
SESUG 2015

1

BB-105

No FREQ-in Way
Renee Canfield, Experian, Atlanta, GA

ABSTRACT

In the consumer credit industry, privacy is key and the scrutiny increases every day. When returning files to a client,
they must be depersonalized so the client cannot match back to any personally identifiable identification (PII). This
means we must locate any values for a variable that occur on a limited number of records and null them out (i.e.
replace them with missing values). Working with large files which have more than one million observations and
thousands of variables, locating variables with few unique values is a difficult task. While PROC FREQ and DATA
step merging can accomplish the task, using first./last. by variable processing to locate the suspect values and hash
objects to merge the data set back together may offer increased efficiency.

INTRODUCTION

This paper will demonstrate an easy application of the hash object for the audience of a beginner or experienced
SAS® programmer. It may offer time savings compared to “traditional” SAS procedures. We will compare two
methods of solving the business problem, tested on the “rule of 5” (i.e. the values must occur on at least 5 records):
one using PROC FREQ and DATA step match-merge and the other using first./last. by variable processing and hash
object lookups. We will also utilize SAS metadata, called dictionary tables, in combination with SAS macro
assignments in PROC SQL to avoid hard coding our programs.

USING DICTIONARY TABLES (METADATA) WITH PROC SQL MA CRO ASSIGNMENT

To solve this business problem we must perform the same task on thousands of variables and macros easily lend
themselves to such operations. But how will we list the thousands of variable names in SAS? Are we going to
upload a file to read in or type out each name in the program? Fortunately neither step is necessary, because SAS
automatically stores metadata in dictionary tables during each session. We can query them using PROC SQL and
then push the information into macro variable lists to use in loops. No hardcoding is necessary.

 /* read in raw data file */

 data rawreturn;
 retain matchkey 0;
 infile dat('reged1_test.data') missover lrecl=4 000 DELIMITER='20'x termstr=lf ;
 %macro inp;
 input
 %do i = 1 %to 999;
 attr&i
 %end;

;
 label
 %do j = 1 %to 999;
 attr&j = "Attribute #&j"
 %end;

;
 %mend;
 %inp
 matchkey = matchkey + 1; /* create a match ke y */
 run;

 data master;
 set rawreturn(keep=matchkey);
 run;

 /* queries the name field from dictionary.columns table to count the number of
 variables (i.e. columns) in the data set rawretur n, minus the matchkey field which
 will not be considered because it is an anonymous key that does not need to be
 nulled out */

 proc sql;
 select count(distinct name) into : ttlcol /* c reates a macro var called ttlcol*/

No FREQ-in Way, continued SESUG 2015

2

 from dictionary.columns
 where libname = 'WORK'
 and memname = 'RAWRETURN' /* data set name * /
 and upcase(name) not in ('MATCHKEY');
 %let ttlcol = &ttlcol; /* removes blanks */

 /* dynamically assign macro variables from name, type and label metadata
 (i.e. This simple PROC SQL statement will assign 3 macro variables var, type and lbl
 for each record variable in the rawreturn data se t. We did not have to tell it how
 many records to look for because we stored that n umber in ttlcol.) */

 select name, type, label
 into : var1 - : var&ttlcol, : type1 - : type&tt lcol, : lbl1 - : lbl&ttlcol
 from dictionary.columns
 where libname='WORK'
 and memname='RAWRETURN'
 and upcase(name) not in ('MATCHKEY');

 quit;

 %put Example : variable name = &var1 variable typ e = &type1 variable label = &lbl1;

Display 1 is an example of the macro variables created from the PROC SQL code above for variable #1.

Display 1. SAS Log Window to show macro variable #1 resolved

Table 1 is an example of the data set rawreturn:

matchkey attr1 attr2 attr3 … attr999

1 241 4900 20 5

2 183 4900 20 4

3 183 4900 10 5

4 184 5880 10 5

5 241 5880 10 5

6 241 4900 10 5

7 241 2630 20 6

8 241 5880 20 4

9 172 5880 20 7

10 241 4900 20 6

Table 1. rawreturn

PROC FREQ APPROACH

Now that we have a list of variables stored in macro variables, we insert them in a loop and null out those values that
occur on less than 5 observations to depersonalize the data. Our first attempt at solving our problem involves
running PROC FREQ on every one of the variables individually and looking for any values which appear on less than
5 observations. Then the output data set with counts by variable values is subset to only those where count is less
than 5.

No FREQ-in Way, continued SESUG 2015

3

 %macro nullitf;
 %do i=1 %to &ttlcol; /* loop through all of the variables in rawreturn data set */

 /* sort out one variable at a time */
 proc sort data=rawreturn(keep=matchkey &&var&i) out=sorted_&i;
 by &&var&i;
 run;

 /* run a freq on that variable and only keep th e values that occur on < 5 obs */
 proc freq data=sorted_&i(keep=&&var&i) noprint;
 tables &&var&i/out=freq_&i(where=(count lt 5) drop=percent);
 run;

 /* merge those “problem” values back onto sorte d data set and null them */
 /* we have one data set per variable with value s nulled out where necessary */

 data nulled_&i;
 merge sorted_&i(in=o) freq_&i (in=l keep=&&va r&i);
 by &&var&i; /* we merge by the variable &&var &i here and not the matchkey */
 if o;

 /* the call missing() routine sets the variab le to missing if it exists in the
 freq_&i data set which has values occurring o n <5 obs */
 if l then call missing(&&var&i);

 run;

 proc sort data=nulled_&i;
 by matchkey;
 run;

 %end;

 proc datasets lib=work;
 delete sorted: freq: ;
 run; quit;
 %mend;

 %nullitf

We will show an example of the macro processing for the first variable attr1. Table 2 shows the data set sorted_1
which is the rawreturn data set sorted by attr1. Notice we show the first four rows in bold red because the values
172, 183 and 184 occur on less than 5 observations. The frequency procedure counts these values and outputs
them in Table 3. In the final Table 4 we see that the values 172, 183 and 184 have been set to missing but the
values 241 remain intact.

matchkey attr1

9 172

2 183

3 183

4 184

1 241

5 241

6 241

7 241

No FREQ-in Way, continued SESUG 2015

4

matchkey attr1

8 241

10 241

Table 2. sorted_1

attr1 count

172 1

183 2

184 1

Table 3. freq_1

matchkey attr1

1 241

2 .

3 .

4 .

5 241

6 241

7 241

8 241

9 .

10 241

Table 4. nulled_1

To create the final return data set, the variables are merged together using the DATA step match-merge.

 %macro createf;

 /* one DATA step and a loop merges all the null ed_&i data sets back together on
 matchkey */

 data hsh.final_return_frq;
 length matchkey 8.;
 merge master(in=m)
 %do i=1 %to &ttlcol;
 nulled_&i
 %end; ;
 by matchkey;
 if m; /* left join on matchkey from master da ta set */
 run;

 proc datasets lib=work;
 delete nulled: ;
 run; quit;

 %mend;

 %createf

No FREQ-in Way, continued SESUG 2015

5

The macro %createf merges all the nulled_&i data sets together on matchkey using a DATA step match-merge like in
Figure 1. The final data set is found in table 5.

matchkey matchkey attr1 matchkey attr2 … matchkey attr999

1 1 241 1 4900 1 5

2 2 . 2 4900 2 .

3 3 . 3 4900 3 5

4 4 . 4 . 4 5

5 5 241 5 . 5 5

6 6 241 6 4900 6 5

7 7 241 7 . 7 .

8 8 241 8 . 8 .

9 9 . 9 . 9 .

10 10 241 10 4900 10 .

Figure 1. DATA step match-merge

matchkey attr1 attr2 attr3 … attr999

1 241 4900 20 … 5

2 . 4900 20 … .

3 . 4900 . … 5

4 . . . … 5

5 241 . . … 5

6 241 4900 . … 5

7 241 . 20 … .

8 241 . 20 … .

9 . . 20 … .

10 241 4900 20 … .

Table 5. hsh.final_return_frq

FIRST./LAST. BY VARIABLES AND HASH OBJECT APPROACH

In the alternative solution we create a counter variable on the sorted data set to count individual values and only keep
those which appear on less than 5 observations. Then a DATA step hash object nulls out the appropriate values and
another hash object merges the nulled data sets together.

 %macro nullith;
 %do i=1 %to &ttlcol; /* loop through all the va riables in rawreturn data set */

 /* sort out one variable at a time */
 proc sort data=rawreturn(keep=matchkey &&var&i) out=sorted_&i;
 by &&var&i;
 run;

 /* use first. and last. variables to count the values of a by-group variable */
 /* keep any values that occur on less than 5 re cords */

No FREQ-in Way, continued SESUG 2015

6

 data firstlast_&i;
 set sorted_&i(keep=&&var&i);
 by &&var&i;
 if first.&&var&i then count = 1; /* start cou nter at 1 for each &&var&i value */
 else count + 1;

 /* only keep last instance of the variable && var&i value if count is less than 5
 (ie. value occurs on < 5 observations) */
 if last.&&var&i and count lt 5;

 run;

 /* null out the necessary values by looking the m up in the hash object created
 from the firstlast_&i data set */

 data nulled_&i(drop=rc);
 if _n_ = 1 then do;
 if 0 then set firstlast_&i(drop=count); /* set up PDV */

 /* declare and instantiate the hash objec t n&i created from the data set

 firstlast_&i */
 declare hash n&i(dataset: "work.firstlast _&i");
 n&i..definekey("&&var&i"); /* define the key as &&var&i */
 n&i..definedata("&&var&i"); /* define the data as &&var&i */
 n&i..definedone(); /* done defining the h ash object */
 end;

 set sorted_&i;

 /* rc = return code that says whether or not the key variable &&var&i has a
 match in the hash object n&i (=0 if there is a match, <>0 otherwise)*/
 rc = n&i..find(key:&&var&i);

 if rc eq 0 then call missing(&&var&i); /* nul ls values out if match found */
 run;

 %end;

 proc datasets lib=work;
 delete sorted: firstlast: ;
 run; quit;
 %mend;

 %nullith

The %nullith macro begins the same way the %nullitf did, with a PROC SORT, so you can see Table 2 for details on
sorted_1. The nulled_1 data set is also the same so see Table 4. The difference in this code is where we replace
the PROC FREQ with a DATA step and use the first./last. by variables to count the distinct values for attr1. Table 6 is
the data set firstlast_1 and contains values which occurred on less than 5 records for the variables attr1. We can see
that it matches Table 3 so we get the same result with either %nullith or %nullitf.

attr1 count

172 1

183 2

184 1

Table 6. firstlast_1

The %createh macro declares a hash object for each of the nulled_&i data sets. Then instead of a DATA step match-
merge, it uses those hash objects to lookup the match key and appends all the variables that have been nulled where
appropriate. Instead of reading all the nulled_&i data sets like the previous solution, it loads them all into hash
objects in memory to access using FIND().

No FREQ-in Way, continued SESUG 2015

7

 %macro createh;
 data hsh.final_return_hsh(drop=rc);
 length matchkey 8.;

 /** Set up HASH objects for each of the &&ttl col columns **/
 if _n_ = 1 then do;
 %do i=1 %to &ttlcol;

 /** Set up metadata for hash object (i.e. adds v ariable info to PDV) **/
 if 0 then set nulled_&i;

 /* declare and instantiate the hash object h&i created from the data set
 nulled_&i */
 declare hash h&i(dataset: "work.nulled_&i");

 h&i..definekey("matchkey"); /* define th e key as matchkey */
 h&i..definedata("&&var&i"); /* define th e data as &&var&i */
 h&i..definedone(); /* done defining the hash object */
 %end;
 end;

 set master;

 /* use the &ttlcol hash objects to locate the values for the variables that are
 now nulled where necessary */

 %do i=1 %to &ttlcol;
 rc = h&i..find(key:matchkey); /* return cod e for hash method */

 if rc ne 0 then do; /* if lookup failed, as sign a special missing value */
 %if &&type&i eq num %then %do;
 &&var&i = .A;
 %end;
 %else %do;
 &&var&i = 'Z';
 %end;
 end;
 else do;
 /* updates the variable &&var&i from hash object h&i using matchkey */
 h&i..find(key:matchkey);
 end;
 label &&var&i = "&&lbl&i";
 %end;
 run;

 proc datasets lib=work;
 delete nulled: ;
 run; quit;
 %mend;

 %createh

COMPARISON OF THE TWO METHODS

Either method gives the desired output, but the processing is quite different. Depending on your system settings,
data set and/or server load, you may find one more advantageous than the other. Using PROC FREQ, significant
disk space is taken up by utility files that are written to the work directory. If space is limited and there are many
unique values for the variables, you may easily run out of space. In the PROC FREQ solution, we need to read
multiple data sets while merging the nulled fields together by the match key to create the final data set and this takes
a significant amount of I/O operations. This solution is cleaner to read and uses basic procedures, but may take
longer to process than the hash solution.

No FREQ-in Way, continued SESUG 2015

8

The hash solution is different because most of the processing is done in memory. In the DATA step, the first./last. by
variables count the variable values. Then we lookup these values by loading the count data sets into memory once
using a hash object and the FIND() method to lookup the values that must be nulled out. This is faster than the time
associated with a DATA step match-merge which reads through the data sets sequentially. In the last step, we
create the final data set by match key using a hash object for each nulled data set, which again happens in memory
and uses less disk space.

CONCLUSION

There are times when system constraints or large data sets force us to learn new programming techniques. The
hash object is extremely useful for lookups, eliminating the need to rely on the DATA step match-merge or PROC
SQL joins and reducing run time due to its use of memory instead of disk space. This technique provided the optimal
solution to depersonalize the client file in a timely manner for this particular project as PROC FREQ quickly ran out of
space. The memory settings were managed carefully to accommodate the multiple large hash objects and the
columns were partitioned because we only had so much memory allocated.

A few sample data sets were run through both methods and disk space and real time measurements were compared
(see Table 7). Surprisingly both methods used a similar amount of disk space but, depending on the structure of the
data set, one method was faster than the other. Please keep in mind that system load had a significant impact on the
run times so this was just for demonstration purposes only and multiple runs would have been tested, if time allowed,
for accurate benchmarking.

Data Set Data Set Structure #Vars #Obs FREQ

work
space
(kb)

FREQ

utility
space (kb)

FREQ

real time
(hh:mm:ss)

HASH

work
space
(kb)

HASH

utility
space (kb)

HASH

real time
(hh:mm:ss)

rawreturn all numeric fields,
many unique
values

999 20,000 820136 0 00:05:18 823104 0 00:03:07

sample2 mixed numeric and
character, PII data
with many unique
values

38 5,000,000 9661816 240123904 00:07:19 9661888 240123904 00:19:10

sample3 mixed numeric and
character, attribute
data mixed with PII

515 3,094,742 63589388 173408256 19:47:28 63591492 173408256 18:54:04

Table 7. Method tests for disk space and real run t ime

REFERENCES

Genomics REGED1 Data Set: http://www.causality.inf.ethz.ch/challenge.php?page=datasets#cont

Lafler, Kirk Paul. 2011. “An Introduction to SAS Hash Programming Techniques”, Proceedings of the 2011 South
East SAS Users Group (SESUG) Conference. Available at http://analytics.ncsu.edu/sesug/2011/BB08.Lafler.pdf

Farris, Jason. 2010. “Working with SAS Hash Objects: Automation, Tips and Pitfalls”, Proceedings of the 1010
Western Users of SAS Software Users Group (WUSS) Conference. Available at
http://www.wuss.org/proceedings10/coders/3006_3_COD-Farris.PDF

SAS Institute. “Hash Object Tip Sheet,” Available at http://support.sas.com/rnd/base/datastep/dot/hash-tip-sheet.pdf

SAS Institute. 2007. “SAS Certification Prep Guide: Advanced Programming for SAS 9”. 577-589. Cary, NC: SAS
Publishing

ACKNOWLEDGMENTS

I would like to acknowledge Experian for allowing me the time and resources to share this paper with the attendees of
SESUG.

No FREQ-in Way, continued SESUG 2015

9

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Renee Canfield
Enterprise: Experian
E-mail: renee.canfield@experian.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

