
1

 SESUG 2019 Paper KYSF-167

Like, Learn to Love SAS® Like

Louise S. Hadden, Abt Associates Inc.

ABSTRACT

How do I like SAS®? Let me count the ways.... There are numerous instances where LIKE or LIKE
statements can be used in SAS - and all of them are useful. This paper will walk through such uses of
LIKE as: searches and joins with that smooth LIKE operator (and the NOT LIKE operator); the SOUNDS
LIKE operator; using the LIKE condition to perform pattern-matching and create variables in PROC SQL;
and PROC SQL CREATE TABLE LIKE.

INTRODUCTION

SAS provides numerous time and angst-saving techniques to make the SAS programmer’s life easier.
Among those techniques are the ability to search and select data using SAS functions and operators in
the data step and PROC SQL, the ability to join data sets based on matches at various levels, the ability
to create variables based on selecting values from other variables, and the ability to create empty “shells”
of existing data sets using SAS metadata. This paper explores how LIKE is featured in each one of these
techniques, and is suitable for all SAS practitioners. I hope that LIKE will become part of your SAS
toolbox, too.

SMOOTH OPERATORS

SAS operators are used to perform a number of functions: arithmetic calculations, comparing or selecting
variable values, or logical operations. Operators are loosely grouped as “prefix” (for example a sign
before a variable) or “infix” which generally perform an operation BETWEEN two variables. Arithmetic
operations using SAS operators may include exponentiation (**), multiplication (*), and addition (+),
among others. Comparison operators may include greater than (>, GT) and equals (=, EQ), among
others. Logical, or Boolean, operators include such operands as || or !!, AND, and OR, and serve the
purpose of grouping SAS operations. Some operations that are performed by SAS operators have been
formalized in functions. A good example of this is the concatenation operators (|| and !!) and the more
powerful CAT functions which perform similar, but not identical, operations. Like operators are most
frequently utilized in the data step and PROC SQL via a data step.

There is a category of SAS operators that act as comparison operators under special circumstances,
generally in where statements in PROC SQL and the data step (and DS2) and subsetting if statements in
the data step. These operators include the LIKE operator and the SOUNDS like operator, as well as the
CONTAINS and the SAME-AND operators. It is beyond the scope of this short paper to discuss all the
smooth operators, but they are definitely worth a look.

LIKE OPERATOR

Character operators are frequently used for “pattern matching”, that is, evaluating whether a variable
value equals / does not equal / sounds like a specified value or pattern. The LIKE operator is a case
sensitive character operator that employs two special “wildcard” characters to specify a pattern: the
percent sign (%) indicates any number of characters in a pattern, while the underscore (_) indicates the
presence of a single character per underscore in a pattern. The LIKE operator is akin to the GREP utility
available on Unix / Linux systems in terms of its ability to search strings.

2

Table 1: Boys’ names

Troix

Trys

Troy

Troye

Tryst

Bryce

Table 2: Like Operator

Like “Tr__” Returns Trys and Troy

Like “Tro%” Returns Troy and Troye

Like “Try%t” Returns Tyrst

Like “_r%” Returns Bryce, Troix, Trys, Troy,
Troye and Tryst

Like “Tr___” Returns Troix, Troye and Tryst

The like operator also includes an escape routine in case you need to use a string that includes a
comparison operator such as the carat, the underscore or the percent sign, etc. An example of the
escape routine syntax, when looking for a string containing a percent sign, is:

 where yourvar like ‘100%’ escape ‘%’;

Additionally, SAS practitioners can use the NOT LIKE operator to select variables WITHOUT a given
pattern. Please note that the LIKE statement is case sensitive. You can use the upcase / lowcase /
propcase function to adjust input strings prior to using the LIKE statement. You may string multiple LIKE
statements together with the AND or OR operators.

SOUNDS LIKE OPERATOR

The LIKE operator, described above, searches the actual spelling of operands to make a comparison.
The SOUNDS LIKE operator uses phonetic values to determine whether character strings match a given
pattern. As with the LIKE operator, the SOUNDS LIKE operator is useful for when there are misspellings
and similar sounding names in strings to be compared. The SOUNDS LIKE operator is denoted with a
short cut ‘-*’. SOUNDS LIKE is based on SAS’s SOUNDEX algorithm. Strings are encoded by retaining
the original first column, stripping all letters that are or act as vowels (A, E, H, I, O, U, W, Y), and then
assigning numbers to groups: 1 includes B, F, P, and V; 2 includes C, G, J, K, Q, S, X, Z; 3 includes D
and T; 4 includes L; 5 includes M and N; and 6 includes R. “Tristn” therefore becomes T6235, as does
Tristan, Tristen, Tristian, and Tristin.

Table 3: Sounds Like Operator

Trystan T6235

Trysten T6235

Trystian T6235

Trystin T6235

Trystn T6235

Troye T6

Sounds Like operator:

https://documentation.sas.com/?docsetId=sqlproc&docsetTarget=p0a62rd151ctown1x38ihdpjozyv.htm&d
ocsetVersion=9.4&locale=en

https://documentation.sas.com/?docsetId=sqlproc&docsetTarget=p0a62rd151ctown1x38ihdpjozyv.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=sqlproc&docsetTarget=p0a62rd151ctown1x38ihdpjozyv.htm&docsetVersion=9.4&locale=en

3

JOINS WITH THE LIKE OPERATOR

It is possible to select records with the LIKE operator in PROC SQL with a where statement, including
with joins. For example, the code below selects records from the SASHELP.ZIPCODE file that are in the
state of Massachusetts and are for a city that begins with “SPR”.

proc sql;

 CREATE TABLE TEMP1 AS

 select

 a.City ,

 a.countynm , a.city2 ,

 a.statename , a.statename2

 from sashelp.zipcode as a

 where upcase(a.city) like 'SPR%' and

upcase(a.statename)='MASSACHUSETTS' ;

quit;

The test print of table TEMP1 shows only cases for Springfield, Massachusetts.

CITY COUNTYNM CITY2 STATENAME STATENAME2

Springfield Hampden SPRINGFIELD Massachusetts MASSACHUSETTS

Springfield Hampden SPRINGFIELD Massachusetts MASSACHUSETTS

Springfield Hampden SPRINGFIELD Massachusetts MASSACHUSETTS

Springfield Hampden SPRINGFIELD Massachusetts MASSACHUSETTS

Springfield Hampden SPRINGFIELD Massachusetts MASSACHUSETTS

.The code below joins SASHELP.ZIPCODE and a copy of the same file with a renamed key column (city-
>geocity), again selecting records for the join that are in the state of Massachusetts and are for a city that
begins with “SPR”.

proc sql;

 CREATE TABLE TEMP2 AS

 select

 a.City , b.geocity,

 a.countynm ,

 a.statename , b.statecode,

 a.x, a.y

 from sashelp.zipcode as a, zipcode2 as b

 where a.city = b.geocity and upcase(a.city) like 'SPR%' and b.statecode

= 'MA' ;

quit;

The test print of table TEMP2 shows only cases for Springfield, Massachusetts with additional variables
from the joined file.

4

CITY geocity COUNTYNM STATENAME STATECODE X Y

Springfield Springfield Hampden Massachusetts MA -72.589584 42.099922

Springfield Springfield Hampden Massachusetts MA -72.589584 42.099922

Springfield Springfield Hampden Massachusetts MA -72.538580 42.116054

Springfield Springfield Hampden Massachusetts MA -72.538580 42.116054

Springfield Springfield Hampden Massachusetts MA -72.538580 42.116054

THE LIKE “CONDITION”

The LIKE operator is sometimes referred to as a “condition”, generally in reference to character
comparisons where the prefix of a string is specified in a search. LIKE “conditions” are restricted to the
data step, as the colon modifier is not supported in PROC SQL. The syntax for the LIKE “condition” is:

 where firstname=: ‘Tr’;

This statement would select all first names in Table 2 above. To accomplish the same goal in PROC SQL,
the LIKE operator can be used with a trailing % in a where statement.

PROC SQL CASE LIKE

The LIKE operator in PROC SQL can be used in conjunction with the CASE WHEN statement to create
variables. The code snippets below feature using the LIKE operator with OR operators and CASE WHEN
to create both a categorical variable (DXTYPE) and binaries (CANCERDX, ARTHDX, BCKPNDX,
RHEUMDX, NONMSTDX, and OVERDOSE) from selected diagnosis codes with varying prefix lengths.
(Please note that the list of diagnosis codes for each category or binary is incomplete – this code snippet
is for demonstration purposes only.)

PROC SQL;

 CREATE TABLE out1 AS

 SELECT DYAD_OPIOID_ID,

 analelig,

 DIAG,

 CASE

 WHEN DIAG LIKE '14%'

 OR diag LIKE 'D45%'

 THEN 'CANCERDX'

 WHEN diag LIKE 'M00%'

 OR diag LIKE '71%'

 THEN 'ARTHDX'

 WHEN DIAG LIKE '720%'

 OR diag LIKE 'M6788%'

 THEN 'BCKPNDX'

 WHEN DIAG LIKE '725%'

 OR diag LIKE 'R2989%' THEN 'RHEUMDX'

 WHEN DIAG LIKE '3382%'

 OR diag LIKE 'T50%' THEN 'OVERDOSE'

 ELSE ''

 END AS DXTYPE,

 CASE

 WHEN DIAG LIKE '14%'

 OR diag LIKE 'D45%'

 THEN 1

 ELSE 0

 END AS CANCERDX,

 CASE

 WHEN DIAG LIKE '71%'

5

 OR diag LIKE 'M7964%' THEN 1

 ELSE 0

 END AS ARTHDX,

 CASE

 WHEN DIAG LIKE '720%'

 OR diag LIKE 'M6788%' THEN 1

 ELSE 0

 END AS BCKPNDX,

 CASE

 WHEN DIAG LIKE '725%'

 OR diag LIKE 'R2989%' THEN 1

 ELSE 0

 END AS RHEUMDX,

 CASE

 WHEN DIAG LIKE '3382%'

 OR diag like 'G89%'

 THEN 1

 ELSE 0

 END AS NONMSTDX,

 CASE

 WHEN DIAG LIKE'9650%'

 OR diag LIKE 'T50%'

 THEN 1

 ELSE 0

 END AS OVERDOSE

 FROM in1

 ORDER BY dyad_opioid_id;

QUIT;

PROC SQL;

 CREATE TABLE dd.flags AS

 SELECT distinct dyad_opioid_id

 ,analelig

 ,MAX(CANCERDXAS DXCANCER

 ,MAX(RHEUMDX) AS DXRHEUM

 ,MAX(BCKPNDX) AS DXBCKPN

 ,MAX(NONMSTDX) AS DXNONMST

 ,MAX(ARTHDX) AS DXARTH

 ,MAX(OVERDOSE) AS DXOVERDOSE

 FROM out1

 WHERE analelig=1

 GROUP BY dyad_opioid_id

 ORDER BY dyad_opioid_id;

QUIT;

PROC SQL CREATE TABLE LIKE

There are several methods of creating an empty data set. PROC SQL CREATE TABLE LIKE is one of the
most efficient ones when creating a shell from an existin g data set, as it automatically uses the metadata
from the existing SAS data set. The code below takes advantage of the fact that OPTIONS
DLCREATEDIR enables the creation of a library / folder if one does not already exist (DLCREATEDIR is
benign, and will not overwrite existing folders or data within those folders). The CREATE TABLE LIKE
method is NOT benign, and will overwrite an existing data set. Therefore, the program uses conditional
logic and %SYSFUNC to determine if the file to be written already exists, and does not overwrite the file,
instead producing an error note in the log.

Options dlcreatedir;

run;

/* set years for old and new files */

%let prevyear=2018;

%let fileyear=2019;

6

%let base=S:\Projects\yourproject\;

libname prevann "&base.Analysis&prevyear";

libname annual "&base.Analysis&fileyear";

/***

Program: Writeemanddontweep.sas

Purpose: (1) Build empty shell for annual longitudinal file with ratings data

 (2) Build empty shell for annual longitudinal file with Health

 Inspection Cutpoints

NOTE: Analysis2019 folder / library automatically (and benignly) created using

DLCREATEDIR option

Input Data:

(1) annual longitudinal provider/month ratings FOR PRIOR YEAR:

allratingsYYYY_long.sas7bdat

(2) annual longitudinal (state/month- HI cutpoints FOR PRIOR YEAR:

(3) allHIcuts<yyyy>_long.sas7bdat

Output Data:

(1) EMPTY SHELL of annual longitudinal provider/month ratings:

 allratingsYYYY_long.sas7bdat

(2) EMPTY SHELL of annual longitudinal (state/month- HI cutpoints

 allHIcuts<yyyy>_long.sas7bdat

 ***/

run;

title1 "Compile Annual Longitudinal files for rating and health

inspection cutpoints" ;

footnote1 "%sysfunc(getoption(sysin)) - &sysdate - &systime";

run;

** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ** ;

** Part 1: Ratings

** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ** ;

title2 'Ratings';

 %if %sysfunc(exist(annual.allratings&fileyear._long))=0 %then %do;

 PROC SQL;

 CREATE TABLE annual.allratings&fileyear._long

 LIKE prevann.allratings&prevyear._long;

 DESCRIBE TABLE annual.allratings&fileyear._long;

 QUIT;

 %end;

 %else %do;

 %put ERROR: Data Set ALLRATINGS&FILEYEAR._LONG already exists!;

 run;

 %end;

7

CONCLUSION

SAS provides practitioners with several useful techniques using LIKE statements: the smooth LIKE
OPERATOR / CONDITION in both the data step and PROC SQL, CASE WHEN LIKE in PROC SQL, and
CREATE TABLE LIKE in PROC SQL. There’s definitely reason to like LIKE in SAS programming.

REFERENCES

Gilsen, Bruce. September 2001. “SAS® Program Efficiency for Beginners.” Proceedings of the Northeast
SAS Users Group Conference, Baltimore, MD.

Roesch, Amanda. September 2011. “Matching Data Using Sounds-Like Operators and SAS® Compare
Functions.” Proceedings of the Northeast SAS Users Group Conference, Portland, ME.

Shankar, Charu. June 2019. “The Shape of SAS® Code.” Proceedings of PharmaSUG 2019
Conference, Philadelphia, PA..

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Louise S. Hadden
Abt Associates Inc.
617-349-2385
Louise_hadden@abtassoc.com
abtassociates.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

