
1

Paper AD09

Integrating Microsoft® VBScript and SAS®

Christopher Johnson, BrickStreet Insurance

ABSTRACT

VBScript and SAS are each powerful tools in their own right. These two technologies can be combined so that SAS
code can call a VBScript program or vice versa. This gives a programmer the ability to automate SAS tasks, traverse
the file system, send emails programmatically, manipulate Microsoft® Word, Excel, and PowerPoint files, get web
data, and more. This paper will present example code to demonstrate each of these capabilities.

Contents
Abstract .. 1

Introduction .. 2

Getting Started ... 2

VBScript Running SAS ... 2

Creating and Running Code ... 2

Running Existing Code ... 3

Running SAS in Batch Mode .. 4

SAS Running VBScript ... 4

Creating and Manipulating Word and Excel Files... 5

Word ... 5

Word with Bookmarks ... 6

Excel ... 6

PowerPoint ... 7

Sending Emails from SAS .. 7

Outlook ... 7

SMTP ... 8

Searching for SAS Code .. 8

Getting Web Data ... 10

Delaying SAS Code ... 10

Going Further ... 10

Conclusion ... 11

References ... 11

Contact Information .. 11

Integrating Microsoft VBScript and SAS SESUG 2015

2

INTRODUCTION

The SAS software most notably uses the SAS language; however, it also allows the use of SAS Macro language,
SQL, SCL, C, as well as utilizing VBScript. If you have ever tried to use the Automation functionality in SAS
Enterprise Guide, in the background, it creates a VBScript designed to kick off a SAS program and places the script
in the Windows task scheduler. We can use this as a springboard to extend the power of both software platforms.

GETTING STARTED

VBScript is probably the easiest language to get begin writing, and it is free. It runs natively in Windows, and it is
interpreted by the Windows Scripting Host (Microsoft, 2014), so there is nothing to install. To get started, you need
to:

1. Create a text file.
2. Change the extension of the file from .txt to .vbs.
3. Enter your code in the file.
4. Save and close the file.
5. Double click the resulting file to run the script.

Once you have a script file to work in, you can define variables, create functions, and use normal programming
concepts such as loops, conditional logic, etc. More importantly, you can define objects that represent an instance of
Word, Excel, PowerPoint, Access, Outlook, SAS, HTML, the file system, and much more. These objects have
methods, properties, and functions designed to manipulate the object.

To make the code easier to read, I will use certain conventions. Variables will be lowercase and shown in red.
Objects will be lowercase and shown in blue and starting with the letter o. Functions will be sentence case. Each
sample program will begin with the program name, commented out with an apostrophe so that it is ignored when the
program runs. SAS keywords will be shown in all caps and color-coded according to SAS Enterprise Guide
standards. Lastly, we will refer to VBScript code as the script and SAS code as the program.

VBScript allows the user to choose whether you will declare your variables before using them or not. While it is not
required, best practices are to start your scripts with the following line.

Option Explicit

This tells the script that you will declare all variables before they are used. You then list each variable preceded by
the keyword Dim. We will exclude this in all code presented to make the code as concise and easy to read as
possible.

For additional language help, W3Schools offers an excellent reference (W3Schools, n.d.). Another useful resource
are the script examples from ActiveXperts (ActiveXperts, n.d.).

VBSCRIPT RUNNING SAS

There are many reasons why a user might want to call a SAS program from a VBScript. Once I have a well-
developed SAS program, I will often hand it off to other users to run periodically. Those users may not be proficient
in SAS or may not know how to run SAS at all. I can write a VBScript that takes input from the user, calls a SAS
program, passes the parameters, and saves the results. The user needs no technical knowledge in order to run the
program. In the script, I can also create a log file that documents when and who runs the program.

Another use of the VBScript is to clean the data before SAS begins processing. In cases where in INPUT statement
is already complicated, if the programmer wants to apply a simple rule such as replacing a particular character or
string, this may be easier to handle before passing the file to SAS. Similarly, there may be situations that would
cause SAS to not be able to read a file such as nonstandard characters. These can also be handled prior to running
the file.

CREATING AND RUNNING CODE

The following VBScript demonstrates how to create and run a SAS program from scratch. It first defines a string that
will hold our SAS code. It then creates a SAS Application object called oapp. It uses the New method of that object
to create a SAS Project object called oprj. It uses the Add method to create a Code object called ocode. It uses Text
property to set the code to our str variable. The Run, Close, and Quit methods are called to execute the code and
close the object.

'RunSASCode.vbs

Integrating Microsoft VBScript and SAS SESUG 2015

3

str = "%DoSomething(""\\Server\InFile.txt"", ""\\Server\OutFile.txt"");"

RunCode(str)

Sub RunCode(codestr)

 Set oapp = CreateObject("SASEGObjectModel.Application.4")

 Set oprj = oapp.New()

 Set ocode = oprj.CodeCollection.Add

 ocode.Text = codestr

 ocode.Run

 oprj.Close

 oapp.Quit

End Sub

RUNNING EXISTING CODE

The following code is an extension of the methods explained by Chris Hemedinger (Hemedinger, 2012). This
example demonstrates a more real-world scenario using an existing SAS Enterprise Guide project. The script
prompts the user for a value. It then creates and opens an instance of SAS, and loops through all parameters. If one
is found with the right name, it sets it to the value we obtained from the user. It then searches through the code
collection for the desired code files, running each in turn. After running a program, it saves the log, code, datasets
and results to a specified folder. It completes by saving and closing the program.

This file can serve as a template for automating any SAS Enterprise Guide project. The user only needs to
customize the parameter calls, project name, and code files needed. All resulting logs and results are available for
the user to review outside SAS or to work with programmatically.

'RunSASProgram.vbs

'Set ErrorHandler

On Error Resume Next

server = "\\server\"

projname = server & "Testing.egp"

codefiles = Array("LIBNAMES", "WORK")

val = InputBox("Enter Value", , "1")

If val = "" Then WScript.Quit

Set oapp = CreateObject("SASEGObjectModel.Application.4.3")

Set oproj = oapp.Open(projname,"")

Set oparameters = oproj.Parameters

For Each oparameter In oparameters

 If oparameter.Name = "VALUE" Then oparameter.Value = val

Next

Set ocodecollect = oproj.CodeCollection

For Each code In codefiles

 For Each ocode In ocodecollect

 If ocode.Name = code Then

 ocode.UseApplicationOptions = False

 ocode.GenListing = True

 ocode.GenSasReport = False

 ocode.Log.SaveAs server & "Results\" & ocode.Name & ".log"

 ocode.Run

 ocode.SaveAs server & "Results\" & ocode.Name & ".sas"

 For n=0 to (ocode.OutputDatasets.Count -1)

 dataName = ocode.OutputDatasets.Item(n).Name

 ocode.OutputDatasets.Item(n).SaveAs server & "Results\" &

dataName & ".xls"

 Next

 For n=0 to (ocode.Results.Count -1)

 ocode.Results.Item(n).SaveAs server & "Results\" &

WScript.ScriptName & n & ".lst"

Integrating Microsoft VBScript and SAS SESUG 2015

4

 Next

 End If

 Next

Next

oproj.Save

oproj.Close

oapp.Quit

'Reset Error Handler

On Error Goto 0

For a comprehensive guide to the SAS Object Model, see the SASEGScripting Help file (Support.SAS.com).

RUNNING SAS IN BATCH MODE

Using a server based SAS Enterprise Guide, a user losses the ability to submit a SAS batch job. This can be
overcome using VBScript and has been demonstrated by Chris Hemedinger (Hemedinger, 2012).

'RunSASBatch.vbs

'Create an object and instance of SAS.

Set oapp = CreateObject("SASEGObjectModel.Application.4.3")

oapp.SetActiveProfile("Chris")

Set oproj = oapp.New

Set osasprog = oproj.CodeCollection.Add

osasprog.UseApplicationOptions = False

osasprog.GenListing = True

osasprog.GenSasReport = False

osasprog.Server = "SASApp"

'Set the code to run.

osasprog.Text = "DATA testme; SET SASHELP.CLASS; RUN;"

osasprog.Text = osasprog.Text & " PROC MEANS DATA=testme; RUN;"

osasprog.Run

'Save the log file

osasprog.Log.SaveAs "\\server\" & WScript.ScriptName & ".log"

'Save the output and results

For n=0 to (osasprog.OutputDatasets.Count -1)

 dataName = osasprog.OutputDatasets.Item(n).Name

 osasprog.OutputDatasets.Item(n).SaveAs "\\server\" & dataName & ".xls"

Next

For n=0 to (osasprog.Results.Count -1)

 osasprog.Results.Item(n).SaveAs "\\server\" & WScript.ScriptName & ".lst"

Next

Application.Quit

'Run at the command line:

'cscript RunSASBatch.vbs

This script is called from the command prompt, which you can access in Windows by clicking Start and typing cmd in
the search box.

SAS RUNNING VBSCRIPT

Traditional SAS users may feel more at home in creating SAS programs that call VBScripts. The following program
demonstrates how to create the script from within SAS. The FILENAME statement sets the script name and location.
Then, a DATA step creates the file, and writes out a line of code for every PUT statement. Finally, the X command
runs the program.

One note of caution. Any SAS instance should be able to create the script. However, in some situations such as a

Integrating Microsoft VBScript and SAS SESUG 2015

5

server running SAS Enterprise Guide, the SAS Administrator may have disabled the X command. In that case, your
options are to have that enabled or to create the script in SAS and run it manually.

In later sections, we will examine nontrivial uses of this technique.

/*Create VBScript File*/

FILENAME script "\\Server\FileName.vbs";

DATA __NULL__;

 FILE script;

 PUT 'msgbox "Hello World!"';

RUN;

X script;

CREATING AND MANIPULATING WORD AND EXCEL FILES

Microsoft Word, Excel, PowerPoint, and Access are among the most frequently used applications in the world. In this
paper I will demonstrate creating and updating Word, Excel, and PowerPoint programmatically. Since SAS has
powerful methods of interacting with Access databases, we will omit it from this discussion.

To learn more about the syntax of code specific to one of the Microsoft Office products, it is often useful to record a
macro, perform the tasks you would like to replicate, and then stop the macro recording. You can then view the
macro and see exactly how the program accomplished your task. Macros technically use VBA or Visual Basic
Applications, which is slightly different that VBScript, but generally, you can easily translate between the two.

The next few sections will contain strictly VBScript code, which can be created and run in a SAS session.

WORD

Text reports are most often stored as Word documents. Situations may arise where a frequently used report needs
to be created or updated periodically, with the structure remaining constant. The following script demonstrates the
use of this technique using a trivial example. A string is stored in the variable msg. A file system object is created to
get the current directory of the script. A Word object is created, styles are set, and the text is entered. The file is then
saved to the current directory and closed.

'Word.vbs

msg = "This is a test."

'Get Current Directory

Set ofilesys = CreateObject("Scripting.FileSystemObject")

Set oscript = ofilesys.GetFile(WScript.ScriptName)

Set ofolder = ofilesys.GetFolder(oscript.ParentFolder)

currentpath = ofolder.path + "\"

'Create Word File

Set oword = CreateObject("Word.Application")

oword.Caption = "Test Caption"

oword.Visible = False

Set odoc = oword.Documents.Add()

Set oselection = oword.Selection

'Type Message

oselection.Font.Name = "Arial"

oselection.Font.Size = "12"

oselection.Font.Bold = False

oselection.TypeText msg

oselection.TypeParagraph()

'Save and Close Word File

odoc.SaveAs(currentpath + "test.doc")

oword.Quit

Integrating Microsoft VBScript and SAS SESUG 2015

6

Additionally, the programmer may insert images in the document.

WORD WITH BOOKMARKS

You may not want to create a Word document from scratch. To edit an existing document, you can add bookmarks
at the places that you want to edit, and then programmatically change them.

'WordBookmarks.vbs

'Get Current Directory

Set ofilesys = CreateObject("Scripting.FileSystemObject")

Set oscript = ofilesys.GetFile(WScript.ScriptName)

Set ofolder = ofilesys.GetFolder(oscript.ParentFolder)

currentpath = ofolder.path + "\"

'Create Word File

Set oword = CreateObject("Word.Application")

oword.Visible = False

Set odoc = oword.Documents.Open(currentpath + "Test.docx")

Set orange = odoc.Bookmarks("Change").Range

orange.text = "test"

odoc.Bookmarks.Add "Change", orange

'Save and Close Word File

odoc.SaveAs(currentpath + "Test.docx")

oword.Quit

One point to notice is that after you edit a bookmark’s text, the bookmark is deleted. In order to keep the bookmark,
since we already have the range saved in the orange object, we only need to recreate the bookmark with the same
name and the saved range.

EXCEL

The following script creates an Excel file, makes the instance of Excel invisible to the user, and then enters data,
saves, and closes.

'Excel.vbs

'Get Current Folder

Set ofilesys = CreateObject("Scripting.FileSystemObject")

Set oscript = ofilesys.GetFile(WScript.ScriptName)

Set ofolder = ofilesys.GetFolder(oscript.ParentFolder)

currentpath = ofolder.path + "\"

'Create Excel File

Set oexcel = CreateObject("Excel.Application")

oexcel.Visible = False

Set oworkbook = oexcel.Workbooks.Add()

'Add Formatting and Text

oexcel.Cells(1, 1).Value = "Text"

oexcel.Cells(1, 1).Interior.Color = 65535

'Excel Constants

xlNone = -4142

xlContinuous = 1

xlThick = 4

xlThin = 2

'Select Range and Add Borders

Set orange = oexcel.Range("B3:C5")

orange.Borders.LineStyle = xlContinuous

orange.Borders.Weight = xlThin

Integrating Microsoft VBScript and SAS SESUG 2015

7

'Loop Through Cells

For i = 0 To 2

 For j = 0 To 1

 oexcel.Cells(3,2).Offset(i,j) = i*j

 Next

Next

'Save and Close Excel File

oworkbook.SaveAs(currentpath & "Test.xlsx")

oexcel.Quit

There are a few points here to note. In Excel, once we have the oexcel object, we can select and set the value or
formatting of one of its Cells or a Range. You can also work with an Offset of a Cell, which is useful if you need to
use a For or While loop.

Many tools already exist in SAS for dealing with Excel files, particularly when the file represents a simple table.
However, when the Excel file contains a complex report, whose structure is not strictly tabular, this scripting
technique can be used to update it. The syntax for working with Excel follows VBA or Visual Basic Applications.
Again, more examples can be found online or by using Excel’s macro functionality.

POWERPOINT

The following script demonstrates how to programmatically create a PowerPoint object, add a slide, add text, save
the file to the current directory, and close.

'PowerPoint.vbs

'Get Current Directory

Set ofilesys = CreateObject("Scripting.FileSystemObject")

Set oscript = ofilesys.GetFile(WScript.ScriptName)

Set ofolder = ofilesys.GetFolder(oscript.ParentFolder)

currentpath = ofolder.path + "\"

Set oppt = CreateObject("PowerPoint.Application")

oppt.Visible = True

Set opres = oppt.Presentations.Add

Set oslide = opres.Slides.Add(1, 2)

oslide.Shapes(1).TextFrame.TextRange.Text = "My first slide"

oslide.Shapes(2).TextFrame.TextRange.Text = "This is some text."

opres.SaveAs(currentpath + "testppt.ppt")

oppt.Quit

SENDING EMAILS FROM SAS

If a program runs periodically, a user might benefit from an email stating that it completed, maybe even containing the
results. A programmer might like to get an email alert if a program generates an error. The following sections show
how to create such an email using either Microsoft Outlook or a web email service.

OUTLOOK

The following script creates and sends an email using Outlook. The programmer can set the To, Subject, Body, and
even an Attachment. The subroutine Email then creates and sends the email.

'EmailOutlook.vbs

'Set Variables

mailto = "me@gmail.com"

subject = "Test Email"

body = "This is an VBScript - Outlook Email Test."

attachment = "k:\test.jpg"

Email mailto, subject, body, attachment

Integrating Microsoft VBScript and SAS SESUG 2015

8

'Function to Generate Email

Sub Email (mailto, subject, body, attachment)

 Set oapp = CreateObject("Outlook.Application")

 Set oitem = oapp.CreateItem(0)

 With oitem

 .To = mailto

 .Subject = subject

 .HTMLBody = body

 End With

 Set omsgattachments = oitem.Attachments

 omsgattachments.Add attachment

 oitem.Send

End Sub

SMTP

Similar to the Outlook scenario, the following script creates an email using an SMTP email service. Many online
email services such as Gmail and Yahoo can be automated in this way. The user may need to log into the service
and enable POP for this to work. One drawback is that the programmer will need to hardcode or prompt the user for
the username and password.

'EmailSMTP.vbs

'Set Variables

mailto = "me@gmail.com"

from = "me@gmail.com"

subject = "Test Email"

body = "This is an VBScript - Outlook Email Test."

username = "myusername"

password = "mypassword"

Email mailto, from, subject, body, username, password

'Function to Generate Emails

Sub Email (mailto, from, subject, body, username, password)

 Set omessage = CreateObject("CDO.Message")

 With omessage

 .Subject = subject

 .From = from

 .To = mailto

 .TextBody = body

 End With

 With omessage.Configuration.Fields

 .Item("http://schemas.microsoft.com/cdo/configuration/sendusing") = 2

 .Item("http://schemas.microsoft.com/cdo/configuration/smtpserver") =

"smtp.gmail.com"

 .Item("http://schemas.microsoft.com/cdo/configuration/smtpauthenticate") = 1

 .Item("http://schemas.microsoft.com/cdo/configuration/sendusername") = username

 .Item("http://schemas.microsoft.com/cdo/configuration/sendpassword") = password

 .Item("http://schemas.microsoft.com/cdo/configuration/smtpserverport") = 25

 .Item("http://schemas.microsoft.com/cdo/configuration/smtpusessl") = True

 .Item("http://schemas.microsoft.com/cdo/configuration/smtpconnectiontimeout") =

60

 .Update

 End With

 omessage.Send

End Sub

SEARCHING FOR SAS CODE

This is one of my most common uses for VBScript in working with SAS. Unlike many of the proceeding examples,
this code is not a template. It is meant to save in a VBScript file and run as is.

I keep all of my .sas files in a single folder. Even when using SAS Enterprise Guide, I save the code files to my Code

Integrating Microsoft VBScript and SAS SESUG 2015

9

folder. This gives me several benefits such as having the ability to backup and restore those files independently.
Since a .sas file is really plain text, it also permits searching.

The following script asks the user to select a folder. It then prompts the user for a string. The script attempts to open
every file in the folder. Once opened, it loops through every row. If the string is found in that row, the script exports
the row (along with the name of the file and row number) to a file called results.txt. When finished, it alerts the user
and displays the number of times it found the string.

How is this useful? If I have created a SAS program, maybe years ago, and I need to find that code to run it again, I
only need to remember an uncommon word or phrase that I used to find it again. Similarly, if I want to find an
example where I used a SAS technique to get the syntax, I only need to use this tool to find the file and row number.

'SearchDetail.vbs

'Set Error Handler

On Error Resume Next

'Define Objects

Set oshell = CreateObject("Shell.Application")

Set ofilesys = CreateObject("Scripting.FileSystemObject")

Set oscript = ofilesys.GetFile(WScript.ScriptFullName)

Set oargs = WScript.Arguments

'Get Folder

If oargs.Count >= 1 Then

 opath = oargs (0)

Else

 Set ofolder = oshell.BrowseForFolder(0, "Select a folder:", 0,

oscript.parentfolder&"\")

 Set ofolderitem = ofolder.Self

 opath = ofolderitem.Path

 If Err <> 0 Then WScript.Quit

End If

'Get Search String

If oargs.Count >= 2 Then

 searchstr = oargs(1)

Else

 searchstr = Inputbox("Enter a search string:")

End If

If searchstr = "" then WScript.Quit

'Search Text Files For String

Set ofolder = ofilesys.GetFolder(opath)

Set ofiles = ofolder.files

count = 0

Set oresults = ofilesys.CreateTextFile (oscript.parentfolder&"\results.txt", True)

For Each ofile In ofiles

 line = 0

 Set ofileinst = ofilesys.OpenTextFile(ofile, 1)

 Do Until ofileinst.AtEndOfStream

 str = ofileinst.Readline

 line = line + 1

 If (InStr(LCase(str), LCase(searchstr)) > 0) Then

 count = count + 1

 oresults.WriteLine("File: " & ofile.path & ", Line: " & line)

 oresults.WriteLine(str)

 End If

 Loop

 File.Close

Next

If count = 0 Then msgbox("String not found.") Else msgbox(count & " occurrences

found.")

Integrating Microsoft VBScript and SAS SESUG 2015

10

'Close File

oresults.Close

'Reset Error Handler

On Error Goto 0

Another use for this program is to search data files. I work with daily text-formatted data files. I store these files in a
single folder, so that they are searchable with this script. It is easy to accumulate hundreds or thousands of file in this
way, and they would not be easily searched otherwise.

GETTING WEB DATA

If you want to automate data extraction from a web source, you can create an HTTP object to get the data. You can
use an API for some webpages or customize the web address to pass your parameters to the website. For instance,
you can get Googles stock info by getting the webpage and passing the format (i.e. csv) and stock (i.e. GOOG) in the
address. The HTTP object then returns the text, which can be passed to SAS for processing. The following script
gets the Google stock quotes, Yahoo weather, and a sample Google search for demonstration.

'APIs.vbs

'Create Objects

Set ohttp = CreateObject("MSXML2.XMLHTTP")

Set ohttp2 = CreateObject("Msxml2.ServerXMLHTTP")

'Get Data and Display

'Google Finance

url="http://www.google.com/finance/historical?output=csv&q=GOOG"

Call ohttp.Open("GET", url, FALSE)

ohttp.Send

msgbox ohttp.ResponseText

'Yahoo Weather

url="http://xml.weather.yahoo.com/forecastrss?p=25301"

Call ohttp.Open("GET", url, FALSE)

ohttp.Send

WScript.Echo(ohttp.ResponseText)

'Google Search

url ="http://www.google.com/search?q=hello+world"

ohttp2.Open "GET", url, False

ohttp2.Send

WScript.Echo ohttp2.ResponseText

'Close Objects

Set ohttp = Nothing

Set ohttp2 = Nothing

DELAYING SAS CODE

My last example is a simple one. The following code will allow you to submit a program, and the program will remain
running in a paused state until the specified time elapses. The time must be given in milliseconds.

'SleepandQuit.vbs

WScript.Sleep(12000)

WScript.Quit

GOING FURTHER

This is only the beginning of what you can accomplish using SAS and VBScript. The following are examples of other
tasks that can be accomplished.

 In an organization where the telephone system utilizes Cisco equipment, scripts can be written to make a
phone call under certain circumstance. A programmer might want an alert if an important process errors

Integrating Microsoft VBScript and SAS SESUG 2015

11

after business hours.

 Any script that you write or that you have SAS create can be automated by adding the script to the Windows
Task Scheduler. This is exactly how SAS Enterprise Guide automates a process. However, keep in mind
that the computer you are working on must be running at the time the script is to run. If you want a script to
run overnight, but your computer could be restarted for updates, you may need to work with your IT
department for a server-based solution.

 VBScript can send keystrokes as if a user was typing.

 VBScript can be used to geocode data for use in SAS maps using the Google or Yahoo geocoding API.

CONCLUSION

If you need to perform a statistical analysis or data manipulation, you can probably do it in SAS. If you need to
perform a windows task, you can probably do it with VBScript. More importantly, when you can automate a process
programmatically using a combination of these two technologies, why would you ever do it manually?

REFERENCES

ActiveXperts. (n.d.). Scripts Collection. Retrieved from ActiveXperts software:
http://www.activexperts.com/activmonitor/windowsmanagement/scripts/

Hemedinger, C. (2012). Not Just for Scheduling: Donig More with SAS Enterprise Guide Automation. SAS Global
Forum. SAS Institute Inc. Retrieved from http://support.sas.com/resources/papers/proceedings12/298-

2012.pdf

Microsoft. (2014). Microsoft Developer Network. Retrieved from Windows Script Host Basics:
http://msdn.microsoft.com/en-us/library/ec0wcxh3(v=vs.84).aspx

Support.SAS.com. (n.d.). SASEGScripting Help. Retrieved from
http://support.sas.com/documentation/onlinedoc/guide/SASEGScripting41.zip

W3Schools. (n.d.). VBScript Tutorial. Retrieved from W3Schools: http://www.w3schools.com/vbscript/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Christopher Johnson
BrickStreet Insurance
400 Quarrier Street
Charleston, WV 25301
(304) 941-1000 Ext. 5359
(304) 941-1186
Christopher.Johnson@BrickStreet.com
www.BrickStreet.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

