
SESUG 2015

1

CC145

Because We Can: Using SAS® System Tools to Help Our Less

Fortunate Brethren
John Cohen, Advanced Data Concepts, LLC, Newark, DE

ABSTRACT
We may be called upon to provide data to developers -- frequently for production support -- who work in

other programming environments. Often external recipients, they may require files in specific formats and

variable/column order, with proscribed delimiters, file-naming conventions, and the like. Our goal should be

to achieve this as simply as possible, both for initial development and ease of maintainability. We will take

advantage of several SAS tricks to achieve this goal.

INTRODUCTION - OUR BUSINESS PROBLEM
We have been asked to create a monthly production file extract in a specific, highly-structured format. We

would like to create a process retaining as much of the flexibility of the SAS environment as possible. To

minimize maintenance efforts, we will design a dynamic, automated process. Chances are that you will

never face exactly this same combination of requirements. However, it IS quite likely that at least one of

the techniques we will explore here will become a productive addition to your tool set.

OUR PROGRAMMING TASKS
We are under a requirement to change our file structure as little as possible so as to not affect any of the

downstream processes dependent upon our work. If we DO change anything, there will be issues around

testing and validation of these downstream processes – which cannot simply be assumed to be part of the

on-going maintenance for the dependent processes. Rather these may need formal project development

plans, prioritization, and scheduling of any maintenance work needed even for what for us seem to be

simple changes. Otherwise these downstream processes will be at severe risk of being out of synch with

ours. So the fundamental flexibility of SAS results in the burden of accommodating changes to fall

particularly heavily on us. Making our approach to system/program design one which minimizes

maintenance is thus of considerable importance. After all, one should always assume the possibility of lots

of changes over time, all of which we will want to make appear as transparent to those using our output as

possible. The three particular sub tasks are:

• The order of the columns should exactly match the order of our original source file, with any new

variables being added at the end of the file

• We are asked to use a specific delimiter (ASCII 27)

• We want the file names (in a monthly process) to follow a specific format as designated by the

downstream users

THE STARTING POINT
Our data, historically, have looked much like the example in Figure 1 below. The data (column ordering)

are in the historical order. In SAS, providing that the column (variable) names have not changed, we pay

little attention to the order of columns. But if we export our data into other formats, the ease of manipulation

of these data may be compromised. Programs reading in fixed-format files, formatting of Excel

spreadsheets, graphing of time series data, and the like will potentially require reordering of columns prior

to executing these functions. Alternatively, downstream programs will need to be updated whenever we

change our column order.

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

2

If we can devise a methodology to assure constant, consistent ordering of columns, the only high-risk issue

will be instances where we add or remove columns. (Changing the order of the existing columns will be

handled by our process automatically, if correctly designed.) If we further constrain our structure so that

new variables are added only at the end of our file, we will minimize the maintenance required on the part

of the support folks for these downstream processes.

To minimize maintenance we will let the incoming data stream help to write the program for us. This dynamic

approach to programming, (sometimes called a program-to-write-a-program) has been around for a while.

The format we will employ here (also, please see Howard) will take the incoming data, use these data

values to write out valid SAS programming statements to a temporary file, then execute these statements

with a %Include statement. (For more recent approaches to dynamic programming, please see Carpenter

& Fehd.)

FIGURE 1 – THE HISTORICAL DATA

Plan Code Plan Employer Group State Medicaid

Medicare Part D

(added Jan. 2006) HMO PBM

000145 OXFORD MEDCOHEALTH

002003 ALASKA MEDICAID

002053 OHIO MEDICAID

003034 AETNA (FL) AETNA

003058 AETNA (PA) AETNA

010314 HUMANA PART D

019001 TUFTS CAREMARK

019014 TUFTS PART D CAREMARK

020004 UHC (RI) UHC MEDCOHEALTH

020136 MAMSI MEDCOHEALTH

030001 GM CORP MEDCOHEALTH

050179 CIGNA

200146 UHC PART D WALGREENS

200531 JOHN DEERE PART D UHC PART D PROCARE

300118 BCBS (TN) CAREMARK

340001 DUPONT MEDCOHEALTH

460001 CALPERS (CA) MEDCOHEALTH

560001 VERIZON COMM. MEDCOHEALTH

610001 US AIRWAYS CAREMARK

680001 CAROLINA PLAN (SC) EXPRESS SCRIPTS

700060 AARP PART D WALGREENS

790026 ANTHEM (ME) WELLPOINT

790033 WELLPOINT (KY) WELLPOINT

790056 BLUE MED PART D WELLPOINT

TASK 1A - CAPTURING THE ORIGINAL FILE COLUMN ORDER
Our first step is to find the order of the columns in our original SAS data set. We will use a PROC

CONTENTS with and OUT= option to capture the metadata, or the data describing the structure (including

the variable/column order) of that original SAS data set. Conveniently, the output from the OUT= option of

PROC CONTENTS is, in fact, another SAS data set. As we are experienced SAS programmers, then, this

means that we will have at our disposal all of the standard SAS tools to manipulate the output data set.

The program to capture the original/historical/baseline variable/column order might look like the following:

TASK 1A – PROGRAM TO CAPTURE THE ORIGINAL FILE COLUMN ORDER

proc contents

 data=perm.original_file out=orig;

proc sort data=orig(keep=name VARNUM);

 by name;

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

3

and the resulting SAS data set might have characteristics something like this:

TASK 1A – RESULTING OUTPUT

TASK 1B - CAPTURING THE CURRENT FILE COLUMN ORDER
Our next step is to find the order of the columns in our current SAS data set. We will again use a PROC

CONTENTS with an OUT= option to capture the metadata, and the results should look remarkably similar.

The program to capture the current variable/column order might look like the following:

 TASK 1B – PROGRAM TO CAPTURE THE CURRENT FILE COLUMN ORDER

with the output looking like this:

TASK 1B – RESULTING OUTPUT

Data Set Name: ORIGINAL_FILE Observations: 18

Member Type: DATA Variables: 6

Created: 10:11 Monday, April 22, 2005 Observation Length: 91

-----Alphabetic List of Variables and Attributes-----

Variable Type Len

3 Employer_Group Char 22

5 HMO Char 6

6 PBM Char 15

2 Plan Char 23

1 Plan_Code Char 6

4 State_Medicaid Char 15

proc contents

 data=current_file out=curr;

proc sort data=curr(keep=name varnum);

 by name;

Data Set Name: CURRENT_FILE Observations: 24

Member Type: DATA Variables: 7

Created: 15:12 Tuesday, March 13, 2006 Observation Length: 116

-----Alphabetic List of Variables and Attributes-----

Variable Type Len

3 Employer_Group Char 22

6 HMO Char 6

5 Medicare_Part_D Char 25 <=== NOTE: new column

7 PBM Char 15

2 Plan Char 23

1 Plan_Code Char 6

4 State_Medicaid Char 15

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

4

TASK 1C - COMPARING THE ORIGINAL FILE COLUMN ORDER TO THE CURRENT FILE
Our next task is to compare our original file column order to that of the current file. Having sorted both data

sets, Orig and Curr, by the same variable, Name, we can now merge these two data sets by the variable

Name. In the simplest case, all variables in one are also in the other and nothing needs to be done. If there

are discrepancies, on the other hand, we will want to create a process for reconciling these. We will do this

by creating an additional ordering variable – Order – to track whether or not variable names are in both

metadatasets (and order will be set to 1) or only in one of the two (and order will be set to 2). The resulting

program might look like this:

TASK 1C – PROGRAM TO COMPARE THE ORIGINAL FILE COLUMN ORDER TO THE

CURRENT FILE AND RECONCILE DISCREPANCIES

The resulting data set Compare should look like the following, with the combined list of variable names

sorted in name order, the respective varnum orders being captured, and a Status and Order value beig

set. In this example all original variables still exist in the current data set, with one new variable name,

Medicare_Part_D in the current file needing to be reconciled. The value of Orig_varnum will be missing

for this row (it did not exist in the original file), the value for Status is “Curr” (it only exists in the current file),

and the value of Order is “2”. If a variable name occurred only in the original file, the respective values of

Status would be “Orig” and Order would be “1”.

TASK 1C – DATA SET COMPARE

data compare;

 merge orig(in=orig rename=(varnum=orig_varnum))

 curr(in=curr rename=(varnum=curr_varnum));

 by name;

 if orig and curr then status = ‘Both’;

 else if orig then status = ‘Orig’;

 else status = ‘Curr’;

 if status in (‘Both’,‘Curr’) then order = 1;

 else order = 2;

Name

Orig_varnum Curr_varnum Status

Order

Employer_Group 3 3 Both 1

HMO 5 6 Both 1

Medicare_Part_D . 5 Curr 2

PBM 6 7 Both 1

Plan 2 2 Both 1

Plan_Code 1 1 Both 1

State_Medicaid 4 4 Both 1

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

5

TASK 1D – RE-ORDER THE COMBINED FILE COLUMN ORDER
The last step in using these metadata files is to reorder the combined metadata file Compare in the

format indicated by our comparison and reconciliation process. Our plan is to sort Compare by three

variables, the Order variable, then Orig_varnum, and finally Curr_varnum. This should result in the

following:

• Variables in both data sets will retain the original order

• Variables only in the original file will retain their original column order and will have space

reserved (but carry missing values)

• Variables only in the current file will be added at the end of the new file, retaining their order in the

current file

TASK 1D – PROGRAM TO RE-ORDER THE COMBINED FILE COLUMN ORDER
The program is a simple sort as follows:

With the resulting data set final_order looking something like:

TASK 1D – DATA SET FINAL_ORDER

CONCLUSION TO TASK 1 – WHAT HAVE WE ACHIEVED?
We have successfully captured the metadata description of our original file, keeping the variables of interest

from the PROC CONTENTS OUT= option, performed the same task on the current file, compared and

reconciled any discrepancies, and identified the order of rows for which we have in mind our new file. The

resulting SAS data set, final_order, will be the input for our next step.

proc sort data=compare out=final_order;

 by order orig_varnum curr_varnum;

Name

Orig_varnum Curr_varnum Status

Order

Plan_Code 1 1 Both 1

Plan 2 2 Both 1

Employer_Group 3 3 Both 1

State_Medicaid 4 4 Both 1

HMO 5 6 Both 1

PBM 6 7 Both 1

Medicare_Part_D . 5 Curr 2

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

6

TASK 2 – PROGRAM-TO-WRITE-PROGRAM – PREPARE TO REORDER THE PHYSICAL

DATA
Our next task is to use the data from our last step to write a program (actually, a single Retain statement).

We will use a libname statement to define a temporary file and a Data _Null_ to write and store the SAS

programming statement(s) in that temporary space. The exact format (i.e., do you choose to write a

syntactically-complete SAS statements or instead statement fragments inserted within appropriate

“completion” phrases at the point of calling in these fragments) is as much as anything else a question of

programming style. We will show here how to create complete SAS statements from key word though

sequential value processing to the final ubiquitous trailing semi-colon.

After our libname statement (with a libref of “Out”), we start our Data step using the data set final_order

created above and a flag to let us know when we have processed the last observation (end=eof). When

we encounter the first observation (if _n_ = 1) we will write to Fileref Out our key word “Retain”. We then

write the value of the variable name to Fileref for each observation in the data set final_order. When we

reach the end of file (if eof) we write the trailing semi-colon to fileref Out. The result should look like a

syntactically correct retain statement with the variable names listed in the order we chose through our

compare and discrepancy reconciliation process in Task 1.

TASK 2 – PROGRAM TO WRITE PROGRAM

TASK 2 – CONTENTS OF FILEREF OUT

filename out ‘C:\retain.txt’; /** define temporary file **/

data _null_;

 set final_order end=eof; /** flag for last observation **/

 file out; /** where our statements will be stored **/

 if _n_ = 1 then put @4 ‘Retain’ @; /** start with keyword, hold line **/

 put @11 name; /** each observation has value posted **/

 if eof then put @4 ‘;’; /** at very end of file, add the semi-colon **/

run; /** a reminder to make sure this step executes before the next one **/

/23456789012345678901234567890 (column numbers 1 through 30)

 Retain Plan_code

 Plan

 Employer_group

 State_Medicaid

 HMO

 PBM

 Medicare_Part_D

 ;

 /*** syntactically, fully-valid SAS program (fragment)! ***/

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

7

CONCLUSION TO TASK 2 – WHAT HAVE WE ACHIEVED?
Simply, we have taken the desired list of variables and the preferred order as captured in the metadataset

final_order and expressed that as a Retain statement stored in temporary fileref Out. Note that we have

created a statement formatted (with indentation) much as if we had hand-coded this program fragment. As

per the comment in the sample program, we must use a run statement to ensure that this Data _null_ step

executes before we try to call back the created statement (or we will potentially be %including a blank

statement – which will not necessarily generate an error message, but most certainly will not give us the

results we seek).

TASK 3 – %INCLUDE & EXECUTE PROGRAM FRAGMENT, SET FILE NAME, EXPORT

USING REQUIRED DELIMITER
After our initial two PROC CONTENTS (on the original and current files), we have been have been working

entirely with metadata, descriptions of the contents and structure of SAS data sets. We are about to resume

working directly with the actual data, as it were. We will

• %include – or call the program fragment – a retain statement within the appropriate place in our

next step

o the Retain statement will be called before our first Set statement, thereby changing the

order of the variables in the incoming data set – current_file -- to that indicated on the

retain statement

• use the SAS Macro language to minimize maintenance around the requested output file naming

convention

• export the resulting SAS data set to a delimited flat file using PROC EXPORT

o we will specify the requested delimiter character in our PROC EXPORT delimiter= option

TASK 3A – PROGRAM TO %INCLUDE & EXECUTE PROGRAM FRAGMENT

 /** what we will submit **/

data final;

 %include out; /** Note: same fileref as in step 2 **/

 set current_file; /** %include Retain statement before Set statement **/

run;

 /**/

 /** what will execute **/

data final;

 Retain Plan_code

 Plan

 Employer_group

 State_Medicaid

 HMO

 PBM

 Medicare_Part_D

 ;

 set current_file; /** %include Retain statement before Set statement **/

run;

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

8

TASK 3B – SET OUTPUT FILE NAME, SELECT DELIMITER, AND EXPORT FILE
Thanks to the strategically-placed retain statement, data set Final will be in the column order desired, but

will contain the data from the current file. A simple %Let statement will assign a value to the SAS Macro

variable filename. As our monthly process documentation will warn us to set this value before running our

program, maintenance of the correct name/naming convention is supported by our SOP/process list. We

use this macro variable to set the value of the name of the file we are exporting in our PROC EXPORT

step. To refer to the macro variable (as the latter part of the file name we are defining on the outfile option)

we add an ampersand (&) prefix to the variable name. For the macro variable substitution to occur, we

enclose the full directory/path/file name within double-quotes. Finally, we select the requested delimiter

from our hand ASCII reference table. The program might look as follows:

TASK 3B – PROGRAM TO SET OUTPUT FILE NAME, SELECT DELIMITER, AND EXPORT

FILE

and the output – a flat file/text file opened up from our hard drive using Notepad -- looks like

this:

TASK 3 – OUTPUT – THE MONTHLY FLAT FILE EXTRACT, DESIRED COLUMN ORDER,

FILE NAME, AND DELIMITERS

%let filename = 2007_0131_001.dat; /** set value of macro variable filename **/

 ↓
proc export data=final

 outfile= “C:\MyFile_&filename” /** call value of macro variable filename **/

 dbms=dlm; /** export as a delimited flat/text file **/

 delimiter=’1b’x; /** use ASCII 27 as delimiter **/

run;

 ↓ /** expected log messages **/

NOTE: C:\MyFile_2007_0131_001.dat was successfully created.

 /** file size/network dependent **/

NOTE: PROCEDURE EXPORT used: real time 8.98 seconds

 cpu time 0.54 seconds

Because We Can: Using SAS® System Tools to Help Our Less Fortunate Brethren, continued SESUG 2015

9

CONCLUSION
We have described here several techniques allowing us to achieve our business requirements while helping

to minimize the programming maintenance effort. We have queried the SAS data set metadata and

manipulated these SAS data sets using our usual SAS tool kit. Once our analysis was complete (regarding

how we want our final data to look), we employed certain dynamic programming techniques to let our data

help write our programs. We introduced simple elements of the SAS macro language to help structure our

monthly process and used PROC EXPORT with a specific delimiter option to create an extract file best-

suited for use by our downstream users.

We can continue to run our process and create our own file on a monthly basis with sufficient flexibility to

meet our particular needs. We can ALSO continue to output an extract version of our file for downstream

users in a manner which will minimize the maintenance efforts required on our part as well as that of the

downstream users. While your particular business and programming problems will likely not be exactly the

same as ours, it is certain that some of these techniques may nevertheless prove invaluable in your work.

REFERENCES

Art Carpenter & Ronald J. Fehd, 2007, “List Processing Basics: Creating and Using Lists of Macro

Variables,” Proceedings of the NorthEast SAS Users Group Conference. CD ROM Paper HW02.

Neil Howard, 2002, “Data Step Essentials,” Proceedings of the Twenty-Seventh Annual SAS Users

Group International Conference, 27. CD ROM. Paper 50.

SAS Institute Inc., SAS® Macro Language: Reference, First Edition, Cary, NC: SAS Institute Inc., 1997.

SAS Institute Inc., SAS/ACCESS® 9.1 Interface to PC Files: Reference, Cary, NC: SAS Institute Inc.,

2004.

Selected ASCII Resources

ASCII Code Table (one of many sources)

http://www.ascii.cl/

Extended Example of Using ASCII Codes (SAS Support Web Site)

Sample 721: Code escape sequences into TITLE and FOOTNOTE statements

http://support.sas.com/ctx/samples/index.jsp?sid=721&tab=code

CONTACT INFORMATION
Your comments and questions are valued and encouraged. You may contact the author at:

John Cohen

Advanced Data Concepts, LLC

Newark, DE

jcohen1265@aol.com

(302) 559-2060

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product

names are trademarks of their respective companies.

