree’:

MOTE: decisionTree

MOTE: dtreeTrain - Trains a decision tree

MOTE: dtreeScore - Scores a table using a decision tree model

MOTE: dtreeSplit - Splits decision tree nodes

MOTE: dtreePrune - Prune a decision tree

MOTE: dtreeMerge - Merges decision tree nodes

MOTE: dtreeCode - Generates DATA step scoring code from a decision tree model
MOTE: forestTrain - Trains a forest

MOTE: forestScore - Scores a table using a forest model

MOTE: forestCode - Generates DATA step scoring code from a forest model

MOTE: ghtreeTrain - Trains a gradient boosting tree

MOTE: ghtreeScore - Scores a table using a gradisnt boosting tree model

MOTE: ghtreeCode - Generates DATA step scoring code from a gradient boosting tres model
MOTE: dtreeExportModel - Export the aStore model for a tree model table
CONCLUSIONS

You should now have a basic understanding of how the R SWAT package works and build off
of the examples shown in this paper.

Using the R SWAT package with SAS Viya gives a user the flexibility of using the R
programming language on data sitting in a SAS Viya CAS library. This will allow SAS and R
developers to collaborate more easily using the same data sources.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Brian Varney

Experis Solutions
269-365-1755
brian.varney@experis.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

