
Paper BB17 

Hidden in plain sight: my top ten underpublicized enhancements in SAS ® 
Versions 9.2 and 9.3 

Bruce Gilsen, Federal Reserve Board, Washington, DC 

ABSTRACT 
SAS ® Versions 9.2 and 9.3 contain many interesting enhancements.  While the most significant enhancements have 
been widely publicized in online documentation, conference papers, the SAS-L internet newsgroup/listserv, and 
elsewhere, some smaller enhancements have received little attention.  This paper reviews my ten favorite 
underpublicized features. 

 

1. Eliminate observations with a unique sort key (BY groups of size one) 

2. DATA step sort 

3. String delimiter on input 

4. String delimiter on output 

5. The PRINT procedure: printing blank lines 

6. Data set lists in the SET and MERGE statements 

7. Append SAS log files 

8. Simpler macro variable range 

9. Trim leading and trailing blanks from a value stored by the SQL procedure in a single macro variable 

10. Create a directory or folder in a LIBNAME statement 

Also noted briefly are some interesting features in Version 9.4. 

 

1. ELIMINATE OBSERVATIONS WITH A UNIQUE SORT KEY (BY GROUPS OF SIZE ONE) 
Introduced in: Version 9.3 

 

The SORT procedure NOUNIQUEKEY option eliminates observations from the output data set that have a unique 
sort key. That is, the output data set will not have BY groups of size one. 

Optionally, the UNIQUEOUT= option specifies an output data set containing the observations eliminated by the 
NOUNIQUEKEY option. 

Consider data set ONE, as follows. 

   Obs    AA    BB    CC    DD 

    1    200   210   220   230 

    2    200   220   220   230 

    3    300   310   320   330 

    4      1     2     3     4 

    5      1    20    30    40 

    6      1     2     3     4 

    7      1    20    30    40 

    8      1    20    30    40 

    9    400    20    30    40 

 

1 



When we sort with AA as the BY variable and use the NOUNIQUEKEY option, the observations in which AA has the 
values 300 and 400 are eliminated. 

   proc sort data=one nouniquekey out=one_duplicatebyvals; 

     by aa; 

   run; 

 

       ONE_DUPLICATEBYVALS 

   Obs    AA    BB    CC    DD 

    1      1     2     3     4 

    2      1    20    30    40 

    3      1     2     3     4 

    4      1    20    30    40 

    5      1    20    30    40 

    6    200   210   220   230 

    7    200   220   220   230 

 

If we add the option UNIQUEOUT= ONE_SINGLEBYVALS, then two output data sets are created: 
ONE_DUPLICATEBYVALS with the same values as above, and ONE_SINGLEBYVALS with the eliminated 
observations. 

   proc sort data=one nouniquekey uniqueout=one_singlebyvals out=one_duplicatebyvals; 

     by aa; 

   run; 

 

        ONE_SINGLEBYVALS 

   Obs    AA    BB    CC    DD 

    1    300   310   320   330 

    2    400    20    30    40 

 

2. DATA STEP SORT 
Introduced in: Version 9.2 

 

CALL SORTN (numeric) or CALL SORTC (character) sort values in a DATA step, including arrays and array 
elements. 

DATA step sorting compares to PROC SORT as follows.  If you think of a SAS data set as a rectangular box, where 
the rows are the observations and the columns are the variables, then 

• PROC SORT sorts vertically (by observation) 

• DATA step sort sorts horizontally (by variable, within the current observation only) 

CALL SORTC requires all character values being sorted to have the same length; otherwise, an error occurs.  CALL 
SORTN does not require all numeric variables being sorted to have the same length. 

CALL SORTC uses your platform’s default collating sequence, so on Windows, Unix and its derivatives, and 
OpenVMS uppercase letters are sorted before lowercase letters and on z/OS lowercase letters are sorted before 
uppercase letters. 

Data set ONE has the following values, where N1, N2, N3, and N4 are numeric variables and C1, C2, and C3 are 
character variables with length 8. 

   Obs    c1     c2     c3     n1    n2    n3     n4 

2 



    1     aaa    bbb    ccc     1     2     3    111 

    2     eee    ddd    fff     4     6     5    222 

    3     iii    ggg    hhh     9     8     7    333 

 

Here is an example of DATA step sort.  In each observation of data set TWO, the smallest values are in N1 and C1, 
the second smallest values in N2 and C2, and the largest values in N3 and C3. 

   data two; 

     set one; 

     call sortn (n1, n2, n3); 

     call sortc (c1, c2, c3); 

   run; 

 

                           TWO 

   Obs    c1     c2     c3     n1    n2    n3     n4 

    1     aaa    bbb    ccc     1     2     3    111 

    2     ddd    eee    fff     4     5     6    222 

    3     ggg    hhh    iii     7     8     9    333 

 

The following statements are equivalent to the above CALL SORTN and CALL SORTC statements. 

   call sortn (of n1-n3); 

   call sortc (of c1-c3); 

 

If we create arrays containing the variables to be sorted, the following CALL SORTN and CALL SORTC statements 
are also equivalent to the above statements. 

   array nall (*) n1 n2 n3; 

   call sortn (of nall(*)); 

 

   array chall (*) c1 c2 c3; 

   call sortc (of chall(*)); 

 

There is no equivalent to the DESCENDING keyword in the PROC SORT BY statement, but to sort in descending 
order, just reverse the order of the variables.  For example, sort N1, N2, and N3 in descending order either of the 
following ways. 

   call sortn (n3, n2, n1); 

   call sortn (of n3-n1); 

 

 

3. STRING DELIMITER ON INPUT 
Introduced in: Version 9.2 

 

Note that the examples in this section read data contained in the code with a DATALINES statement for readability, 
but apply to reading external files as well. 

3 



By default, a blank is the default delimiter (separator) for list input.  The DLM= (or DELIMITER=) option on the INFILE 
statement provides a list of one or more delimiters to replace the blank.  For example, in the following DATA step, the 
delimiters are 'x', 'y', and 'z'. 

   data one; 

     infile datalines dlm='xyz'; 

     length var1 var2 $12; 

     input var1 $ var2 $; 

     datalines; 

   abcxyz123 

   defygxyhixyzjklmnop 

   ;run; 

 

Data set ONE has the following values.  Note that the first record has consecutive delimiters. 

   Obs    var1    var2 

    1     abc     123 

    2     def     g 

 

Until now, there was no way to specify a string delimiter; that is, a separator of 'xyz' rather than any of 'x', 'y', or 'z'.  
Typically, files containing string delimiters were handled with techniques such as the following. 

• Pre-process the file with a SAS program, Perl script, or other software to convert the string delimiter to a 
single delimiter, taking care to ensure that the single delimiter is not already present in the file. 

• In a DATA step, read the data values into intermediate variables and then use DATA step functions or Perl 
regular expressions to parse the intermediate variables. 

• In a DATA step, use INPUT; to read the observations into the input buffer and parse the _INFILE_ variable. 

Now, the DLMSTR= option allows you to easily read files with string delimiters, as in the following code. 

   data two; 

     infile datalines dlmstr='xyz'; 

     length var1 var2 $12; 

     input var1 $ var2 $; 

     datalines; 

   abcxyz123 

   defxgxyhixyzjklmnop 

   ;run; 

 

Data set TWO has the following values.  Note that for the second record, 'x' and 'xy' are treated as ordinary text, and 
VAR1 contains the characters preceding 'xyz'. 

 

   Obs    var1         var2 

    1     abc          123 

    2     defxgxyhi    jklmnop 

 

You can specify a variable that contains the string delimiter.  For example, the first record of a file could have a 
different string delimiter, as in the following code. 

   data three; 

4 



     if _n_=1 then delim = "xxx";  /* 1st observation */ 

              else delim = "xyz";  /* all other observations */ 

     infile datalines dlmstr=delim; 

     length var1 var2 $12; 

    input var1 $ var2 $; 

    datalines; 

   abcxyzxxx123 

   defxgxyhixyzjklmnop 

   ;run; 

 

Data set THREE has the following values.  Note that 'xyz' is treated as ordinary text in the first record. 

   Obs    var1         var2 

    1     abcxyz       123 

    2     defxgxyhi    jklmnop 

 

The DSD option on the INFILE statement, which causes two consecutive delimiters to be treated as a missing value, 
can also be used with the DLMSTR option.  Consider the following code. 

   data two; 

     infile datalines dlmstr='xy' dsd; 

     length var1 var2 var3 $12; 

     input var1 $ var2 $ var3 $; 

     datalines; 

   abcxy123xydefg 

   defxyghixyzjklmnop 

   defxyxyjklmnop 

   ;run; 

  

Data set TWO has the following values.  Note that VAR2 has a missing value in the third observation. 

   Obs    var1    var2    var3 

    1     abc     123     defg 

    2     def     ghi     zjklmnop 

    3     def             jklmnop 

 

Another new INFILE statement option, DLMSOPT=, has two values that when used with DLMSTR do the following. 

• "T" removes trailing blanks from the string delimiter.  This is particularly useful if a variable contains the 
string delimiter, and the size of the string delimiter might vary. 

• “I" does case-insensitive comparisons, as in the following code. 

 

   data four; 

     infile datalines dlmstr='xyz' dlmsopt='i'; 

     length var1 var2 $12; 

     input var1 $ var2 $; 

     datalines; 

5 



   abcXYZ123 

   defxgxyhixyzjklmnop 

   ;run; 

 

Data set FOUR has the following values.  Without DLMSOPT='i', 'XYZ' in the first record would not be considered a 
delimiter because it does not match the case of the DLMSTR= value, and we would not get the desired result. 

   Obs    var1         var2 

    1     abc          123 

    2     defxgxyhi    jklmnop 

 

4. STRING DELIMITER ON OUTPUT 
Introduced in: Version 9.2 

 

By default, a blank is the default delimiter (separator) for list output.  The DLM= (or DELIMITER=) option on the FILE 
statement provides an alternate delimiter to replace the blank.  For example, in the following DATA step, the delimiter 
is 'x'. 

     /* Create some data for this example */ 

   data one; 

     input a b c; 

     datalines; 

   1 2 3 

   4 5 6 

   ;run; 

 

   data _null_; 

     set one; 

       /* Write output to c:\mydir\example1.txt in this example */ 

     file 'c:\mydir\example1.txt' dlm='x'; 

     put a b c; 

   run; 

 

The file created by this example has the following two records. 

   1x2x3 

   4x5x6 

 

Until now, there was no way to specify a string delimiter; that is, a separator of 'xyz' rather than a single character.  
Now, the DLMSTR= option allows you to easily specify string delimited output, as in the following code. 

     /* Create some data for this example */ 

   data one; 

     input a b c; 

     datalines; 

   1 2 3 

   4 5 6 

6 



   ;run; 

 

   data _null_; 

     set one; 

       /* Write output to c:\mydir\example2.txt in this example */ 

     file 'c:\mydir\example2.txt'  dlmstr='AAABBB'; 

     put a b c; 

   run; 

 

The file created by this code contains the following two records. 

   1AAABBB2AAABBB3 

   4AAABBB5AAABBB6 

 

You can specify a variable that contains the string delimiter.  For example, it could be necessary to write a different 
string delimiter in the first record of a file than in other records, as in the following code. 

     /* Create some data for this example */ 

   data one; 

     input a b c; 

     datalines; 

   1 2 3 

   4 5 6 

   7 8 9 

   ;run; 

 

   data _null_; 

     set one; 

     if _n_=1 then mydelim = "AAA";  /* 1st observation */ 

              else mydelim = "BBB";  /* all other observations */ 

       /* Write output to c:\mydir\example1.txt in this example */ 

     file 'u:\m1bfg00\example3.txt' dlmstr=mydelim; 

     put a b c; 

   run; 

 

The file created by this code contains the following three records. 

   1AAA2AAA3 

   4BBB5BBB6 

   7BBB8BBB9 

 

5. THE PRINT PROCEDURE: PRINTING BLANK LINES 
Introduced in: Version 9.2 

 

7 



The PROC PRINT option BLANKLINE=n inserts a blank line after every n observations.  For example, in the following 
code, a blank line is inserted after observations 10, 20, 30, etc. are printed. 

   proc print data=one blankline=10; 

   run; 

 

Until now, blank lines were typically displayed by adding blank observations to a data set every n lines, temporarily 
setting the MISSING= system option to a blank, and using the NOOBS option to suppress the observation numbers.  
Code using the older method can be simplified. 

The observation count is reset at the beginning of each BY group if you use a BY statement, and includes only 
observations that meet the selection criteria if you use a WHERE expression. 

 

6. DATA SET LISTS IN THE SET AND MERGE STATEMENTS 
Introduced in: Version 9.2 

 

Data set lists provide two new ways to read like-named data sets that are similar to features previously available in 
the DROP and KEEP statements: specifying a numeric range and specifying a prefix.  

Data set options such as WHERE= and KEEP= are applied to a numeric range of data sets in a list by putting them in 
parentheses after the second name in the range or after the colon if a prefix is specified, as shown below. 

The examples in this section use the SET statement, but apply identically to the MERGE statement. 

 

Specify a numeric range 

The first three statements read 10 data sets, A1-A10.  The second and third statements apply data set options to all 
10 data sets.  The fourth and fifth statements read 15 data sets.  The fifth statement applies different WHERE clauses 
to different data sets. 

   set a1-a10; 

   set a1-a10 (where= (x gt 100)); 

   set a1-a10 (where= (x gt 100) keep= x y z); 

   set a1-a10 a20 a11-a14; 

   set a1-a10 (where= (x gt 100)) a20 (where= (y gt 200)) a11-a14 (where= (z gt 300)); 

 

All data sets in the range must exist.  If data sets A1-A3 and A5 exist but A4 does not exist, the following statement 
generates an error.  These data sets could be read with a prefix (see below). 

   set a1-a5; 

 

Specify a prefix 

The first three statements read all data sets in the library referenced by SALES that begin with jan.  The second and 
third statements apply data set options to all the data sets.  The fourth statement provides a way to read data sets 
A1-A3 and A5 when A4 does not exist. 

   set sales.jan: ; 

   set sales.jan: (where= (x gt 100)); 

   set sales.jan: (where= (x gt 100) keep= x y z); 

   set a:; 

 

The order that the data sets are read is determined by sorting the data set names with the same collating sequence 
used in PROC SORT: ASCII on Windows, Linux, and other UNIX derivatives, and EBCDIC on z/OS. 

 

8 



7. APPEND SAS LOG FILES 
Introduced in: Version 9.3 

 

The LOGPARM option allows you to append the log file from a non-interactive SAS session to an existing file.  You 
can run multiple jobs or the same job multiple times and automatically preserve the log files from every job in one file.   

The LOGPARM option is simpler than the typical ways that users save multiple log files, such as using a script that 
renames the existing log file or uses the system clock to name the log file for the current session.  It could be 
particularly useful for programs that run automatically, such as Linux cron jobs. 

Once you invoke SAS, no other SAS session can write to the log file associated with that session until that session 
ends.  As such, this feature is not designed for SAS sessions running at the same time. 

The example in this section uses Linux, but LOGPARM is also available on other platforms. 

The following statement invokes Linux SAS, executes program sasprog1.sas, and uses mylog.log as the SAS log file, 
as follows. 

 

• If mylog.log does not exist, it is created. 

• If mylog.log exists, the current session is appended to the existing file. 

 

   sas -log "mylog.log" -logparm "open=append" sasprog1.sas 

 

When you use LOGPARM, SAS writes a message similar to the following at the beginning of the SAS session.  You 
can look for this text to determine where an appended log begins. 

   NOTE: Log file opened at Mon, 12 Mar 2012 13:18:08.468 

 

 

 

8. SIMPLER MACRO VARIABLE RANGE 
Introduced in: Version 9.3 

 

Until now, when you copied values to a series of macro variables but did not know how many macro variables you 
needed, you could specify a very large number like 99999 or &SYSMAXLONG (an operating system-specific 
automatic macro variable containing the maximum long integer value) as the upper bound, and SAS created only as 
many macro variables as needed, as in the following code. 

 

   proc sql noprint; 

     select distinct aa 

     into :aa1-:aa&sysmaxlong 

     from one; 

   %let num_values = &sqlobs; 

   quit; 

 

The automatic macro variable SQLOBS contains the number of rows selected by the last PROC SQL statement. 

In Version 9.3, you can just specify an unbounded macro variable range as follows and SAS creates as many macro 
variables as needed. 

   proc sql noprint; 

9 



     select distinct aa 

     into :aa1- 

     from one; 

   %let num_values = &sqlobs; 

   quit; 

 

9. TRIM LEADING AND TRAILING BLANKS FROM A VALUE STORED BY THE SQL 
PROCEDURE IN A SINGLE MACRO VARIABLE 
Introduced in: Version 9.3 

 

When storing a value in a single macro variable, PROC SQL by default preserves leading or trailing blanks.  Until 
now, users removed leading and trailing blanks by assigning the macro variable to itself or with other methods.  In 
Version 9.3, the TRIMMED option trims leading and trailing blanks from values stored in a single macro variable. 

Data set ONE has the following values 

   Obs    AA     BB 

    1      1     11 

    2      2     22 

    3      5     33 

    4      5     44 

    5      5     55 

    6      3     66 

 

Here are two macro variables used in this example. 

   %let before=beforetext; 

   %let after=aftertext; 

 

In the following code, a macro variable is created with and without the TRIMMED option. 

   proc sql noprint; 

       /* Create macro variable SUM_AA1 containing the sum of variable AA */ 

     select sum(aa) 

     into :sum_aa1 

     from one; 

 

       /* Display SUM_AA1 - it is right justified */ 

     %let combine1=&before&sum_aa1&after; 

     %put macro variable created without trimmed option combine1=&combine1; 

 

       /* In Version 9.3, use the TRIMMED option to remove leading and 

          trailing blanks when creating a macro variable. */ 

     select sum(aa) 

     into :sum_aa2 trimmed  

     from one; 

10 



 

       /* Display SUM_AA2 – it has no leading or trailing blanks */ 

     %let combine2=&before&sum_aa2&after; 

     %put macro variable created with trimmed option combine2=&combine2; 

   quit; 

 

The SAS log includes the following. 

• The first line contains SUM_AA1, which was created without the TRIMMED option; it has leading blanks. 

• The second line contains SUM_AA2, which was created with the TRIMMED option; there are no leading or 
trailing blanks. 

 

   macro variable created without trimmed option combine1=beforetext      22aftertext 

   macro variable created with trimmed option combine2=beforetext22aftertext 

 

Note that PROC SQL trims leading or trailing blanks unless you specify the NOTRIM option when either of the 
following is true, as in previous releases. 

• The values are stored in a range of macro variables. 

• The SEPARATED BY option is used to store multiple values in a single macro variable. 

 

10. CREATE A DIRECTORY OR FOLDER IN A LIBNAME STATEMENT 
Introduced in: Version 9.3 

 

By default, the directory (folder) in a LIBNAME statement must already exist. 

A new system option, DLCREATEDIR, allows SAS to create the directory (folder) named in a LIBNAME statement if it 
does not already exist.  Specify this option at invocation, in a configuration file, or (as shown here) with an OPTIONS 
statement. 

   options dlcreatedir;run; 

 

The default value of this option is NODLCREATEDIR, which prevents SAS from creating a directory. 

This feature works on all platforms.  It is less useful on the z/OS mainframe platform where it works with UFS 
directories but does not work with the traditional direct access or sequential access bound libraries employed by most 
users. 

Here is an example using Linux SAS. 

The following statement generates an error if the directory /my/home/m1xxx00/sasdir1 does not exist. 

   libname xxx '/my/home/m1xxx00/sasdir1'; 

 

If we specify the system option DLCREATEDIR, the LIBNAME statement successfully creates the directory. 

   options dlcreatedir; 

   run; 

   libname xxx '/my/home/m1xxx00/sasdir1'; 

 

Note that directories cannot be created recursively.  For example, if the directory /my/home/m1xxx00/sasdir1 does 
not exist, the following code will not work. 

   options dlcreatedir; 

11 



   run; 

   libname xxx '/my/home/m1xxx00/sasdir1/mydir1'; 

 
Version 9.4 
I have not yet had much time to work with Version 9.4, but here are a few features that have caught my interest so 
far, with links to papers that provide more information. 

1. Using the DOSUBL function to submit SAS code that runs during a DATA step.  See Langston (2013). 

2. Extended data set attributes.  See Olson (2013). 

3. The DATA step Report Writing Interface.  See Lund (2014). 

4. Reading and Writing ZIP files in SAS.  See Langston (2014). 

 
CONCLUSION 
This paper reviewed some underpublicized features in SAS Versions 9.2 and 9.3.  Hopefully, users will embrace 
these features and simplify their SAS applications.  

                        

REFERENCES 
Langston, Rick (2013), “Submitting SAS® Code On The Side,” Proceedings of the SAS Global Forum 2013 
Conference.  http://support.sas.com/resources/papers/proceedings13/032-2013.pdf. 
 
Langston, Rick (2014), “Reading and Writing ZIP Files with SAS®,” Proceedings of the SAS Global Forum 2014 
Conference.  http://support.sas.com/resources/papers/proceedings14/SAS264-2014.pdf. 
 
Lund, Peter (2014), “Have it Your Way: Creating Reports with the Data Step Report Writing Interface,” Proceedings of 
the SAS Global Forum 2014 Conference.  http://support.sas.com/resources/papers/proceedings14/1362-2014.pdf. 
 
Olson, Diane (2013), "Developer Reveals: Extended Data Set Attributes,” Proceedings of the SAS Global Forum 
2013 Conference.  http://support.sas.com/resources/papers/proceedings13/135-2013.pdf. 
 
SAS Institute Inc. (2012), "Base SAS 9.3 Procedures Guide, Second Edition," Cary, NC: SAS Institute Inc. 
 
SAS Institute Inc. (2011), "SAS 9.3 Companion for UNIX Environments," Cary, NC: SAS Institute Inc. 
 
SAS Institute Inc. (2011), "SAS 9.3 Language Reference by Name, Product, and Category," Cary, NC: SAS Institute 
Inc. 
 
SAS Institute Inc. (2011), "SAS 9.3 Macro Language: Reference," Cary, NC: SAS Institute Inc. 
 

 

ACKNOWLEDGMENTS 
The following people contributed extensively to the development of this paper: Heidi Markovitz and Donna Hill at the 
Federal Reserve Board, and Howard Schreier.  Their support is greatly appreciated. 

 
CONTACT INFORMATION 
For more information, contact the author, Bruce Gilsen, by mail at Federal Reserve Board, Mail Stop N-122, 
Washington, DC 20551; by e-mail at bruce.gilsen@frb.gov; or by phone at 202-452-2494. 

 

TRADEMARK INFORMATION 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries.  ® indicates USA registration. 

Other brand and product names are registered trademarks or trademarks of their respective companies. 
12 

http://support.sas.com/resources/papers/proceedings13/032-2013.pdf
http://support.sas.com/resources/papers/proceedings14/SAS264-2014.pdf
http://support.sas.com/resources/papers/proceedings14/1362-2014.pdf
http://support.sas.com/resources/papers/proceedings13/135-2013.pdf

	Abstract
	Also noted briefly are some interesting features in Version 9.4.
	1. Eliminate observations with a unique sort key (BY groups of size one)
	2. DATA step sort
	3. String delimiter on input
	4. String delimiter on OUTput
	5. ThE PRINT PROCEDURE: printing blank lines
	6. Data set lists in the SET and MERGE statements
	7. Append SAS log files
	8. Simpler macro variable range
	9. Trim leading and trailing blanks from a value stored by THE SQL PROCEDURE in a single macro variable
	10. Create a directory or folder in a LIBNAME statement

