
SESUG 2015

1

Paper BB135

PROC TRANSPOSE: Flip your Data 90o and Save Time
Rachel Straney, University of Central Florida

ABSTRACT

The process of transforming data from a vertical to horizontal structure is sometimes referred to as long-to-wide
conversion, and is common in the analytical world. Although there is always more than one way to accomplish a task
using SAS®, PROC TRANSPOSE is a staple procedure that should be in every programmer’s tool box. This paper
will guide the reader through some basic examples of PROC TRANSPOSE and share situations where it is most
appropriately used.

INTRODUCTION

Often times the process of data collection is one of logging or listing information. This seems natural enough, since
even the most non-data savvy of us tend organize information in lists: grocery lists, to-do lists, lists of transactions
from an account and even lists of observed traffic flow at intersections. Data organized in this form is also known as
data that is structured vertically. When analyzing data, however, lists and logs can prove challenging. Analysts and
statisticians tend to think of data in terms of experimental units (unique observations) and the attributes that
characterize them (variables), or horizontally structured data. And so begins the process of data manipulation, so that
these lists and logs of data can be used in an analytical way. The process of transforming data from a vertical to
horizontal structure is sometimes referred to as long-to-wide conversion. A visual representation of this process is
displayed below using bank account transactions as an example. Whereas the vertical structure is simply a list of all
transactions performed (including multiple transactions on the same day), the horizontal structure is organized such
that each record is unique to the date of the transaction.

FIRST MAIN TOPIC <HEADING 1>

This is a main topic in the body of the paper.

The power of SAS is its ability to manipulate, structure and organize data efficiently and quickly. Although there is
always more than one way to accomplish a task using SAS®, PROC TRANSPOSE is a staple procedure that should
be in every programmer’s tool box. It will save time and simplify steps in the analysis process that are very prevalent.
This paper will guide the reader through some basic examples of PROC TRANSPOSE and share situations where it
is most appropriately used.

PROC TRANSPOSE SYNTAX

General syntax of the PROC TRANSPOSE procedure is shown below which was referenced from the 9.4 SAS
Procedures Guide:

PROC TRANSPOSE <DATA=input-data-set> <DELIMITER=delimiter> <LABEL=label> <LET>

<NAME=name> <OUT=output-data-set> <PREFIX=prefix> <SUFFIX=suffix>;

 BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...> NOTSORTED>;

 COPY variable(s);

 ID variable;

 IDLABEL variable;

 VAR variable(s);

Vertical Structure

Horizontal Structure

PROC TRANSPOSE: Flip your Data 90o and Save Time SESUG 2015

2

To simplify the content of this paper we will only be discussing the following options and statements:

• Options listed in the PROC TRANSPOSE statement
— OUT: controls the name of the restructured data set
— PREFIX: controls the names of the newly created columns

• Statements used in the procedure
— BY: variable(s) used in the creation of new records or rows*
— ID: variable(s) used in the creation of new columns
— VAR: variable(s) whose values are transposed to fit within the new structure

* Rows are not guaranteed to be unique after transposing data. Obtaining unique rows in the transposed
data set will depend on how many variables are used and how the original data is structured, especially
when character type variables are involved.

There are many papers available on the TRANSPOSE procedure as well as documentation from SAS that are
recommended if one would like learn more about the options and statements not covered in this paper.

DATA USED IN THE EXAMPLES

Three of the examples covered in the following sections demonstrate the use of the TRANSPOSE procedure along
with the associated options and statements. To keep things simple and easy to follow, the data used in the examples
are extremely basic and, most likely, are not representative of ‘real-world’ data one would be using for analysis. The
last example, Example 4, uses a different data set that more accurately represents data used in practice. Whereas
Examples 1-3 are shared to walk through the different components of the TRANSPOSE procedure, Example 4 is to
put it all into context.

The SAS data steps below create the data to be used for Examples 1-3.

/*Data set with strictly numeric type variables*/
DATA TRNSP_NUM;
INPUT VAR_NUM_1 VAR_NUM_2 VAR_NUM_3 VAR_NUM_4;
CARDS;
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
;
RUN;

/*Data set with numeric and character type variable s*/
DATA TRNSP_CHAR;
INPUT VAR_NUM_1 VAR_NUM_2 VAR_NUM_3 VAR_NUM_4 VAR_CHAR_1 $ VAR_CHAR_2 $;
CARDS;
1 2 3 4 A E
1 2 3 4 B E
1 2 3 4 C F
1 2 3 4 D F
;
RUN;

PROC TRANSPOSE: Flip your Data 90o and Save Time SESUG 2015

3

EXAMPLE 1: A BASIC PROC TRANSPOSE

The most basic TRANSPOSE procedure will literally transpose an entire dataset 90o, swapping all rows for columns.
One important feature of the TRANSPOSE procedure is that by default only numeric variables are used to transpose
the data. If the data set only contains variables of a numeric type, then all rows in the newly created set will include all
variables (columns). If character variables exist in the data set, then a basic PROC TRANSPOSE will not suffice. To
successfully transpose data including both numeric and character type variables, more statements are needed and
we will cover this in later examples.

Examples of a basic PROC TRANSPPOSE on two data sets, one with only numeric type variables and the other with
numeric and character types are shown below. The options OUT and PREFIX are included.

Notice that in both programs the resulting transposed sets, EX1_NUM and EX1_CHAR, are the same. This is due to
the fact that, by default, only numeric type variables are used in a basic TRANSPOSE procedure. Furthermore, the
options OUT and PREFIX have been included to name the transposed sets and to provide prefixes to the newly
created variables.

The next two examples will only include the final printed data sets resulting from the TRANSPOSE procedures. The
original data set used in both Example 2 and 3 is TRNSP_CHAR, which can be referenced from Example 1.

ONLY NUMERIC TYPE VARIABLES

PROC TRANSPOSE DATA=TRNSP_NUM
OUT=EX1_NUM PREFIX=NEWCOL;
RUN;

PROC PRINT DATA=TRNSP_NUM NOOBS;
TITLE 'Original Data: TRNSP_NUM' ;
RUN;

PROC PRINT DATA=EX1_NUM NOOBS;
TITLE 'Transposed Data: EX1_NUM' ;
RUN;

NUMERIC AND CHARACTER TYPE VARIABLES

PROC TRANSPOSE DATA=TRNSP_CHAR
OUT=EX1_CHAR PREFIX=NEWCOL;
RUN;

PROC PRINT DATA=TRNSP_CHAR NOOBS;
TITLE 'Original Data: TRNSP_CHAR' ;
RUN;

PROC PRINT DATA=EX1_CHAR NOOBS;
TITLE 'Transposed Data: EX1_CHAR' ;
RUN;

PROC TRANSPOSE: Flip your Data 90o and Save Time SESUG 2015

4

EXAMPLE 2: THE ROLES OF THE BY AND ID STATEMENTS

As mentioned previously, the use of the BY statement is used to control the records or rows of the transposed data
set. The output data set EX2_BY (on the left below), which only references the BY statement, uses the variable
VAR_CHAR_1 to create new records. Note that the program on the right references the ID statement as well as the
BY statement, whereby VAR_CHAR_1 creates the rows and VAR_CHAR_2 creates new columns in the final
transposed data set. As is typically done when using a BY statement in any SAS procedure, the data may be need to
be sorted using a PROC SORT. This step has been skipped since the data are already in sorted order.

EXAMPLE 3: THE ROLE OF THE VAR STATEMENT

Example 3 builds on the last example to explain the use of the VAR statement. The program below on the left uses
the numeric type variable, VAR_NUM_4, and the one on the right uses the character type variable VAR_CHAR_2.
Overall, the structure of output data sets EX3_NUM and EX3_CHAR are the same, except for the content or values
of the transposed records.

PROC TRANSPOSE DATA=TRNSP_CHAR
OUT=EX2_BY PREFIX=NEWCOL;
BY VAR_CHAR_1;
RUN;

PROC PRINT DATA=EX2_BY NOOBS;
TITLE 'Transposed Data: EX2_BY' ;
RUN;

PROC TRANSPOSE DATA=TRNSP_CHAR
OUT=EX2_BY_ID PREFIX=NEWCOL;
BY VAR_CHAR_1; ID VAR_CHAR_2;
RUN;

PROC PRINT DATA=EX2_BY_ID NOOBS;
TITLE 'Transposed Data: EX2_BY_ID' ;
RUN;

PROC TRANSPOSE DATA=TRNSP_CHAR
OUT=EX3_NUM PREFIX=NEWCOL;
BY VAR_CHAR_1;
ID VAR_CHAR_2;
VAR VAR_NUM_4;
RUN;

PROC PRINT DATA=EX3_NUM NOOBS;
TITLE 'Transposed Data: EX3_NUM' ;
RUN;

PROC TRANSPOSE DATA=TRNSP_CHAR
OUT=EX3_CHAR PREFIX=NEWCOL;
BY VAR_CHAR_1;
ID VAR_CHAR_2;
VAR VAR_CHAR_2;
RUN;

PROC PRINT DATA=EX3_CHAR NOOBS;
TITLE 'Transposed Data: EX3_CHAR' ;
RUN;

PROC TRANSPOSE: Flip your Data 90o and Save Time SESUG 2015

5

EXAMPLE 4: PUTTING IT ALL TOGETHER IN A REAL WORLD EXAMPLE

The example here uses data collected on students who completed Chemistry I (CHM101) and Chemistry II
(CHM201) courses over two semesters. The data includes the student’s name, the term the course was completed,
the course, final grade and final grade point earned. Suppose we wanted to calculate the difference in student grade
points earned between semesters. Due to the vertical nature of the data, it is challenging to compute the difference in
final grades from two separate rows. The program below takes advantage of PROC TRANSPOSE as well as PROC
SQL to complete this task.

DATA STDNT_COURSES;
INPUT NAME $ TERM $ COURSE $ GRADE $ GRADE_PTS;
CARDS;
Judy Fall12 CHM101 A 4
Judy Spring13 CHM201 C 2

Bob Fall12 CHM101 A 4
Bob Spring13 CHM201 B 3

Tim Fall12 CHM101 B 3
Tim Spring13 CHM201 D 1
;
RUN;

PROC SORT DATA=STDNT_COURSES;
BY NAME;
RUN;

PROC PRINT DATA=STDNT_COURSES NOOBS;
TITLE 'Original Sorted Data: STDNT_COURSES' ;
RUN;

PROC TRANSPOSE DATA=STDNT_COURSES
OUT=STDNT_COURSES_TRN PREFIX=COURSE_;
BY NAME;
ID COURSE;
VAR GRADE_PTS;
RUN;

PROC PRINT DATA=STDNT_COURSES_TRN NOOBS;
TITLE 'Transposed Data: STDNT_COURSES_TRN' ;
RUN;

PROC SQL;
CREATE TABLE STDNT_COURSES_DELTA AS
SELECT a. *, b. *,
(COURSE_CHM201-COURSE_CHM101) AS DIFF_COURSE
FROM STDNT_COURSES AS a
LEFT JOIN
STDNT_COURSES_TRN AS b
ON a.NAME = b.NAME;
QUIT;

PROC PRINT DATA=STDNT_COURSES_DELTA NOOBS;
TITLE 'Transposed and Joined Data: STDNT_COURSES_DELTA' ;
RUN;

PROC TRANSPOSE: Flip your Data 90o and Save Time SESUG 2015

6

CONCLUSION

PROC TRANPOSE is very versatile and can be extremely useful during data manipulation and preparation. In many
cases, it can be used as an alternative to the SUMMAY and MEANS procedures to restructure data in a meaningful
way. Although the examples used throughout this paper are restructuring data from vertical to horizontal, it should be
noted that PROC TRANSPOSE can easily work the other way, organizing horizontal data into a vertical or list format.
This procedure can save the analyst valuable time and energy in the data processing phase of any project.

REFERENCES

Li, Arthur X. “Simplifying Effective Data Transformation Via PROC TRANSPOSE.” Proceedings of the
PharmaSUG 2012 Conference. San Francisco, California.
Available at: http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF03.pdf

SAS Institute Inc. 2015. Base SAS® 9.4 Procedures Guide, Third Edition. Cary, NC: SAS Institute Inc.
Available at: http://support.sas.com/documentation/cdl/en/proc/67916/PDF/default/proc.pdf

Stuelpner, Janet. “Proc Transpose or How to Turn It Around.” Proceedings of the SUGI 31 Conference. San
Francisco, California. Available at: http://www2.sas.com/proceedings/sugi31/234-31.pdf

Zdeb, Mike. 2012. “Long-to-Wide: PROC TRANSPOSE vs Arrays vs PROC SUMMARY.” Proceedings of the NESUG
2012 Conference. Baltimore, Maryland. Available at: http://www.lexjansen.com/nesug/nesug12/ff/ff01.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Rachel Straney
University of Central Florida
12424 Research Parkway, Suite 225
Orlando, FL 32826
407-882-0280
rstraney@ucf.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

