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ABSTRACT 

Intuition would suggest that it is more efficient to perform simple calculations as needed than to store calculations in a 
table for reference.  However, in some circumstances, creating lookup tables can save both programmer and CPU 
time.  Dates present a particular difficulty in any programming language.  This paper will present a data structure that 
can simplify date manipulations while gaining efficiency. 

INTRODUCTION  

When writing a program in any language, a programmer should have the goal of writing the most efficient program 
possible.  However, efficiency can have many meanings, as seen in Figure 1 below.  Depending on the situation and 
project requirements, one may want to minimize the CPU usage, minimize memory usage, or simplify program 
coding.  Generally, the best result comes from trying to balance these concerns so that no particular issues presents 
a bottleneck to the program.  In the code that follows, we will reduce CPU and programming time with a small 
sacrifice in memory. 

 

Figure 1. Components of Program Efficiency 

One of the first hurdles to overcome when learning a new programming language is how to handle dates.  Formats 
can vary from text to numeric, from mm/dd/yyyy to ddmmmyyyy or yyyyddmm and more.  Syntax for date functions 
vary widely.  For example, in SAS®, dates should be references as ‘mmdddyyyy’d.  When pulling a date from Oracle, 
you get a timestamp that must be dealt with using the DATEPART function.  SAS functions like INTNX are unique to 
SAS, and the syntax must be learned.  More concerning is that formulas to derive values such as the number of 
quarters between two dates can become, long, nested, inefficient, and error prone.  We will derive a lookup table for 
some common situations and test the resulting efficiency. 

COMMON CALCULATIONS 

Using an insurance application, we will look at a common set of data calculations.  These calculations will be 
compared to our data dimension later to determine the efficiency of each. 

In the code below, we use a PROC SQL statement to perform calculations of a table of values called DATA.  This 
table contains three variables:  claim_num, date_id, and accident_date.  We must calculate the quarter of date_id 
(qop), the quarter of accident_date (qoi), and the number of quarters between the two (qtr).  In this example, I worked 
with 2,624,176 observations. 

/*Calculate values*/ 

proc sql; 
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create table calculations as 

select claim_num, 

   date_id, 

   accident_date, 

   input(case when month(date_id) <= 3 then '31mar' 

    when month(date_id) <= 6 then '30jun'  

    when month(date_id) <= 9 then '30sep' 

    else '31DEC' end  

    || put(year(date_id),4.), date9.) format=mmddyy8. as qop, 

   input(case when month(accident_date) <= 3 then '31mar' 

    when month(accident_date) <= 6 then '30jun'  

    when month(accident_date) <= 9 then '30sep' 

    else '31DEC' end  

|| put(year(accident_date),4.), date9.) 

format=mmddyy8. as qoi, 

   ((((year(calculated qop)-year(calculated qoi))*12) 

+(month(calculated qop)-month(calculated qoi)))/3) + 1 as 

qtr 

from data; 

quit; 

CODING A DATE DIMENSION 

A dimension is a table of values utilizing a unique key and a variety of characteristic variables.  The following code 
use two DATA steps to create a date dimension that stores many commonly used date characteristics.  It takes 
advantage of such SAS functions as INTNX, DAY, MONTH, YEAR, NLDATE, and WEEKDAY in order to maximize 
the efficiency of the calculations.  However, these calculations only need to occur once.  The first DATA step 
iteratively creates the dates to be used for the key, and the second DATA step calculates the needed values for each. 

In the code below, there are two values that need to be set: the begin date and the end date for the iterations.  I have 
chosen to create a dimension covering 200 years (73,049 observations).  However, this can be increased or 
decreased depending on the need of the user, and this will affect program efficiency. 

/*Create date_dim*/ 

data testing.date_values; 

  format date_key date10.; 

  do date_key = '01jan1900'd to '31dec2099'd; 

     output; 

  end; 

run;  

data date_dim; 

  set testing.date_values; 

format date_key date10.  

day month 2. year 4. julian 3.  

weekday weekdayname $9. 

   fst_dd_mth fst_dd_qtr fst_dd_hf fst_dd_yr 

   lst_dd_mth lst_dd_qtr lst_dd_hf lst_dd_yr date10.; 

  day = day(date_key); 

  month = month(date_key); 

  year = year(date_key); 

julian = date_key - input('01jan' || put(year(date_key), 4.), date9.)+ 1; 

  weekday = weekday(date_key); 

  weekdayname = nldate(date_key,'%a'); 

  fst_dd_mth = intnx('month', date_key, 0, 'beginning'); 

  fst_dd_qtr = intnx('quarter', date_key, 0, 'beginning'); 

  fst_dd_hf = intnx('semiyear', date_key, 0, 'beginning'); 

  fst_dd_yr = intnx('year', date_key, 0, 'beginning'); 

  lst_dd_mth = intnx('month', date_key, 0, 'end'); 

  lst_dd_qtr = intnx('quarter', date_key, 0, 'end'); 

  lst_dd_hf = intnx('semiyear', date_key, 0, 'end'); 

  lst_dd_yr = intnx('year', date_key, 0, 'end'); 

run; 
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The following code performs the same calculations as our initial PROC SQL above, 

however, it uses two joins and one subquery to our date dimension.  This code is both 

noticeably shorter and simpler to write than the original code. 

 

/*Join date_dim*/ 

proc sql; 

create table join as 

select data.claim_num, 

   data.date_id, 

   data.accident_date, 

   qoidate.lst_dd_qtr as qoi, 

   qopdate.lst_dd_qtr as qop, 

   (select count(*) as count  

   from testing.date_dim  

   where date_key between qoidate.lst_dd_qtr and qopdate.lst_dd_qtr 

    and date_key = lst_dd_qtr) as qtr 

from data, 

   date_dim qoidate, 

   date_dim qopdate 

where data.accident_date = qoidate.date_key 

   and data.date_id = qopdate.date_key; 

quit; 

BENCHMARKING 

Now we will look at the efficiency of both methods.  I have used the SAS Option FULLSTIMER to calculate the 
following values. 

 

Figure 2. Benchmarking Results 

In Figure 2, we can see the statistics for pulling the original data, creating the data dimension, calculating the values 
using functions, and pulling the values from our dimension (with and without indexing the dimension).  Getting the 
data and creating the dimension can be neglected, as these are one time calculations.   

The results were compared on a Windows client machine running SAS Enterprise Guide with the calculations running 
on a separate SAS server.  Both the server and client CPU times are shown.  Notice that running pulling the values 
from the dimension resulting in about a 40% reduction in both real time and CPU time.  We also need to point out that 
without indexing the dimension, both values are dramatically increased.  Also note that the memory usage was 
increased using the dimension, but not to the point of becoming a problem for our system. 

Furthermore, we could continue by joining the date dimension to the original data using a hash object, which does 
further reduce the time, however, this does not allow the calculation of the number of quarters, and so will be omitted. 

CONCLUSION 

Our results show that calculating and storing the data values resulted in a reduction in both programmer and CPU 
time.  The code is also simpler to read and less prone to programmer error.  However, this approach may not be 
beneficial in a situation where the dimension is large enough to cause a reduction in performance due to memory 
issues.   

Process

Real 

Time

System 

CPU 

Time

User 

CPU 

Time Memory Notes

Get Data 0:00:16 0:00:03 0:00:09 26172

Create date_dim 0:00:01 0:00:00 0:00:00 39282 One Time

Calculations 0:00:11 0:00:00 0:00:09 26188

Join date_dim 0:00:57 0:00:03 0:00:52 95780

Join date_dim with Index 0:00:07 0:00:00 0:00:05 95780
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