SESUG 2015

Paper CC59

Document and enhance your SAS® code, data sets, and catalogs with SAS® functions,

macros and SAS® metadata
Roberta Glass, Abt Associates Inc., Cambridge, MA
Louise Hadden, Abt Associates Inc., Cambridge, MA

ABSTRACT

Discover how to document your SAS® programs, data sets and catalogs with a few lines of code that include SAS
functions, macro code and SAS metadata. Do you start every project with the best of intentions to document all of your
work, and then fall short of that aspiration when deadlines loom? Learn how your programs can automatically update
your processing log. If you have ever wondered who ran a program that overwrote your data, SAS has the answer! And If
you don’t want to be tracing back through a year’s worth of code to produce a codebook for your client at the end of a
contract, SAS has the answer!

INTRODUCTION

Who cares about metadata? Any SAS programmer should care! Knowing and being able to track your data is vital. By
using SAS metadata in conjunction with careful documentation, you can find out when a program was last run, who ran
it, what variables were created, whether the data set is sorted or indexed, and more. You can use your metadata to
write portions of your programs, and to generate codebooks. We will give you a whirlwind tour of tools, tips and
techniques to enhance your SAS programming toolkit!

DOCUMENT, DOCUMENT, DOCUMENT!

Every time a SAS session is initiated, a wealth of metadata becomes available to users, and this metadata can be used to
help document your processes and output. We will discuss methods of documenting in these three areas:

e Programs, logs, and Output,
e SAS datasets, and
e SAS Catalogs.

PROGRAMS, LOGS & OUTPUT

It is good practice to place the name of the program in your program, log, and output; but how many of us are guilty of
re-using code and forgetting to change the program name in the documentation section? Have you ever been presented
with a table you created two years ago and asked how a statistic was computed? Using system functions and macro
variables can save you time and insure that every program you run has a .log, .Ist, and table that contain the correct
program name, date and time it was run, and the user ID of the person who ran it.

e SYSFUNC(GETOPTION (SYSIN)) returns the path and name of the program

e &SASDATE returns the date the program began

o &SYSTIME returns the time the program began and

o &SYSUSERID returns the user ID of the programmer who submitted the job.

To make sure that your output is easily linked to the program which created it, this information can be placed in either a
title or footnote. To link data files with the program that creates it, this information can be placed in a variable or
variables, or as part of a data set label.

Titlel "SYSFUNC (GETOPTION(SYSIN)) run &5YSDATE - &S5YSTIME - by &&SYSUSERID™;
ar
Footnotel "SYSFUNC (GETOPTION(SYSIN)) rum &S5YSDATE - &ES5YSTIME - by &&SYSUSERID™;

SESUG 2015

A simple macro can insure that every program has a header section which contains this information. First, save a
compiled version of the macro to a macro catalog. Note that you can also store a description of your macro using the
DES= option.

*****:

*% gave a compiled header macro;

*****;

OPTIONS MSTORED SASMSTORE=MYSTORE:

LIENAME MYSTORE “C:“Sample’ COMPILED MACROS™;

fmacro hdr/ STORE SOURCE DES="Program Header";

fput 0
o o o o o R o o o o o o o o o o o o o ok o o ok ol o o o o o o o o o o o o o o o o o o o R

********;

fFput 0 *% Project: Sample Project:

Fput 0 *% Program: igysfunc (getoption(zaysin)):;
Fput 0 *%* Bun by: &3ysuserid..

Fput 0 *% Bun Date/time: &£3y3dage - Egystime
Fput 0

R AR R R AR A AR AR AR AR AR AR AR AR AR ARk kR Rk ko ko ke ok

********;

fmend;

Then include a call to the stored header macro in all of your programs:

OPTIONS MSTORED SASMSTORE=MYSTORE:
LIBNAME MYSTORE “C:\Sample‘COMPILED MACROS™:
thdr:

Now your logs will contain metadata in an easily located header:

My

o e e e e e e e e e e e e e e e e e

% Project: Zample Project

% Program:
** Bun by: GlassR

*% BEun Dateftime: 27JUL1S - 15:0%9
b e e e e e e e e e e e e e e e e e e e

o o oo o d

When there is a time crunch, many of us find ourselves with a backlog of programs to add to our process log. But what if
each program could automatically add itself to the log? The following program autodoc.sas can be saved and called with
%include to automatically update your log. It can of course be customized to save the information that would be useful

to you, and can include empty fields which you can edit manually.

SESUG 2015

*** program name: Autodoc.sas:
libname doc 'C:\Users\GlassR\Desktop\samples';

* prompts the user for purpose and reason each time program is run in batch mode *;

* SWINDOW defines the prompt *;
gwindow info
#4 @5 'Please enter the purpose of this program:'
#6 @5 purpose 100 attr=underline display=yes auto=no color = blue;

* $DISPLAY invokes the prompt *;
%display info;
put &purpose;

%let lengths = program name $ 100 run_date $ 9 run_time $ 8
run by $ 32 purpose $ 100 sas_version $10
system $20 input files $500 output files $500;

* collect run information for this execution of the program;
data userline(drop= word n path program);
length &lengths.;

run_by="&sysuserid";
run_date="é&sysdate";
run_time="&systime";
purpose="&purpose";
sas_version="&sysver";
system="&sysscpl";
input files=' ';
output files=" '";

path program = "$sysfunc (getoption(sysin))";
word n = countc(path_program,"\.");
program name = scan(path program,word n,"\.");

run;

* assuming you edited the spreadsheet, and want to retain what you put in there;
* read current doc excel file into sas;
proc import dbms=excel out = testdocA
datafile = "C:\Users\GlassR\Desktop\samples\testdoc.xlsx";
run;

data testdoc;
length &lengths.;
set testdocA;
run;

* append the new information *;
proc append data=userline base=testdoc force;
run;

* re-save the updated testdoc SAS file;
data doc.testdoc;

set testdoc;
run;

* re-save the excel file;

proc export data= doc.testdoc
outfile= "C:\Users\GlassR\Desktop\samples\testdoc.xlsx"
DBMS=EXCEL label replace;
sheet="program log";

run;

SESUG 2015

Save an empty Microsoft Excel® file or generate a SAS file and export to an Excel file called testdoc.xlsx with the
following columns: program_name, run_date, run_time, run_by, purpose, sas_version, system, input_files and
output_files before using autodoc.sas for the first time. The autodoc program prompts the user to enter the purpose of
the program, reads the existing Excel® log file into SAS, appends the information for this run of the program, and saves
the updated excel log. A SAS data set version of the log is saved as a backup should the excel file not save correctly.

Einro M= 3

Command ===>

Please enter the purpose of this program:

Save a test dataset for SESUG paper .|

In our example we do not automatically populate the input and output data fields. The information is added manually.
As you can see from the results of running three programs, the manually entered information is retained when the excel
file is updated by autodoc.

& B € L E F G H |]
L program name run date run time run by purpose sas version system input files output files
2 docpaper 1 30ULLS 0%10 GlassR o Saveamacrothat creates headers for programs, (Y X84 ESO8R2 none macra %ohdr
3 docpaper 2 UMY 0%12 GlassR Addaformat fortreatment variabletufurmat|ibrary.’9.4 X84 ESO8R2 none format %atrtmt
4 |docpaper 3 J30ULLS 0%14 GlassR Save atest dataset for SESUG paper. 84 H6d_ESOBRY
]

SAS DATASETS

When you receive a SAS file from outside your company you can add a label using PROC DATASETS without having to
save a new copy.

PROC DATASETS LIEBRARY=DD:
MODIFY Enrollment Intake

(LABEL="Random Aszszignment of 5tudy Subject - Received from cliemnt 01JOLZ2015™):
CONTENTS DATZ=Enrollment Intake:

ron;

For files that you create, the data step label option can be used to store metadata that documents the creation of a data
set. The Contents and Dataset procedures will then be able to provide you with information on how and when the
dataset was created as well as how it is sorted or indexed.

SESUG 2015

Data dd.test
(label="Test data set created on &sys3date - E&systime - by Egysuserid -

by program %*gysfunc (getoption(sysin))™):

input @1 ID $2.
23 Treatment 51.
24 Baseline Cost 5.2
89 Followup Cost 5.2

-

'Intake: Identification Number'
Treatment 'Intake: Bandomly assigned treatment'
Baseline Cost 'Claims: Baseline Cost'

Followup Cost = '"Claims: Follow-up Cost®

label ID

r

Cards=s;

01T15530
02C16725
03T18586
04T15342
05T16612
0eC21587
07C25308
08T20382
0oCl1oo43
10C19617

-

ron;

roc sort data=dd.test:;
by ID:
run;

roc content=s data=dd.test:

I'Tn;

froftie

If you are meticulous about labeling every variable and maintain a catalog of variable formats, you will have the material
needed to create a codebook at the end of the file building process. In the example above the variable labels contain the
source of the information (‘Intake’ for data produced by the random assignment enrollment procedure and ‘Claims’ for
data derived from insurance claims. Other examples of useful information to include in a variable label are the
question/item number of variables coming from a survey or administrative form and whether the variable has been
recoded.

SAS CATALOGS

Storing all of your variable formats in a catalog doesn’t just save the time of finding and copying code, it also serves as
valuable documentation. You can save formats in one format library, or save separate format libraries specific to a
particular dataset or phase of your project. For instance, to save a format for the Treatment variable in a catalog specific
to dataset test, we specify "Library=fmtlib.test” instead of just “LIBRARY=fmtlib” :

SESUG 2015

LIENAME Fmtlib "C:%Users'\GlassR\DesktopizamplezFmtlib";

PROC FOBMAT LIBEARY = Fmtlib.test:
VALUE $trtmt

'C' = "Control™
I'T'" = "Treatment™
other = "Error"™;

To use the format, specify the format library in the option statement. If you create your format library before creating
the data file, you can assign the formats to variables with a format statement, thus storing the association permanently.
Since in this example the dataset already exists, the format statement is used in the PROC FREQ procedure.

OPTIONS MSTORED FMTSEARCH=(Fmtlib.test):

proc freq data=dd.test;
tables Treatment;
format treatment SLrrLmt.;
title2 "Treatment Status™;

CODEBOOK GENERATION

You’ve done a lot of hard work documenting every aspect of your programming project, and now it is time to reap your
rewards. There are a number of ways that you can present information from PROC CONTENTS and PROC DATASETS
covered in many other papers. In the example we show here, an Excel spreadsheet with selected variables from PROC
CONTENTS output is generated using PROC EXPORT. We are using a modified copy of SASHELP.HEART as our sample
data set, for several reasons, one of which is that not all variables are labelled, requiring some changes, and another is
that this data set is available to all users.

| gen_SESUG2015_CCS9_metadata.sas - Motepad = =R
File Edit Format Wiew Help

paTa dd. heart (LABEL="Copy of SASHELP.HEART for SESUG 2015 CC59 - created by %systuncCgetoption(sysing .
- &sysdate - &systime - run by &sysuserid");
SET saszhelp.heart;

if 25 e ageatstart le 34 then age=1;
if 35 e ageatstart le 44 then age=2;
if 45 e ageatstart le 54 then age=3;
if 55 e ageatstart le 64 then age=4;
format age agefmt. ;

LABEL cholesterol='Cholesteral Tevel’
diastolic='Diastolic blood pressure’

SESUG 2015

Of course, you want to review the results and maybe modify a label or format assignment. You can then reimport the
modified spreadsheet , and use the information to: (a) write code to be included to generate a codebook with output

varying by variable type; (b) write code to generate a label statement; and (c) write code to generate a format
assignment statement, among other normally onerous tasks.

X = = heart_db_edited.xlsx - Microsoft Excel = = 532
Home Insert Page Layout Farmulas Data Review View Muance POF o e = 2
B21 - B |1
A B C D E F G H |] K

1 |varnum vartype name label format length npos type source dsinfo

2 1 2 dslabel Data set information 200 88 2 HEART Copy of SASHELP|
3 2 2 source Data set name 32 288 2 HEART Copy of SASHELP|
4 3 2 Status Wanted, dead or alive 5 320 2 HEART Copy of SASHELP|
5 4 2 DeathCau Cause of Death 26 325 2 HEART Copy of SASHELP|
6 5 3 AgeCHDdiAge CHD Diagnosed 8 0 1 HEART Copy of SASHELP|
7 6 2 Sex Gender 6 351 2 HEART Copy of SASHELP|
8 7 3 AgeAtStar Age at Start B 8 1 HEART Copy of SASHELP|
9 8 3 Height Height 8 16 1 HEART Copy of SASHELP
10 9 3 Weight Weight 8 24 1 HEART Copy of SASHELP
11 10 3 Diastolic Diastolic blood pressure 8 32 1 HEART Copy of SASHELP|
12 11 3 Systolic Systolic blood pressure 8 40 1 HEART Copy of SASHELP|
13 12 3 MRW Metropolitan Relative Weight 8 48 1 HEART Copy of SASHELP|
14 13 3 Smoking Cigarettes per day 8 56 1 HEART Copy of SASHELP|
15 14 3 AgehtDea Age at Death 8 64 1 HEART Copy of SASHELP|
16 15 3 Cholester Cholesterol level 8 72 1 HEART Copy of SASHELP|
17 16 2 Chol_Stati Cholesterol Status 10 357 2 HEART Copy of SASHELP
18 17 2 BP_Status Blood Pressure Status 7 367 2 HEART Copy of SASHELP|
19 13 2 Weight_Si Weight Status 11 374 2 HEART Copy of SASHELP)
20 19 2 Smoking_. Smoking Status 17 385 2 HEART Copy of SASHELP|
21 20 1 age Age at Start Category AGEFMT B8 80 1 HEART Copy of SASHELP|
22

23

24

25

4 4 » M| HEART_CB %1 NER 1| | k[l

Our codebook generation program starts with reimporting the edited version of the metadata spreadsheet, shown

above. A number of macros are then constructed: to report on “header information” (i.e. variable name, label, etc.),

missing values, and then details on non-missing values, differential by variable type (character, continuous, categorical).
Additionally, the program accesses the metadata and outputs text files with macro calls to the macros created above

conditional upon the variable type in the metadata and reporting macros, that are then reused in the program as include

files.

SESUG 2015

ﬁ gen_codebook_SESUG2015_CC59.sas - Notepad

File

Edit Format View Help

@@

/% step 6 - write out files to run macros */

data _null_;

run;

file outl Trecl1=80 pad;

length include_string § 8&0;

set dd.heart_cbhb (keep=varnum name vartype);
include_string=cats(%header (" ,name,"”,” ,varnum,");");
put include_string;

data _null_;

run;

file out2 lrecl=80 pad;
length include_string § 80;
set dd.heart_cb (keep=varnum name type where=(type not in(2)));

include_string=cats{ '%missval(’,name,",”,varnum,");");
put include_string;

data _null_;

run;

file outza Irecl=80 pad;

length include_string $ 80;

set dd.heart_cb (keep=varnum name type where=(type in(2)));
include_string=cats(' %cmissval (' ,name,”,"” ,varnum,");");

put include_string;

data _null_;

run;

file out3 Trecl=80 pad;
length include_string $ 80;
set dd.heart_cb (keep=varnum name vartype);

if vartype=1 then include_string=cats(%detailcat(’,name,"”,"”,varnum,");");
if vartype=2 then include_string=cats(%detailcharcat(’,name,”,”,varnum,")
if vartype=3 then include_string=cats(%detailcont(’,name,"”,”,varnum,”);"

put include_string;

data _null_;

file outd4 lrecl=80 pad;
length include_string § 80;
set dd.heart_cb (keep=varnum name vartype);

if vartype=l then include_string=cats(f%printtable(’,varnum,”);");

if vartype=2 then include_string=cats(¥printtablec(’,varnum, ;'i;

1

")

SESUG 2015

Macros are written to report on each variable, creating an RTF codebook.

Mj gen_codebook_SESUG2015_CC59.5as - Motepad = =
File Edit Format View Help
¥macro printblurb(order); -

ods tagsets.rtf style=styles.noborder;
ods startpage=no;

proc report nowd data=print&order
style(report)=[cellpadding=3pt wjust=b]
style(header)=[just=center font_'ll'ace=He'Ivet'i ca font_weight=bold font_size=10pt]
style(lines)=[just=Teft font_face=Helvetica] ;
columns blurb ;
define blurb / style(COLUMN)={just=1 font_face=Helvetica
font_size=10pt cellwidth=988 }
style(HEADER)={just=1 font_face=Helvetica
font_size=10pT T;
run;

ods startpage=no;

smend;

Two pages from the codebook are shown below.

[®Toos~ g -3 & | Pagel-2ofd - p JH view Options - X cig
Heart Data File Codsbook Value Frequency %
Alive 3218 61.8%
dslabel: Data setinformation Dead 1,991 38.2%
Variabie Type:Charader Total 5,209 100%

Data File: Heart

* Mon-missing values: 5,209

+ Missing values: 0 DeathCause: Cause of Death

= Length:200 Variable Type:Charader
Data Fiie: Heart
= Non-missing values: 1,991
Value Frequency % - Missingvalues 3,218
Copy of SASHELP HEART for SESUG 2015 GC58- created by 5,209 100.0% » Length:26

S)\Projects\NH-COMPARE\LSHISESUG2015\gen_SESUG2015
_CC59_metadatasas-30JUL15-20:21-run by HaddenlL

Total 5,209 100% Value Frequency %
3218 k3
source: Data setname Cancer 539 271%
Variable Type: Charader Cerebral Vascular Disease 378 19.0%
Data Fiie: Heart CoronaryHeartDisease 605 30.4%
» Mon-missing values: 5,209 Other 357 17.9%
+ Missingvalues: 0
> Lengtinzs Unknown 12 56%
Total 5,209 100%
ok EaEwmency)] AgeCHDdiag: Age CHD Diagnosed
HEART 5,209 100.0%
Variable Type:Numeric
il L -2 Data File: Heart
= Non-missing values: 1,449
Status: Wanted, dead or alive * Missingvalues:3,760
Variable Type: Charader
2 * Minimurm: 32
Data File: Heart - Maximum:90
= MNon-missing values: 5,209 = Mean:63.3
= Missingvalues: 0 + 25th percentile: 57.0
* Length:5 + 50th percentile: 63.0

= 75th percentile: 70.0

SESUG 2015

Similarly, metadata can be accessed to create label, format, and length, etc. statements.

| gen_label_fmt_stmnt_SESUG2015_CC59.5as - Notepad (= =]

File Edit Format View Help

data runrun;
Tength include 5tr1ng $ 180;
include_string=";

run;

data templ;
Tlength include_string $ 180
set dd. heart_ch;

label=compress(label, " ");

glabel=cats(""",label,""");
include_string=catx(’ °,name,’=",glabel);
run;

data templabel (keep=include_string);
file outl 1recl=180 pad;
Tlength include_string $ 180;
set runlabel templ runrumn;
put include_string;
run;

data temp2;
length include_string $ 180
set dd. heart_ch (where (format ne ""));
gformat=cats (format,".");
1nc1ude_5trﬁng=catx(' ', name, gformat);
run;

data tempfmt (keep=include_string);
file out2 lrecl=180 pad;
length include_string $ 180
set runformat temp2 runrun;
put include_string;

run;

The resulting statement, example shown below, can be included in other programs seamlessly.

10

SESUG 2015

Mj heart_labelstm.bit - Notepad == ==l
File Edit Format View Help

##% | ahe]l statement for heart; -
LABEL

dslabel = "pata set information”
source = "Data sel name”

status = "wanted, dead or alive"
DeathCause = "Cause of Death”
AgeCHDdiag = "Age CHD Diagnosed”

sex = "Gender”

AgeAtStart = "Age at Start”

Height = "Height"

weight = "weight”

Diastolic = "Diastolic blood pressure”
systolic = "Systolic blood pressure”
MRW = "Metropolitan Relative wWeight"
smoking = "Cigarettes per day”
AgeatDeath = "Age at Death”
Cholesterol "Cholesterol Tlevel”
chol_status "Cholesterol Status”

m

BP_status = "Blood Pressure status”
weight_status = "weight status”
smoking_status = "smoking status”

age = "Age at Start Category”

] -

4 10 I

For those of us who deliver data to internal and external clients, careful documentation results in easy transfers with the
help of SAS metadata.

Only code snippets are shown here: full code is available from the authors upon request.

CONCLUSION

With attention to documentation from the start of a project, you can automatically keep a processing log updated, label
your data sets and variables, and identify the code that created datasets, .logs, .Ists, and tables. This will allow you to
take advantage of the PROC DATASETS (as well as PROC CONTENTS), SAS Dictionary Tables and SASHELP.VIEWS to create
user-friendly documentation, and generate components of your SAS programs without typing a word.

REFERENCES

Carey, Helen and Carey, Ginger, 2011. “Tips and Techniques for the SAS Programmer!” Proceedings of SAS Global
Forum 2011.

Crawford, Peter, 2013. “A Day in the Life of Data — Part 3.” Proceedings of SAS Global Forum 2013.

Fraeman, Kathy Hardis, 2008. “Get into the Groove with %SYSFUNC: Generalizing SAS® Macros with Conditionally
Executed Code.” Proceedings of NESUG 2008.

Hadden, Louise, 2014. “Build your Metadata with PROC CONTENTS and ODS OUTPUT”, Proceedings of SAS Global
Forum 2014.

Huang, Chao, 2014. “Top 10 SQL Tricks in SAS®.” Proceedings of SAS Global Forum 2014.

Karafa, Matthew T., 2012. “Macro Coding Tips and Tricks to Avoid “PEBCAK” Errors.” Proceedings of SAS Global Forum
2012.

Kuligowski, Andrew T. and Shankar, Charu, 2013. “Know Thy Data: Techniques for Data Exploration.” Proceedings of SAS
Global Forum 2013.

11

SESUG 2015

Lafler, Kirk Paul, 2014. “Powerful and Hard-to-find PROC SQL Features.” Proceedings of SAS Global Forum 2014.
Murphy, William C., 2013. “What’s in a SAS® Variable? Get Answers with a V!” Proceedings of SAS Global Forum 2013.

Raithel, Michael A., 2011. “PROC DATASETS: the Swiss Army Knife of SAS® Procedures.” Proceedings of SAS Global
Forum 2011.

Thornton, Patrick, 2011. “SAS® DICTIONARY: Step by Step.” Proceedings of SAS Global Forum 2011.

Zhang, Jingxian, 2012. “Techniques for Generating Dynamic Code from SAS® Dictionary Tables.” Proceedings of SAS
Global Forum 2012.

ACKNOWLEDGMENTS

The authors gratefully acknowledges the helpful work of Kathy Fraeman, Michael Raithel, Patrick Thornton and Kirk Paul
Lafler, among others.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Roberta Glass: Roberta Glass@abtassoc.com
Louise Hadden: Louise Hadden@abtassoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

mailto:Roberta_Glass@abtassoc.com
mailto:Louise_Hadden@abtassoc.com

