SESUG 2015

Paper 188-2015
Accessing and Extracting Unstructured XML Data using SAS and Python
Sai Mandagondi, Slalom Consulting;
ABSTRACT

This paper discusses an approach to dynamically load unstructured XML data using SAS and Python. When
neither the SAS XML mapper nor a custom XML map can parse the incoming data, using external programs
(Shell Scripting and Python) and integrating results from external programs into a SAS data set is an
efficient alternative. One of the methods to eventually load data into a database to support upstream
reporting and analytics is illustrated.

INTRODUCTION

Data exchange mediums like JSON, XML have garnered immense popularity over the last decade and play
a central role in modern data communication techniques. SAS natively provides capabilities to make web
service calls and download data from a given URL. XML data can be downloaded in SAS by either building
a custom XML map or utilizing SAS XML mapper to define an XML structure. Goal of this paper is to
propose a new method to access and extract XML data via SAS Enterprise Guide and load it into a Teradata
database. Leveraging external tools and there by extending inherent capabilities of SAS are discussed in
the paper using a sample XML which does not have an expected hierarchical structure. Also usage of
native SAS PROC IMPORT and sample Python script to analyze the XML structure are demonstrated.

ELEMENTS OF DATA EXTRACTION

Fundamental to the whole process is to import data into a format and location that SAS can access, import
and manipulate. Figure 1. elucidates the different steps involved in the data retrieval.

Python SAS Imports
Weet- Extracts | Comverts XML - CSV and loads Teradata
XML data into Table (Data
v Teradata Destination)

Figure 1Process Flow
Wget

Wget command helps download data from HTTP, HTTPS and FTP protocols. In shell scripting alongside
Curl it is widely used to retrieve data from a web service call.

XML

XML (eXtensible Markup Language) is a widely used data transfer medium which is generally hierarchical
in nature. Modern API requests and web service calls leverage XML based communication to transfer data.

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued SESUG 2015

SAS from version 8.2 and higher has provisions to handle XML data. Additionally SAS 9.1 and higher
provide an XML Mapper to build XML maps. Challenge is to deal with unstructured or undefined XML data
where markup tags are not hierarchical and convert it into SAS datasets.

Python — Packages and Libraries

Python is a multi-paradigm programming language (supports Object oriented and structured
programming). For internet facing applications large number of standard formats and protocols (HTTP,
MIME) are supported. One of the powerful features of Python is its ability to break non coherent data
structures into manageable and easily consumable formats.

SAS PROC IMPORT

SAS PROC IMPORT can import wide variety of data sources including tab delimited, Comma delimited and
excel files. It is a starting point for reading a delimited ASCII data file such as a CSV (comma-separated
values). Premise of this alternate approach is to leverage PROC IMPORT and extract data from the CSV
generated by Python. Adopted the following PROC IMPORT options when retrieving data from CSV in SAS
Enterprise Guide. Multiple options can be set in PROC IMPORT procedure. Guessing Rows, Data Row are
some of the most frequently used options.

/*Sample SAS PROC IMPORT procedure*/

PROC IMPORT

DATAFILE = FILEPATH;

DBMS = CSV /* In chosen example*/; REPLACE OUT = XYZ;
GUESSINGROWS =32767;

DECONSTRUCTING, ACCESSING AND LOADING XML DATA

Shell Scripting - Downloading XML

Wget command fetches OrderShipping.xml file from a web service call and this XML is used as an input to
a python program to convert into a csv. Generated output is then transported to a location that SAS can
access and import. Leveraged Wget command as shown in Figure 2. to extract the OrderShipping.xml file
from a URL by executing a shell script. Alternately same operation can be performed in SAS by running
the above shell script from SAS Enterprise Guide. Rationale behind choosing to run a shell script has
multiple advantages over directly making a web service call from SAS. It serves the dual purpose of making
a web service call, downloading an XML file and running the python script.

ng.xml -0 OrderShipping. =ml
ython aja] o) hipp

Figure 2 Download XML file from a URL

Analyzing the XML
Consider the sample XML displayed in Figure3. It consists of iPhone 6 shipment information and shipment
cycle (order of shipping) associated with each Shipment Number across different states. Similar Shipment

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued

tags exist for different states. As the XML tags are not hierarchical in nature they cannot be imported
directly into SAS by building a custom map or leveraging the XML mapper. Sample python code discussed
in the paper converts the XML file into a comma-separated delimited file, popularly referred to as a CSV
(comma-separated values). Perl or R can be used as substitutes for python to download data but the key

point is to ensure that data is loaded into a location that SAS can access.

<?xml wversion="1

LOm 2

- «<0rderShipments>
— =5Shipment ProductName="iFhone &" State="GA"»>

<ShipmentLeg

ShippingCycle="1

ProductName="iFhone &"
ShipmentHumber="170&8"

DriginShippEdDateTine=”2ZLE—; -21T12:28:00

<ShipmentLeg

<ShipmentLeg

<ShipmentLeg

<ShipmentLeg

<ShipmentLeg

<ShipmentLeg

<ShipmentLeg

</Shipment>

5ﬁipneqtNunber=”
CriginShippedDateTime="2015
ExpectedhArrivalDateTime="2015-07-28T22:34:00"/ >
ShippingCycle="3733"
ProductHame="iFhone &"
ShipmentHNumber="1544"
CriginShippedDateTime="2015-0
ExpectedArrivalDateTime="2015
ShippingCycle="3734"
ProductName="1iFhones &"
ShipmentNumber="140&"
CriginShippedDateTime="2015
ExpectedArrivalDateTime="2015-07-24T10:41:00" >
ShippingCycle="3735"
ProductName="iFhones &"
ShipmentHumber="2423"
CriginShippedDateTime="2015-07-25T12:47
ExpectedArrivalDateTime="2015-07-28T17:2
ShippingCycle="3736"

ProductHame="iFhone &"
ShipmentNumber="5Z8"
CriginShippedDateTime="2015-07
ExpectedirrivalDateTime="2015
ShippingCycle="3737T"
ProductHame="1 e"
ShipmentNumber="1505"
CriginShippedDateTime="2015-0
ExpectedArrivalDateTime="2015
ShippingCycle="3738"
ProductName="1iPFhone &"
ShipmentNumber="2593
CriginShippedDateTime="20
ExpectedﬁrrlvalDateT1He=”4__:—E'—EEi;z::z:Ei”fb

3
Tl

200"/ >

Figure 3. Sample Order Shipping XML

SESUG 2015

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued SESUG 2015

A closer examination of XML data indicates that ShipmentLeg is the repetitive element of the XML and
each ShipmentLeg has child attributes like OriginShippedDate, ShipmentNumber etc. If State becomes the
Parent Element of the XML tag we can decompose the XML into a hierarchical structure. Thus an
unstructured XML file can be converted into a hierarchical structured that can be iterated for each state
and ShipmentLeg combination.

Python to CSV conversion

Python deconstructs the XML file and converts it into a Comma-separated list of values which can be
imported into SAS. As shown in Figure 4, python synthesizes the XML into a CSV. Initial step is to identify
the parent element, child element and child element attributes.

Based on the XML breakdown and analysis in the decomposition phase, analyzed and concluded that there
will be multiple shipment legs for each state. Utilized native CSV modules in Python to read the XML,
iterate over each ShipmentLeg for each state and write data to a CSV file. Included the important elements
of the python code to illustrate the breakdown of the unstructured XML.

#!'/usr/bin/python
import sys, getopt

parentElementName = 'Shipment’
parentElementAttributeNames =
childElementName = 'ShipmentL
childElementAttributeNames =

'ProductHame ",

'ShipmentCycle’',
'ShipmentNumber'
'"OriginShippedDa

eTi
'ExpectedirrivallDateT]

1:

[
m
]

main (argv) :
¥mlFilePath = '°'
cegwvFilePath =

opts, args = getopt.getopt (argv, "hx:c:", ["xfile=", "cfile="])

except getopt.GetoptError:
print 'CrderShipping.py —-X <xmlfile> —-c «<csvifile>'
sys.exit ()
for opt, arg in opts:
if opt = '-h':
print 'CrderShipping.py —xX <xmlfile> -c <csviile>'
sys.exit ()
elif opt in ("-x", "——xfile"):
xmlFilePath = arg
elif opt in ("-c", "——cfile™):
cevFilePath = arg
if (¥xmlFilePath == "' or csvFilePath == "'"}:
print 'CrderShipping.py —xX <xmlfile> -c <csviile>'

Figure 4. Python Code to Convert XML to CSV

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued SESUG 2015

Generating and Accessing CSV File

Python code above successfully builds a CSV file and places the output file in a path that SAS can access.
This is another key element of the whole data transfer operation which promotes accurate and effective
data import.

The CSV file generated is displayed in Figure 5. Observe that the XML structure at this point is totally
converted into a CSV format with the child attribute elements becoming the file headers. Notice that for
each State and ShipmentLeg combination Python made an entry to the CSV file.

A B C (8] E F

1 |State ProductName ShipmentCycle ShipmentNumber OriginShippedDateT ExpectedArrivalDateTi
2 |GA iPhone6 '1234 '1706 2015-07-21T12:28:00 2015-07-24T17:39:00
3 |GA iPhoneb '3732 '333 2015-07-21T18:34:00 2015-07-28T722:34:00
4 |GA iPhone6 3733 1644 2015-07-22T00:15:00 2015-07-25T05:20:00
5 |GA iPhone6 3734 406 2015-07-23706:38:00 2015-07-24710:41:00
6 |[GA iPhone6 3735 2423 2015-07-25T12:47:00 2015-07-26T17:29:00
7 |GA iPhone6 '3736 '588 2015-07-22T718:36:00 2015-07-29T721:47:00
8 |GA iPhone6 '3737 ’1505 2015-07-23T22:55:00 2015-07-31T02:50:00
9 |GA iPhoneb '3738 '2593 2015-07-23T05:20:00 2015-07-26T09:59:00
10 |CA iPhone6 '2724 '3706 2015-07-21T12:28:00 2015-07-24T17:39:00

1/CA iPhone6 2726 '9813 2015-07-21T18:34:00 2015-07-28T722:34:00
12 |CA iPhone6 3145 1344 2015-07-22T00:15:00 2015-07-25T05:20:00
13 |CA iPhoneb6 3145 496 2015-07-23706:38:00 2015-07-24710:41:00
14 |CA iPhone6 3247 2413 2015-07-25T12:47:00 2015-07-26T17:29:00
15 |CA iPhone6 '5758 '5188 2015-07-22T18:36:00 2015-07-29T721:47:00
16 |CA iPhone6 '4747 '15305 2015-07-23T22:55:00 2015-07-31T02:50:00
17 |CA iPhoneb '1357 '25913 2015-07-23T05:20:00 2015-07-26T09:59:00
18 |TX iPhone6 '4724 '706 2015-07-21T12:28:00 2015-07-24T17:39:00
19 TX iPhoneb6 2826 2813 2015-07-21T18:34:00 2015-07-28T722:34:00
20 'TX iPhone6 3445 4344 2015-07-22T00:15:00 2015-07-25T05:20:00
21 |TX iPhone6 3245 9496 2015-07-23T06:38:00 2015-07-24T710:41:00
22 |TX iPhone6 '3347 ’6413 2015-07-25T12:47:00 2015-07-26T17:29:00
23 |TX iPhone6 '9758 '9188 2015-07-22T18:36:00 2015-07-29T721:47:00
24 |TX iPhone6 t4047 :2305 2015-07-23T22:55:00 2015-07-31T02:50:00

OrderShipping)

Figure 5 Python Output - OrderShipping.csv

SAS PROC IMPORT - Database Load

CSV file generated above is imported into SAS using PROC IMPORT procedure as a SAS dataset. The
imported SAS data set is then loaded into a Teradata database via SAS. A predefined table structure can

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued

SESUG 2015

be used as a placeholder to store incoming OrderShipping details. Alternately tables can be dynamically
created and dropped in SAS as illustrated in Figure 6. Used the former to load data into a Teradata

environment after importing the CSV into a SAS data set.

$include "/Dev/Devtmc/Code/login.sas’;

*import the manual file maintained by cabin;
- PROC IMPORT
DEMS=csv replace OUT =OrderShipping;
SHEET ="OrderShipping’;
GUESSINGROWS=10000;
RUN;
- PROC SQL;

DROP TAELE CM TDSBX.Import OrderShipping;

CREATE TABLE CM TDSBX.Import OrdersShipping A8

SELECT
State
, ProductName
; ShipmentCycle
; ShipmentNumber
,OriginShippedDateTine
;,ExpectedArrivalDateTine
, (DATETIME ()) FORMAT=DATEAMPMI19.
FROM OrderShipping

QUIT;

Figure 6 SAS PROC IMPORT

IMPORT_ORDERSHIPFING =

E[j ﬁ, Filter and Sort If;_l_j Cuery Builder

Data = Describe = Graph = Analvee = | Export » Send To -

datafile="/Dev/Devtmc/manualfiles/Order8hipping.csv’

LABEL="ExtractDateTime’ A3 ExtractDateTime

@ State é\,‘ ProduclName@ ShipmentCycle2 ShipmentN umher|E OriginShippedD aleT'ma|E ExpectedﬁnivalDateTim“E ExtractD ateTime
1 |C& iPhoneb 2724 3706 21UL205:12:28:00 2HUL2MET7:35000 230L2M 5000311
2 [GA iPhoneb 1234 1708 2UL2015:12:28:00 2AUL2NE17:35000 2300205000311
g [T iPhoneb 4724 708 2UL205:12:28:00 2UL2NE17:35000 2300205000311
4 |08 iPhonek 226 3513 21JUL2015:18:34:00 28UL2M 52234000 23UL2M 5000311
i G4 Phaneh ¥R 331 21UL2015:18:34:00 28Ul 52234000 23UL2M 5000311
B |TH iPhonek 2826 4813 21UL2015:18:34:00 2BUL2M 52234000 23UL2ME00:03:11
7 |cA iPhonek 145 1344 22)UL2015:00:15:00 25)UL20505:20:000 23JUL20M500:03:11
8 |GA iPhonek 733 1644 22)UL2015:00:15:00 25)UL201505:20:000 23JUL20M500:03:11
g |Tx iPhionek 3445 4344 22JJL2015:00:15:00 2BJUL2015:05:20:000 23JUL20ME00:03:11
10|Ca iPhionek 345 1496 23JL2075:06:38:00 20UL20510:47:000 23UL2M E00:03:11
11 |Ga iPhonek I 1406 23JL2075:06:38:00 20UL20510:47:000 23UL20M E00:03:11
12| iPhoneb 3245 9436 23JL2015:06:38:00 24UL201510:41:00 23012075 00:03:11
12 |Ca iPhaneh 3247 203 25JUL2015:12:47.00 ZRIUL2MET7:25.000 230L2M 5000311
14 |GA iPhonek K] 2473 25JUL2015:1 24700 ZRIULZ0ET7:25.000 2300205000311
15 |T% iPhonek 3347 B413 25JUL2015:1 24700 ZEIUL20ET7:25.000 2300205000311
E C& iPhonek 5758 5188 22JUL2015:18:36:00 2AUL2ME2T:47:000 23UL2ME00:03:11
17 |GA iPhonek % it 22JUL2015:18:36:00 2AUL2ME2T:47:000 23UL2ME00:03:11
18T iPhonek 9758 9188 22JUL2015:18:36:00 2AUL2ME2T:47000 23UL2ME00:03:11
19|CA iPhonek 4747 15305 23UL2015:2255:00 FJUL2ME0250:000 23UL20ME500:03:11
20 |GA iFhoned kTEr 1505 23UL205:22:55:00 FJUL2ME0260:000 23UL20M500:03:11
21| Phanek 4047 2305 23UL20 5225500 FJUL2ME0260:000 23JUL20ME00:03:11
22 |Ca iPhionek 1357 26913 23L2015:05:20:00 2BIUL2015:0955:000 23JUL2M500:03:11
73 |GaA iPhoneb KT 2593 23JUL20715:05:20:00 ZBIUL20ME0355.000 23IUL2ME00:0311
24 | T iPhoneb 1357 a3 23JUL20715:05:20:00 ZBIUL20E0355.00. 23)UL2ME00:0311

Figure 7 SAS PROC IMPORT Output

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued SESUG 2015

As shown in Figure 6 and 7, SAS converts the CSV into a SAS data set. Output from the SAS data set is then
loaded into the Teradata database environment. Output from Teradata SQL Assistant is shown in Figure
8.This data in turn supports upstream order tracking and shipping activities.

Froduct | Shipmen | Shipment | OriginShippedDate | ExpectedirivalDat
Mame = tCycle | Mumber Time eTime

Phonef 3.145.00 1.344.00 7/22/2015 00:15:00 7/25/2015 05:20:00 7/23/2015 00:03:11
iPhoned 324700 241300 7/25/20151 24700 7/26/2015 17:23:00 7/23/2015 00:03:11
iPhoned 575800 518800 7/22/201518:36:00 7/29,/2015 21:47.00 7/23/2015 00:03:11
iPhoned 4.747.00 1530600 7/23/2015 22:55:00 7/31/2015 02:50:00 7/23/2015 00:03:11
iPhoned 135700 2591300 7/23/2015 05:20:00 7/26/2015 03:53.00 7/23/2015 00:03:11
iPhoned 314500 1439600 7/23/2015 06:38:00 7/24/2015 10:41:00 7/23/2015 00:03:11
iPhoned 272600 381300 7/21/201518:34:00 7/28/2015 22:34:00 7/23/2015 00:03:11
iPhoned 272400 3706.00 7/21/201512:28:00 7/24/201517.33:00 7/23/2015 00:03:11
GA iPhoneb 373300 1,644.00 7/22/2015 00:15:00 7425/2015 05:20:00 7/23/2M 5 00:03:11
10 GA iPhoneb 373500 242300 7/25/201512:47.00 7/26/201517253:.00 7/23/2015 00:03:11
11 GA iPhoneb 3.736.00 583.00 7/22/2015 18:36:00 7423,/2015 21:47:00 7/23/2M 5 00:03:11
Figure 8 Database Load Output

ExtractD ateT ime

PR e

o

CONCLUSION

This paper shows you can use SAS and Python combination to for extracting and loading XML data.
Integrating external programs (Shell Scripts (Wget Command), Python) with SAS can help you get the work
done. Using external programs gives more flexibility to accommodate changes in underlying data or
updates in data transfer mechanisms. The idea is to provide more avenues and multitude of options to
access data and build dynamic data sets to extend the various capabilities of SAS.

REFERENCES

e Miriam Cisternas and Ricardo Cisternas, 2003, “Reading and Writing XML files form
SAS®”, (Paper 119-29), Proceedings of the Twenty-Ninth Annual SAS Users Group
International Conference, CARY, NC: SAS Institute Inc.
http://www2.sas.com/proceedings/sugi29/119-29.pdf

e George Zhu, Sunita Ghosh, Alberta Health Services — Cancer Care,2012, “Accessing and
Extracting Data from the Internet Using SAS®”, Paper 121-2012,Proceedings of
SAS Global Forum, 2012, Orlando, FL

http://support.sas.com/resources/papers/proceedings12/121-2012.pdf

CONTACT INFORMATION

Your suggestions, comments and questions are encouraged and valued.
Sai Mandagondi (saim@slalom.com)

http://www2.sas.com/proceedings/sugi29/119-29.pdf
http://support.sas.com/resources/papers/proceedings12/121-2012.pdf
mailto:saim@slalom.com

Accessing and Extracting Unstructured XML Data using SAS and Python, Continued SESUG 2015

ACKNOWLEDGEMENTS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

