
SESUG 2015 

1 

Paper AD-35 
Programming Compliance Made Easy with a Time Saving Toolbox 

Patricia Guldin, Merck & Co., Inc., Kenilworth, NJ USA  

 

ABSTRACT  
Programmers perform validation in accordance with established regulations, guidelines, policies and procedures to 
ensure the integrity of analyses and reporting, reduce risk for delays in product approvals, fines, legal actions, and to 
safeguard reputations. We understand the importance, but the time involved to produce and appropriately store the 
documentation and evidence required to prove we followed process and SOPs can be labor intensive and 
burdensome. Using SAS/AF®, SAS® Component Language and .NET we have developed two versions of an 
automated tool that can be used with PC SAS® or Enterprise Guide®. The toolbox is designed to make compliance 
with programming SOPs easier, increase consistency, and save the programmer time. The toolbox auto-populates 
some information and saves documentation in designated locations as actions are performed. Functions include 
creating and verifying a standard program header, updating program headers, revision history and version date, 
creating validation environments including testing checklists, and promoting programs. The toolbox is also used to 
view transaction logs, create and/or generate batch jobs for remote execution in UNIX, and to select and include 
macro calls from a macro library. 

INTRODUCTION  
In 2002, Merck created a programming toolbar to help support compliance.  It was compatible with PC SAS and was 
designed around the processes in place at that time. Over time, the toolbar was no longer compatible with a new 
programming environment, processes and technology and use of the toolbar declined.  Merck recently developed a 
programming compliance toolbox which is a user-friendly interactive tool used in a SAS editor to assist the 
programmer with documentation and compliance to SOPs and processes. It is the result of global collaboration 
between Merck programmers in Belgium, China, Japan, and the US. The toolbox is designed to function within the 
context of Merck statistical programming SOPs and processes, and to work in connection with a UNIX based 
reporting platform with a standard directory structure.  It can be used with PC SAS or Enterprise Guide. Many of the 
functions of the old toolbar were incorporated and additional functionalities of promotion to production and batch jobs 
were added. The toolbox automatically saves items, such as programs and validation documentation, in folders 
defined by the standard directory structure. Functions of the toolbox include creating and updating program headers, 
creating validation environments and testing checklists and promoting programs. The toolbox is able to auto-populate 
certain items by saving information such as a programmer name, programmer id, and SAS version in a 
sasuser.profile. The toolbox code pulls the required information as needed from the profile for each of the toolbox 
functions. The toolbox is also used to view transaction logs, create and/or generate batch jobs, insert proc dataset 
delete, pick up macros, insert program steps and update program flow for those steps. 

INSTALLING THE TOOLBOX 

SAS ENTERPRISE GUIDE 

The Enterprise Guide version of the toolbox uses Microsoft .Net. The core component is a DLL file that is placed in a 
specific folder and is integrated with SAS. Oracle 11g 64 bit is required. When a programmer is in Enterprise Guide, 
they select Tools, Add-In, and CPI Programming Compliance Toolbox to open and start using the toolbox.  

PC SAS 

Oracle 11g 32 bit is required for the PC SAS version of the toolbox. A programmer executes a %toolbox macro to 
install the toolbox .This macro copies the toolbox catalog files to the SASUSER library. The catalog files contain the 
frames and code for each function, the user profile, and the settings for the toolbox icons. A default toolbar containing 
the icons for the toolbox functions is installed in the enhanced editor for the programmer. 

USING THE TOOLBOX 
Each function of the toolbox, except Proc Datasets Delete and Insert Step, has a user-friendly screen or set of 
screens which the programmer uses to perform that function. The programmer selects the icon for the function 
desired and a screen or form opens.  The programmer works through the screen, entering, selecting, or verifying 
information needed to complete the function. 

A macro variable (PROTPATH) must be defined on UNIX for proper functioning of the toolbox. This variable defines 
the path to the high level folder for a particular deliverable or reporting event. Without defining this variable the 
toolbox will not know where to start and where to save items. Additionally, available macro library locations must be 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

2 

defined using SASAUTOS. Applicable information for each function is prepopulated for the programmer using the 
value of protpath and the user profile. 

 
Figure 1: PC SAS toolbox function icons example 

STANDARD HEADER GENERATOR 

Upon selecting the Create Header function a programmer is presented with a screen and selects the name of the 
header template that they need. These templates are stored in a read only shared area and are maintained by the 
process owners. There are separate templates for programs and macros but each of the templates contains fields 
required by programming SOPs. SAS version, platform, program version date, programmer name and programmer id 
are pre-populated for the programmer from the catalog files. The programmer must enter additional information 
themselves.  Examples include program name and description, any macro parameters to be used and input data. 
This is entered directly in the screen. Selections to add Proc Printto to the code or change output and log file location 
are available although log and output are defaulted to the locations defined by the directory structure and the value of 
protpath. A secondary screen is available that allows the programmer to enter and edit program flow steps to be 
entered into the program header. When the programmer is satisfied, they save and the program with the newly 
generated standard compliant header. The toolbox will not allow programmers to save programs in directories that 
start with “data” or “out” since these are defined for other purposes in the standard directory structure. This aids in 
ensuring adherence to the standard directory structure. The program is named with the name entered in the header 
program name field by the programmer. The programmer then continues with entering their SAS code. The Update 
Header section describes how the header is updated. 

 
Figure 2: Header Generator screen populated to create program1.sas 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

3 

INSERT STEP 

The Insert Step function is used to add steps to the program flow after initial creation of the header. Insert Step also 
adds commented sections in programmer defined locations in the code. Programmers position the cursor where they 
want the step description, select the Insert Step icon, and type the description text. The Update Header section 
describes how the inserted steps are numbered and synchronized with the program flow in the header. 

PROC DATASETS DELETE 

To insert code for Proc Dataset Delete a programmer positions the cursor where they want the code and selects the 
Proc Datasets Delete function. The names of the temporary data sets in the work library are listed in the delete 
statement. For proper functioning, temporary data sets must exist in the work library. 

PICK UP MACRO 

At times a programmer wants to add a call to a standard macro into their code. By placing their cursor at the desired 
insertion place and selecting the pick Up Macro function, a programmer is presented with available macro locations 
(defined by SASAUTOS) and a list of the macros in each location to choose from. Once a macro is selected the 
programmer can see all of the parameters and default values used in the selected macro and can modify the 
parameter values from this function. When the programmer confirms the selection, the macro call is inserted at the 
cursor location. The Update Header section describes how the header is updated to include this macro. In addition a 
read only copy of the macro source code can be displayed at the click of a button. 

 
Figure 3: Pick Up Macro screen showing the variables used in the selected macro and the view macro source 
code button 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

4 

UPDATE HEADER  

The Update Header function performs many important actions. Once all steps are inserted, all macros are added, and 
the code is ready, the programmer should use the update header function.  This function first checks the header to 
see if it matches the standard compliant header template. If the header is not compliant, the programmer is prompted 
with an option to add a compliant header. The toolbox adds the fields from the compliant header template and retains 
the original header information so a programmer can copy information as needed into the appropriate places without 
having to re-type. Because the toolbox was designed to enable compliance, it will not process updates on programs 
with non-compliant headers. If a programmer chooses not to add the compliant header or manually modify the header 
so that it is compliant, they will need to make all header updates manually. 

The Update Header function also updates inserted and modified steps in the program flow and commented sections 
of the code, renumbering the steps in order of their appearance. The commented section steps are used to populate 
and update the program flow section of the header. 

Macro calls that were added manually or through the pick-up macro function are listed in the Macros called section of 
the header when the Update Header function is used.   

The Update Header function updates the Version Date in the header with the current date. This ensures that 
programmers do not forget to change the version date in the header.  

During the Update Header processing, the programmer is given the option to enter a reason for revision or indicate 
that the change is not a revision. If the update is a revision, the reason that the programmer enters along with the 
user id and date are added to the Revision History section of the header. 

 
Figure 4: Update Header, user and date are auto-populated 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

5 

CREATE VALIDATION ENVIRONMENT 

When a programmer is ready to complete official validation of their code, they use the Create Validation function. 
From the Create Validation Environment screen they select the program they want to validate and the type of 
validation (Developer Testing, Double Programming, or Independent Validation).  The Create Validation function 
creates the validation folder structure following the standard directory structure, adds a validation path macro variable 
to the startup program (to help direct output to the proper validation folders), copies the startup program to the 
validation folder, and opens the startup program for the programmer in SAS.  

For the first execution of Developer Testing for a program, this function makes a copy of the program you want to 
validate and places it in the validate folder. It also creates a developer testing checklist, prepopulating the general 
information in the checklist such as project, program, programmer, file location and name and date. This function also 
saves the checklist in the checklist folder according to the standard directory structure and opens the checklist. For 
subsequent executions/rounds of Developer Testing for a program, this function will re-open the saved developer 
testing checklist for the programmer to edit so that only one version of the checklist is retained and maintained for 
each program. 

For subsequent executions of any validation type for a program, this function provides the option to Copy or Move. 
Copy makes a backup of the previous execution of validation and saves it in a date time stamped folder. The original 
validation folders remain as they were for the last execution of validation. Copy could be useful if you have to modify 
one variable in your code and you want to modify and reuse your previous validation program to test. Move also 
makes a backup of the previous execution of validation and saves it in a date time stamped folder but the current 
validation folders are created and populated fresh, as they were the first time the programmer performed that 
validation type for that program. Move could be useful if you have to add a new variable that is not dependent on the 
current code, you don’t need to re-test what you have already done but you do need to save proof of your previous 
testing.  

 
Figure 5: Create Validation Environment screen with Developer Testing selected 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

6 

PROMOTE PROGRAMS 

The Promote to Production function allows programmers to select one or many items to promote, or copy, from test to 
production. The production folders must exist prior to attempting this function and the programmer must have access 
to the test folders and access to write to the production folders. Promote Programs displays items that are available in 
a selected folder and will check if any items have already been promoted. If the function identifies items that already 
exist in production it will compare the dates to see if a newer version exists in test. Programs that were previously 
promoted but have newer versions in test are identified by an *. Newer versions of the same program overwrite the 
old versions in production when they are promoted to maintain one version of a program in production per the defined 
process. This function does not check that validation is complete and programmers are responsible for promoting 
items according to their validation plan and tracking.  

 
Figure 6: Promote to Production screen, includes a program previously promoted with a newer version 
available in test 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

7 

CREATE BATCH 

The Create Batch function allows programmers to create and run batch jobs remotely in UNIX. The programmer 
selects the desired startup program and other programs to include in the batch. Programs from different folders can 
be included in a batch by navigating through the Directory button to those folders and selecting the desired programs 
until all programs for the batch have been selected. The programmer adds, removes and reorders the programs in 
the batch through this function using up and down arrows. The order of the programs in the Batch-files list determines 
the execution order. Batch jobs can be executed from this screen by selecting the Run Batch button. Batch jobs can 
also be saved for later use by selecting the Create Batch File button. The Create Batch function is useful for long 
running jobs as it will not tie up a programmer’s SAS session and programmers are not required to be logged into 
UNIX for the job to execute.  

 
Figure 7: Create batch job screen showing some programs selected 

 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

8 

MANAGE TEMPLATES AND ACTIVITY LOG 

There are two main administrative functions available in the toolbox. The ability to update templates and checklists is 
only available to admin users since changes to these require impact analysis to ensure proper functioning of the 
toolbox after they are introduced. The Transaction Log function is available to all programmers. The toolbox retains 
records of Create Validation Environment, Create Header, Update Header, Promote Programs, and Create Batch. 
These records include user ids and dates. Programmers can filter for the information they want to see and can view 
the results onscreen or export them to excel. This type of information may be useful to check compliance, or to see 
how many modifications were made to a program for example. 

 
Figure 8: Transaction Log showing available filters and sample output 

CONCLUSION  
With the first release of the programming compliance toolbox there have been notable gains. The automation and 
auto-population that the toolbox provides allows programmers to more efficiently be compliant. Programmers can 
spend less time on documentation and process requirements and focus their time on the specialty of writing code. 
Header information and updates are automated and much of the data entry is done by the toolbox. Remembering 
where to save things is no longer a concern since the toolbox knows where things belong and saves them 
automatically. Programmers no longer need to perform manual tasks such as creating validation folders and 
checklists since these tasks are performed by the toolbox. The toolbox is easy to use with buttons to click, drop down 
lists provided when information is not auto-populated, and some built in compliance checking. The toolbox helps 
programmers globally to more consistently follow the SOPs and processes which are aligned with agency regulations 
and company policies. Because the toolbox is designed to work with the standardized computing platform, it enables 
resources globally to be confident in the location and content they will find for any project, thus saving time when re-
allocation of resources is required to meet timelines. 

As more data is compiled by the transaction log it will be examined to determine what reports can be generated to 
display process or training gaps, compliance gains or issues, to help research audit findings and check remediation, 
or to be used in employee performance assessments. Perhaps the transaction log information could be provided as 
supporting evidence that programming processes were followed.  

The toolbox has helped increase awareness of the importance of the departmental SOPs and processes, has 



Programming Compliance Made Easy with a Time Saving Toolbox, continued SESUG 2015 

9 

sparked conversations about process improvement, increased individual accountability, and fostered a culture of 
compliance. It is expected that future releases of the toolbox can address enhancements and any process updates 
that come out of process improvement ideas.  

REFERENCES  
Coppin, Frederic and Herremans, Carl. 2003. “A standard SAS programming toolbar: A step forward for GPP/SOP 
compliant SAS program development.” Proceedings of the PharmaSUG 2003 Conference. Available at 
http://www.lexjansen.com/pharmasug/2003/ApplicationsDevelopment/ad041.pdf.  

 

ACKNOWLEDGMENTS  
I would like to thank Carl Herremans for his development of the first toolbar and his input on the specifications for the 
programming compliance toolbox.  

CONTACT INFORMATION  
Your comments and questions are valued and encouraged. Contact the author at: 

Name: Patricia Guldin 
Enterprise: Merck & Co., Inc., Kenilworth, NJ USA 
Address:  
City, State ZIP: Upper Gwynedd, PA  
Work Phone: 267-305-8242 
E-mail: patricia_guldin@merck.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

http://www.lexjansen.com/pharmasug/2003/ApplicationsDevelopment/ad041.pdf

	Abstract
	Introduction
	installing the toolbox
	sas enterprise guide
	pc sas

	using the toolbox
	standard header generator
	insert step
	Proc Datasets delete
	Pick Up Macro
	Update Header
	create validation environment
	Promote programs
	create Batch
	Manage Templates AND activity log

	Conclusion
	As more data is compiled by the transaction log it will be examined to determine what reports can be generated to display process or training gaps, compliance gains or issues, to help research audit findings and check remediation, or to be used in emp...
	References
	Acknowledgments
	Contact Information

