
SESUG 2014

1

Paper 100

THE NUANCES OF COMBINING MULTIPLE HOSPITAL DATA

Jontae Sanders, MPH, Charlotte Baker, DrPH, MPH, CPH, and C. Perry Brown, DrPH, MSPH,
Florida Agricultural and Mechanical University

ABSTRACT

Hospital discharge data can be used for the surveillance of various health conditions in a population. To maximize our
ability to tell the story of a population's health, it is often necessary to combine multiple years of data. This step can
be tedious as there are many factors to take into account such as changes in variable names or data formats
between years. Once you have resolved these issues, the data can be successfully combined for analysis. This
paper will demonstrate many factors to look for and how to handle them when combining hospital data across years.

INTRODUCTION

Surveillance of health conditions has been used to describe characteristics of health outcomes among populations.
Hospital data has been a valuable resource for assessing and managing health outcomes as they arise among
populations. When surveying health outcomes over time, it is often a necessity to combine multiple hospital data sets
to help assess the situation. There are many nuances to combining hospital data sets and it requires a lot of time to
properly combine them. There are two approaches to combining hospital data: concatenating and merging. In this
paper, we will explain the approaches to combining hospital data sets through concatenation, and the approaches to
fixing the nuances that arise.

COMBINING FILES THROUGH CONCATENATION

Concatenating hospital data is done by combining two or more SAS
®
 data sets in a series. When combined, the total

number of observations in the new data set is identical to the sum of the number of observations in the original data
sets. The SET statement in the DATA step is used to concatenate multiple hospital data sets into a single data set.

Although, hospital data can be combined by both concatenating and merging, the process of concatenation in this
discussion used. The nuances to be discussed apply to both procedures. Hospital discharge data sets may have
the same variable names and formats across years, in that case concatenation is easy. This may not always be the
case.. The nuances discussed in this paper can occur with both concatenation and merging.

THE NUANCES

Several issues can arise while attempting to combine data that could hinder your process. These issues include
variables among the various hospital data sets not having corresponding characteristics (numeric value vs character
value), variable names not being exactly the same, different variable length, and user error resulting in attempts to
combine dissimilar data sets.

If a character variable is read into SAS
®
 as a numeric variable in one hospital data set and as a character variable in

another hospital data set, SAS
®
 recognizes the conflict and will not concatenate the data sets. Further, if variable

names are not the same among all hospital data sets to be concatenated, SAS
®
 will read the variable as an error in

the new data set and not combine the variable.

NUMERIC VS CHARACTER VARIABLES

When multiple hospital data sets are read, SAS
®
 determines the new characteristics of the variables according to the

first data set SAS
®
 reads. For example, the first data set read shows variable a as being numeric but all the other

data sets show it as being character. SAS
®
 will assign the new data set a numeric format for that variable and prevent

other data from being written to the new data set. This becomes clear when, for example, you can see the variable
names are the same but get errors in the log showing that the data sets will not combine. The following is a typical
error message.

Figure 1: Error Message

ERROR: Variable race has been defined as both character and numeric.

SESUG 2014

2

SAS
®
 will refuse to combine the data sets until the problem of different variable formats is solved. To avoid the issue,

the programmer should run PROC CONTENTS on each hospital data set to identify the type of variable. PROC
CONTENTS shows the contents of each data set and prints the index of the data library. This information includes
what type of data SAS

®
 thinks a variable is (character or numeric). An example of PROC CONTENTS code and

output is below:

LIBNAME example "c:/hospital";

DATA new;

SET hospital.data92;

RUN;

PROC CONTENTS DATA = new;

RUN;

 Figure 2: Example of PROC CONTENTS output

INPUT VERSUS PUT STATEMENTS

In order to fix the problem of a variable being read as both numeric and character in different data sets, the SAS
®

INPUT and PUT statements can be used to appropriately assign the variable characteristics. The structure of the
PUT statement is:

variable = PUT (source,format);

The PUT statement in SAS
®
 can be used to convert a numeric value to a character value for a given variable. The

PUT statement does not allow you to directly change the type of variable in SAS
®
 from numeric to character. To do

this, you must create a new character variable using a PUT function in a DATA step. Once you have changed the
value of the variable from numeric to character, you can then use the DROP statement to drop the original numeric
variable and RENAME statement to rename the new variable back to its original variable name. Examples of how to
do this are below.

The first example shows how to use the PUT function to change variable types.

DATA new;

SET hospital.data92;

dischstat = PUT(discharg,2.);

gender = PUT(sex,1.);

admsrc = PUT(src_admt,2.);

RUN;

SESUG 2014

3

The second example shows how to keep the original variable name.

DATA new;

SET hospital.data92;

dischstat = PUT(discharg,2.);

DROP discharg;

RENAME dischstat = discharg;

RUN;

If you plan to keep the original variable name of discharg for the character variable, use the DROP and RENAME
statements following the PUT function.

This syntax creates a variable dischstat as character from the numeric discharg variable. The DROP statement
keeps the numeric variable discharg from being written to the new data set and the RENAME statement renames the
new character variable from dischstat to discharg.

Unlike the PUT function, the INPUT function converts character values into numeric values. The structure of the
INPUT function is as follows:

variable = INPUT(source,informat);

In the example below, you can see the character variable sex being converted to the numeric variable gender and the
character variable src_admt being converted to the numeric variable admsrc.

DATA new;

SET hospital.data92;

dischstat = INPUT(discharge,2.);

gender = INPUT(sex,1.);

admsrc = INPUT(src_admt,2.);

RUN;

VARIABLE NAMES

Concatenating hospital data sets can become a problem when variable names vary among the various available data
sets. Over time, patient identifiers could have changed among populations as could have variables indicating ”days of
procedure”, “age”, and “payer”. The changes can become headaches. SAS

®
 will not identify the erroneous variable

names though it may display errors in your log. Variables must be renamed so that they are able to concatenate
successfully. In order to avoid this issue, the programmer should run PROC CONTENTS on each hospital data set to
be sure variable names are identical between years. To fix the identified problems, it is necessary to rename
variables in a DATA step so that they have the same name. In the example below, three variables were renamed and
the old variables were dropped. One could also use the RENAME statement to rename the three variables.

DATA new;

SET hospital.data92;

DROP day_proc admt_age p_payer;

daysproc = day_proc;

age = admt_age;

payer = p_payer;

RUN;

The above syntax renames all three variables and drops the original variable names.

IMPROPER DATA SETS

When concatenating multiple hospital data sets, it is imperative that the correct data sets are combined. Combining
multiple data sets could cause user confusion and subsequent SAS

®
 errors due to multiple DATA steps and SET

statements. Data sets could be improperly renamed or applied in the improper order. In order to control for such
errors, every programmer should utilize comments so that proper notes to self (or other team members) and
instructions about what needs to be done can minimize confusion. It is very frustrating to return to a program and not
be able to figure out what you did and why you did it. If someone else needs to look over your program, the task is
made much easier if the code is commented.

SESUG 2014

4

There are two methods for writing comments in SAS
®
. In the first, the comment begins with an asterisk and continues

until SAS
®
 encounters a semicolon.

*THIS DATA STEP IS FOR CONCATENATED HOSPITAL DATA FOR YEARS 1992-2000;

SAS
®
 will ignore the line commencing with * during execution.

In the second, the comment begins with a forward slash and an asterisk and continues until SAS
®
 encounters an

asterisk and a forward slash.

/*THIS DATA STEP IS FOR CONCATENATED HOSPITAL DATA FOR YEARS 1992-2000*/

SAS
®
 will ignore the information between /* and */ during execution.

COMMON VARIABLES

Concatenating and merging can both be done to combine multiple data sets but there are some nuances that should
be paid attention to when attempting to do either. Variables must be sorted for MERGE statements but not for SET
statements. Improperly sorting common variables using the BY statement while using the MERGE statement can
cause errors in the output. PROC SORT is commonly used to sort data sets by a common variable. If there is no
need to add additional variables or the programmer is only interested in stacking data sets on top of each other,
concatenating the data can help the user avoid additional steps such as using a BY statement in the DATA step and
PROC SORT.

CONCLUSION

This paper was written to highlight potential nuances of combining hospital data sets. When combining data sets, be
sure to pay attention and know the data at hand so that errors can be avoided or dealt with as they arise.

REFERENCES

Available at

1. http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a002645432.htm

2. http://support.SAS.com/documentation/cdl/en/basess/64003/HTML/default/viewer.htm#p0y8rrzaeklkkin1tlyx
eq5qskkp.htm

3. http://support.SAS.com/onlinedoc/913/getDoc/en/lrdict.hlp/a000180357.htm

4. http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a001081414.htm

ACKNOWLEDGMENTS

The author would like to thank Florida A & M University faculty and staff for all their help, comments and support in
producing this paper. The author would also like to thank the Florida Agency for Healthcare Administration, State
Center for Health Information and Policy Analysis.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Jontae Sanders
Enterprise: Institute of Public Health, Florida A&M University
Address: 1515 S. Martin Luther King, Jr. Blvd, SRC207-F
City, State ZIP: Tallahassee, Florida 32307
Fax: (850) 599-8830
E-mail: sandersjontae@yahoo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries.

®
 indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a002645432.htm
http://support.sas.com/documentation/cdl/en/basess/64003/HTML/default/viewer.htm#p0y8rrzaeklkkin1tlyxeq5qskkp.htm
http://support.sas.com/documentation/cdl/en/basess/64003/HTML/default/viewer.htm#p0y8rrzaeklkkin1tlyxeq5qskkp.htm
http://support.sas.com/onlinedoc/913/getDoc/en/lrdict.hlp/a000180357.htm
http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a001081414.htm

SESUG 2014

5

