
SESUG 2015

1

Paper CC76

Beautiful PROC CONTENTS Output Using the ODS Excel Destination
Suzanne Dorinski1, U.S. Census Bureau

ABSTRACT
A member of the Census Bureau’s in-house SAS® users group asked how to export the output of PROC CONTENTS
(variable name, type, length, and format) from several Oracle database tables within the same database to separate
worksheets in an Excel file. You can use the _all_ keyword to work with all the tables within a library. The ODS
Excel destination, which is production in SAS 9.4 maintenance release 3, displays the output beautifully.

INTRODUCTION
The variables section of PROC CONTENTS output shows all the variables in a given SAS data set. The Output
Delivery System (ODS) allows you to save just the variables section from PROC CONTENTS to a SAS data set. A
SAS programmer working with an Oracle database can quickly document all the variables available in an Excel file,
with each worksheet representing a table in the Oracle database. This technique also works for a library with native
SAS data sets.

The ODS Excel destination, which is production in SAS 9.4 maintenance release 3, easily handles multiple
worksheets in an Excel file, and produces beautiful output with just two options specified in the program. The ODS
Excel destination is pre-production in SAS 9.4 maintenance releases 1 and 2. We used SAS 9.4 maintenance
release 2 to write the code in this paper.

THE FULL CODE FOR THIS EXAMPLE
Below is the full code for this example.

libname asj oracle
 user=asjview
 password=asjview
 path=jailprod.world
 schema=asjdba
 access=readonly;
run;

ods output variables=AllOracleVarOut;

proc contents data=asj._all_;
run;

proc sort data=AllOracleVarOut;
 by member num;
run;

options nobyline;

ODS EXCEL FILE="H:\SESUG 2015\all_variables_from_Oracle_database.xlsx"
 options(sheet_name="#BYVAL(member)"
 embedded_titles='yes');

proc print data=AllOracleVarOut noobs;
 by member;
 pageby member;
 title "Variables in #BYVAL(member) table";
run;

ODS EXCEL CLOSE;

1 Disclaimer: Any views expressed are those of the author and not necessarily those of the U.S. Census Bureau.

Beautiful PROC CONTENTS Output Using the ODS Excel Destination, continued SESUG 2015

2

CONNECT TO THE ORACLE DATABASE
We use a LIBNAME statement to connect to an Oracle database. See below for an example LIBNAME statement.
Contact your Oracle database administrator for the user, password, path, schema, and access parameters.

libname asj oracle
 user=asjview
 password=asjview
 path=jailprod.world
 schema=asjdba
 access=readonly;
run;

In this example, the Oracle database has eight tables. See Figure 1.

Figure 1. Explorer window shows eight tables in Oracle database

USE ODS OUTPUT STATEMENT TO SAVE INFORMATION TO A DATA SET
The ODS output statement saves procedure output to a SAS data set. PROC CONTENTS produces three tables of
output for a data set: attributes, engine/host information, and variables. In this example, we want the variables, but
not the attributes nor the engine/host information. In the code below, the information from the variables section of
PROC CONTENTS will be stored in a temporary data set named AllOracleVarOut.

ods output variables=AllOracleVarOut;

If you do not know the name of the procedure output object, use the ODS TRACE statement. The ODS TRACE
statement will write notes in the log, listing the names of the objects produced by SAS procedures. Figure 2 shows
the notes in the log from the TRACE statement.

Beautiful PROC CONTENTS Output Using the ODS Excel Destination, continued SESUG 2015

3

Figure 2. TRACE statement in log file shows that PROC CONTENTS produces three output objects

USE THE _ALL_ KEYWORD TO WORK WITH ALL THE DATA SETS IN A LIBRARY
Instead of running PROC CONTENTS separately for each data set, we can use the _ALL_ keyword to run PROC
CONTENTS once and get all the variable information for all the data sets in the library.

proc contents data=asj._all_;
run;

SORT BY DATA SET AND VARIABLE POSITION
In the PROC SORT, we sort by MEMBER and NUM so that the worksheets in the Excel file will be in alphabetical
order by data set name, and the variables in each data set are in order by position.

proc sort data=AllOracleVarOut;
 by member num;
run;

PRODUCE THE OUTPUT
In the code below, we use the NOBYLINE option to suppress the default text above each worksheet, which is
MEMBER=<data set>. We prefer a customized title on each worksheet to make the output a bit more reader-friendly.

The ODS EXCEL statement opens the Excel destination. The Excel destination uses the same style (HTMLBlue)
that the Results Viewer uses by default. The SHEET_NAME option names the worksheet. Setting SHEET_NAME to
#BYVAL(member) tells SAS to use the current value of MEMBER as the worksheet name. The
EMBEDDED_TITLES option set to yes makes the title show up in the body of the worksheet.

We use the PAGE and PAGEBY statements in PROC PRINT to show each database on a separate worksheet.
Using #BYVAL(member) in the TITLE statement tells SAS to use the current value of MEMBER in the title.

Beautiful PROC CONTENTS Output Using the ODS Excel Destination, continued SESUG 2015

4

options nobyline;

ODS EXCEL FILE="H:\SESUG 2015\all_variables_from_Oracle_database.xlsx"
 options(sheet_name="#BYVAL(member)"
 embedded_titles='yes');

proc print data=AllOracleVarOut noobs;
 by member;
 pageby member;
 title "Variables in #BYVAL(member) table";
run;

ODS EXCEL CLOSE;

VIEW THE OUTPUT
Figure 3 shows the output for this example. The worksheet name in the Excel file is the same as the data set it
describes. The title above each table of variable information also shows the name of the data set.

Figure 3. Variable information from PROC CONTENTS displayed in ODS Excel destination

USE THE SAME TECHNIQUE WITH NATIVE SAS DATA SETS
The motivation for this paper was to document tables in an Oracle database, but the same technique also works for a
library with native SAS data sets.

The code example on the next page works for the SASHELP library. We used the MEMTYPE option on the PROC
CONTENTS statement to process data sets, but not views.

Beautiful PROC CONTENTS Output Using the ODS Excel Destination, continued SESUG 2015

5

ODS OUTPUT variables=allvarout;

proc contents data=sashelp._all_ memtype=data;
run;

proc sort data=allvarout;
 by member num;
run;

options nobyline;

ODS EXCEL FILE="H:\SESUG 2015\all_variables_in_SASHELP_data_sets.xlsx"
 options(sheet_name="#BYVAL(member)"
 embedded_titles='yes');

proc print data=allvarout noobs;
 by member;
 pageby member;
 title "Variables in #BYVAL(member) data set";
run;

ODS EXCEL CLOSE;

SASHELP RESULTS MAY VARY
Note that the number of data sets available in the SASHELP library depends on the products installed. There are
185 data sets in the SASHELP library in the Census Bureau’s virtual desktop infrastructure installation. There are 86
data sets in the SASHELP library in SAS University Edition.

SAS STUDIO MAY ISSUE WARNING ABOUT INSUFFICIENT MEMORY
If you are using SAS Studio, you may see a message about insufficient memory. Figure 4 on the next page shows
the warning when using the SAS Studio interface in SAS University Edition. If you choose “Don’t Display”, you will
not see anything in the Results tab, but SAS Studio does create the Excel file.

To avoid that warning in SAS Studio, close the HTML5 destination at the top of the program with the following line of
code:

ODS HTML5(id=web) CLOSE;

SAS Studio will create the Excel file, but nothing will show in the Results tab if the HTML5 destination is closed.

Beautiful PROC CONTENTS Output Using the ODS Excel Destination, continued SESUG 2015

6

Figure 4. SAS Studio warning about insufficient memory

Figure 5 shows what the output looks like for the data sets in the SASHELP library.

Figure 5. Variables in SASHELP data sets

Beautiful PROC CONTENTS Output Using the ODS Excel Destination, continued SESUG 2015

7

CONCLUSION
The ODS Excel destination produces beautiful output with minimal coding. We can use the technique in this paper to
document quickly all the variables available in a SAS library, whether that library is a connection to an Oracle
database or a collection of native SAS data sets.

REFERENCES
SAS Institute Inc. 2014. Base SAS® 9.4 Procedures Guide, Third Edition. Cary, NC: SAS Institute Inc.
See Example 1: Using PROC CONTENTS to Extract Only Attributes from Data Sets in the CONTENTS Procedure
section, which shows how to get the attributes information for all the data sets in a SAS library.

The SAS code and Excel files are available at the sasCommunity wiki page for this paper,
http://www.sascommunity.org/wiki/Beautiful_PROC_CONTENTS_Output_Using_the_ODS_Excel_Destination.

ACKNOWLEDGMENTS
Thanks to Ellen Cohen for asking the question that prompted this paper. Thanks to Terri Craig, Franklin Winters, and
Freda Spence for reviewing the draft of this paper. Thanks to Scott Huntley, Nancy Goodling, Amy Peters, and
Michael Monaco, all of SAS Institute, for answering questions in the Quad at SAS Global Forum 2015.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Suzanne Dorinski
Organization: U.S. Census Bureau
Address: ESMD HQ-6K062E 4600 Silver Hill Road
City, State ZIP: Washington, DC 20233
Work Phone: 301-763-4869
Email: Suzanne.Marie.Dorinski@census.gov
sascommunity.org: http://www.sascommunity.org/wiki/Presentations:Dorinski_Papers_and_Presentations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.sascommunity.org/wiki/Beautiful_PROC_CONTENTS_Output_Using_the_ODS_Excel_Destination
http://www.sascommunity.org/wiki/Presentations:Dorinski_Papers_and_Presentations

	Abstract
	Introduction
	the full code for this example
	Connect to the oracle database
	use ods output statement to save information to a data set
	use the _ALL_ keyword to work with all the data sets in a library
	Sort by data set and variable position
	produce the output
	VIEW the output
	use the same technique with native sas data sets
	SASHELP results may vary
	sas studio may issue warning about insufficient memory
	Conclusion
	References
	Acknowledgments
	Contact Information

