
SESUG 2015

1

Paper CC59

Document and enhance your SAS® code, data sets, and catalogs with SAS® functions,
macros and SAS® metadata

Roberta Glass, Abt Associates Inc., Cambridge, MA
Louise Hadden, Abt Associates Inc., Cambridge, MA

ABSTRACT

Discover how to document your SAS® programs, data sets and catalogs with a few lines of code that include SAS
functions, macro code and SAS metadata. Do you start every project with the best of intentions to document all of your
work, and then fall short of that aspiration when deadlines loom? Learn how your programs can automatically update
your processing log. If you have ever wondered who ran a program that overwrote your data, SAS has the answer! And If
you don’t want to be tracing back through a year’s worth of code to produce a codebook for your client at the end of a
contract, SAS has the answer!

INTRODUCTION

Who cares about metadata? Any SAS programmer should care! Knowing and being able to track your data is vital. By
using SAS metadata in conjunction with careful documentation, you can find out when a program was last run, who ran
it, what variables were created, whether the data set is sorted or indexed, and more. You can use your metadata to
write portions of your programs, and to generate codebooks. We will give you a whirlwind tour of tools, tips and
techniques to enhance your SAS programming toolkit!

DOCUMENT, DOCUMENT, DOCUMENT!

Every time a SAS session is initiated, a wealth of metadata becomes available to users, and this metadata can be used to
help document your processes and output. We will discuss methods of documenting in these three areas:

 Programs, logs, and Output,

 SAS datasets, and

 SAS Catalogs.

PROGRAMS, LOGS & OUTPUT

It is good practice to place the name of the program in your program, log, and output; but how many of us are guilty of
re-using code and forgetting to change the program name in the documentation section? Have you ever been presented
with a table you created two years ago and asked how a statistic was computed? Using system functions and macro
variables can save you time and insure that every program you run has a .log, .lst, and table that contain the correct
program name, date and time it was run, and the user ID of the person who ran it.

 SYSFUNC(GETOPTION (SYSIN)) returns the path and name of the program

 &SASDATE returns the date the program began

 &SYSTIME returns the time the program began and

 &SYSUSERID returns the user ID of the programmer who submitted the job.

To make sure that your output is easily linked to the program which created it, this information can be placed in either a
title or footnote. To link data files with the program that creates it, this information can be placed in a variable or
variables, or as part of a data set label.

SESUG 2015

2

A simple macro can insure that every program has a header section which contains this information. First, save a
compiled version of the macro to a macro catalog. Note that you can also store a description of your macro using the
DES= option.

Then include a call to the stored header macro in all of your programs:

Now your logs will contain metadata in an easily located header:

When there is a time crunch, many of us find ourselves with a backlog of programs to add to our process log. But what if
each program could automatically add itself to the log? The following program autodoc.sas can be saved and called with
%include to automatically update your log. It can of course be customized to save the information that would be useful
to you, and can include empty fields which you can edit manually.

SESUG 2015

3

*** program name: Autodoc.sas:

libname doc 'C:\Users\GlassR\Desktop\samples';

* prompts the user for purpose and reason each time program is run in batch mode *;

* %WINDOW defines the prompt *;

%window info

 #4 @5 'Please enter the purpose of this program:'

 #6 @5 purpose 100 attr=underline display=yes auto=no color = blue;

* %DISPLAY invokes the prompt *;

%display info;

%put &purpose;

%let lengths = program_name $ 100 run_date $ 9 run_time $ 8

 run_by $ 32 purpose $ 100 sas_version $10

 system $20 input_files $500 output_files $500;

* collect run information for this execution of the program;

data userline(drop= word_n path_program);

length &lengths.;

run_by="&sysuserid";

run_date="&sysdate";

run_time="&systime";

purpose="&purpose";

sas_version="&sysver";

system="&sysscpl";

input_files=' ';

output_files=' ';

path_program = "%sysfunc(getoption(sysin))";

word_n = countc(path_program,"\.");

program_name = scan(path_program,word_n,"\.");

run;

* assuming you edited the spreadsheet, and want to retain what you put in there;

* read current doc excel file into sas;

proc import dbms=excel out = testdocA

 datafile = "C:\Users\GlassR\Desktop\samples\testdoc.xlsx";

run;

data testdoc;

length &lengths.;

set testdocA;

run;

* append the new information *;

proc append data=userline base=testdoc force;

run;

* re-save the updated testdoc SAS file;

data doc.testdoc;

set testdoc;

run;

* re-save the excel file;

proc export data= doc.testdoc

outfile= "C:\Users\GlassR\Desktop\samples\testdoc.xlsx"

DBMS=EXCEL label replace;

sheet="program log";

run;

SESUG 2015

4

Save an empty Microsoft Excel® file or generate a SAS file and export to an Excel file called testdoc.xlsx with the
following columns: program_name, run_date, run_time, run_by, purpose, sas_version, system, input_files and
output_files before using autodoc.sas for the first time. The autodoc program prompts the user to enter the purpose of
the program, reads the existing Excel® log file into SAS, appends the information for this run of the program, and saves
the updated excel log. A SAS data set version of the log is saved as a backup should the excel file not save correctly.

In our example we do not automatically populate the input and output data fields. The information is added manually.
As you can see from the results of running three programs, the manually entered information is retained when the excel
file is updated by autodoc.

SAS DATASETS

When you receive a SAS file from outside your company you can add a label using PROC DATASETS without having to
save a new copy.

For files that you create, the data step label option can be used to store metadata that documents the creation of a data
set. The Contents and Dataset procedures will then be able to provide you with information on how and when the
dataset was created as well as how it is sorted or indexed.

SESUG 2015

5

If you are meticulous about labeling every variable and maintain a catalog of variable formats, you will have the material
needed to create a codebook at the end of the file building process. In the example above the variable labels contain the
source of the information (‘Intake’ for data produced by the random assignment enrollment procedure and ‘Claims’ for
data derived from insurance claims. Other examples of useful information to include in a variable label are the
question/item number of variables coming from a survey or administrative form and whether the variable has been
recoded.

SAS CATALOGS

Storing all of your variable formats in a catalog doesn’t just save the time of finding and copying code, it also serves as
valuable documentation. You can save formats in one format library, or save separate format libraries specific to a
particular dataset or phase of your project. For instance, to save a format for the Treatment variable in a catalog specific
to dataset test, we specify "Library=fmtlib.test” instead of just “LIBRARY=fmtlib” :

SESUG 2015

6

To use the format, specify the format library in the option statement. If you create your format library before creating

the data file, you can assign the formats to variables with a format statement , thus storing the association permanently.

Since in this example the dataset already exists, the format statement is used in the PROC FREQ procedure.

CODEBOOK GENERATION

You’ve done a lot of hard work documenting every aspect of your programming project, and now it is time to reap your
rewards. There are a number of ways that you can present information from PROC CONTENTS and PROC DATASETS
covered in many other papers. In the example we show here, an Excel spreadsheet with selected variables from PROC
CONTENTS output is generated using PROC EXPORT. We are using a modified copy of SASHELP.HEART as our sample
data set, for several reasons, one of which is that not all variables are labelled, requiring some changes, and another is
that this data set is available to all users.

SESUG 2015

7

Of course, you want to review the results and maybe modify a label or format assignment. You can then reimport the

modified spreadsheet , and use the information to: (a) write code to be included to generate a codebook with output

varying by variable type; (b) write code to generate a label statement; and (c) write code to generate a format

assignment statement, among other normally onerous tasks.

Our codebook generation program starts with reimporting the edited version of the metadata spreadsheet, shown

above. A number of macros are then constructed: to report on “header information” (i.e. variable name, label, etc.),

missing values, and then details on non-missing values, differential by variable type (character, continuous, categorical).

Additionally, the program accesses the metadata and outputs text files with macro calls to the macros created above

conditional upon the variable type in the metadata and reporting macros, that are then reused in the program as include

files.

SESUG 2015

8

SESUG 2015

9

Macros are written to report on each variable, creating an RTF codebook.

Blah

Two pages from the codebook are shown below.

SESUG 2015

10

Similarly, metadata can be accessed to create label, format, and length, etc. statements.

The resulting statement, example shown below, can be included in other programs seamlessly.

SESUG 2015

11

For those of us who deliver data to internal and external clients, careful documentation results in easy transfers with the

help of SAS metadata.

Only code snippets are shown here: full code is available from the authors upon request.

CONCLUSION

With attention to documentation from the start of a project, you can automatically keep a processing log updated, label
your data sets and variables, and identify the code that created datasets, .logs, .lsts, and tables. This will allow you to
take advantage of the PROC DATASETS (as well as PROC CONTENTS), SAS Dictionary Tables and SASHELP.VIEWS to create
user-friendly documentation, and generate components of your SAS programs without typing a word.

REFERENCES

Carey, Helen and Carey, Ginger, 2011. “Tips and Techniques for the SAS Programmer!” Proceedings of SAS Global
Forum 2011.

Crawford, Peter, 2013. “A Day in the Life of Data – Part 3.” Proceedings of SAS Global Forum 2013.

Fraeman, Kathy Hardis, 2008. “Get into the Groove with %SYSFUNC: Generalizing SAS® Macros with Conditionally
Executed Code.” Proceedings of NESUG 2008.

Hadden, Louise, 2014. “Build your Metadata with PROC CONTENTS and ODS OUTPUT”, Proceedings of SAS Global
Forum 2014.

Huang, Chao, 2014. “Top 10 SQL Tricks in SAS®.” Proceedings of SAS Global Forum 2014.

Karafa, Matthew T., 2012. “Macro Coding Tips and Tricks to Avoid “PEBCAK” Errors.” Proceedings of SAS Global Forum
2012.

Kuligowski, Andrew T. and Shankar, Charu, 2013. “Know Thy Data: Techniques for Data Exploration.” Proceedings of SAS
Global Forum 2013.

SESUG 2015

12

Lafler, Kirk Paul, 2014. “Powerful and Hard-to-find PROC SQL Features.” Proceedings of SAS Global Forum 2014.

Murphy, William C., 2013. “What’s in a SAS® Variable? Get Answers with a V!” Proceedings of SAS Global Forum 2013.

Raithel, Michael A., 2011. “PROC DATASETS: the Swiss Army Knife of SAS® Procedures.” Proceedings of SAS Global
Forum 2011.

Thornton, Patrick, 2011. “SAS® DICTIONARY: Step by Step.” Proceedings of SAS Global Forum 2011.

Zhang, Jingxian, 2012. “Techniques for Generating Dynamic Code from SAS® Dictionary Tables.” Proceedings of SAS
Global Forum 2012.

ACKNOWLEDGMENTS

The authors gratefully acknowledges the helpful work of Kathy Fraeman, Michael Raithel, Patrick Thornton and Kirk Paul
Lafler, among others.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Roberta Glass: Roberta_Glass@abtassoc.com
Louise Hadden: Louise_Hadden@abtassoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Roberta_Glass@abtassoc.com
mailto:Louise_Hadden@abtassoc.com

