
SESUG 2014

1

Paper 105

SAS® Macro Magic is not Cheesy Magic!

Let the SAS Macros Do the Magic of Rewriting Your SAS Code

Robert Williams

WellPoint, Inc.

ABSTRACT

Many times, we need to rewrite weekly or monthly SAS programs to change certain key statements such as the
conditions inside the WHERE statements, import/export file paths, reporting dates and SAS data set names. If we
hard coded these statements, it is cumbersome and a chore to read through the SAS code to rewrite these hard-
coded statements. Sometimes, we might miss an important statement that needs to be re-coded resulting in
inaccurate data extract and reports. This paper will show how the SAS Magic Macros can streamline and eliminate
the process rewriting the SAS codes. Two types of SAS Macros will be reviewed with examples: 1) Defining SAS
Macro variables with values using %LET to be rewritten in the SAS statement using & sign. 2) Creating SAS Macro
programming using %MACRO and %MEND to write a series of SAS statements to be rewritten in the SAS code. You
will be amazed how useful the SAS Magic Macro is for many of your routine weekly and monthly reports. Let the SAS
Magic Macro relieve you of the tedious task of rewriting many of the SAS statements!

INTRODUCTION

Many times, we hard-code SAS codes with a specific date range inside a WHERE statement for a weekly or monthly
report. We may even hard-code the destination file path for a PROC EXPORT or an ODS output with hard coded
report headers. Then at a later time, we may need to change the date range, folder paths or the ODS output report
headers. That means, we will have to rewrite the SAS code to accommodate the changes. If it is a short and simple
SAS code, it may not too much labor to manually rewrite the code. However, if it were a long SAS code requiring
multiple changes throughout the code; it can be labor intensive to read through the code to manually rewrite some of
the lines at the appropriate places. With the extra rewriting labor, it can lead to syntax errors or even miss rewriting
one or more important lines of code leading to inaccurate data extract and reports. In this paper, I will show two
types of SAS Macros that will eliminate the process of rewriting the SAS codes.

1) SAS Macro Magic #1: Defining SAS Macro variables with values using %LET statements to be rewritten in
the SAS statement using the & sign.

2) SAS Macro Magic #2: Creating SAS Macro programs using %MACRO and %MEND to write a series of
SAS statements to be rewritten in the SAS code.

The best way to show the SAS Macro Magic is by example in a hypothetical situation. I will be using SAS snacks
dataset available in everyone’s SASHELP library. This dataset provides the daily snack food sales such as quantities
sold, retail price of product, date of sale and product name. This paper will be using this dataset to demonstrate the
use of SAS Macros to produce three PDF sales reports for popcorn, chips and pork rinds in the month of June 2004
like this:

Monthly Popcorn Sales Report

(Sold between 01JUN2004 and 30JUN2004)

Snack Quantity Sold Average Price

Buttery popcorn 161 1.99

Carmelized popcorn 70 2.99

Cheddar cheese popcorn 139 2.87

Low-fat popcorn 167 1.49

GRAND TOTAL 537 2.34

Display 1. Popcorn sales report with quantity sold and average price for the month of June 2004

SESUG 2014

2

CODING DILEMMA: HARD-CODING THE DATA EXTRACT AND REPORT

To produce the above report (Display 1), we will need to write a SAS data step to extract snack sales data sold
between 6-1-2004 and 6-30-2004 and write an ODS output for the snack type. A typical hard-coded SAS code would
be like this:

data work.monthly_snack_sales;

 set SASHELP.SNACKS;

 where date between '01JUN2004'd and '30JUN2004'd;

run;

options nodate;

ods pdf file="C:\SESUG 2014\Popcorn_Sales_Report.pdf" style=festival;

title;

footnote;

title1 'Monthly Popcorn Sales Report';

title2 '(Sold between 01JUN2004 and 30JUN2004)';

PROC Report DATA=work.monthly_snack_sales NOWINDOWS HEADLINE HEADSKIP;

 where index(upcase(product),'POPCORN');

 COLUMN product qtysold price;

 DEFINE product / 'Snack' group;

 DEFINE qtysold / 'Quantity Sold' analysis sum format=comma10.0;

 DEFINE price / 'Average Price' analysis mean format=comma6.2;

 /* Creates grand total line */

 RBREAK AFTER / SUMMARIZE;

 compute after;

 product = 'GRAND TOTAL';

 endcomp;

RUN;

ods pdf close;

We will face two dilemmas that require rewriting lines of code for separate reports. The first dilemma would be to
change the date range of the data extract next month’s report. It will require rewriting the date range in the WHERE
statement for the data step. The other dilemma is the changing several of lines in the ODS PDF output process such
as the PDF file name, the TITLE lines (for product name and date range) and the WHERE statement for the product
type selection. This is even more rewriting of code for each product: popcorn, chips and pork rinds

Instead, we will apply the SAS Macro magic to take care of the rewriting some of these lines.

SAS MACRO MAGIC #1: MACRO VARIABLE

In this technique, we will create and use SAS macro variables to be used in the WHERE statement in the data step.
Creating and using the SAS macro variable is a two-step process for each variable using the %LET statement and
the & character to rewrite the content of the macro variable.

/* This creates SAS macro varibles for begin and end dates */

%let beg_date = 01JUN2004;

%let end_date = 30JUN2004;

data work.monthly_snack_sales;

 set SASHELP.SNACKS;

 where date between "&beg_date"d and "&end_date"d;

run;

The above code followed the two step process of using the SAS macro variables:

 Using the %LET to create the begin date and end date range by naming macro variables beg_date and

end_date and assign the values 01JUN2004 and 30JUN2004 respectively.

 Then we invoke both macro variables inside the WHERE statement to be used as the date range. The way
to invoke the macro variable is to precede the macro name with ampersand sign: “&” such as &beg_date

and &end_date. The ampersand sign: “&” will “rewrite” the SAS code with the macro variable values:

SESUG 2014

3

01JUN2004 and 30JUN2004 in the WHERE statement. NOTE: Use double-quotes so SAS can notice the
& sign to put the values within the quotes so we can use it with the date conversion letter “d”.

After submitting the code to run, you will see in the SAS log that the macro variable values has been successfully
invoked in the WHERE statement. We just did the magic of re-writing the SAS code in the WHERE statement.

20 data work.monthly_snack_sales;

21 set SASHELP.SNACKS;

22 where date between "&beg_date"d and "&end_date"d;

23 run;

NOTE: There were 1050 observations read from the data set SASHELP.SNACKS.

 WHERE (date>='01JUN2004'D and date<='30JUN2004'D);

NOTE: The data set WORK.MONTHLY_SNACK_SALES has 1050 observations and 6

variables.

NOTE: DATA statement used (Total process time):

 real time 0.05 seconds

 cpu time 0.00 seconds

You can also find out what values are in the SAS macro variable by using %PUT statements to write to the SAS log.

/* This writes what is in the SAS macro variables */

/* so we can "see" it in the SAS log */

%put The begin date is: &beg_date;

%put The end date is: &end_date;

By submitting this code, you will see the same values written to the SAS log. This is a good way to debug your
process to make sure the SAS Macro magic is working.

20 %put The begin date is: &beg_date;

The begin date is: 01JUN2004

21 %put The end date is: &end_date;

The end date is: 30JUN2004

SAS MACRO MAGIC #2: SAS MACRO PROGRAMS

In this technique, we create SAS macro programs with parameters. Like macro variables, macro programs (also
known as macros) enable us to “re-write” multiple lines of text into the SAS programs. This makes the SAS program
more dynamic and reusable.

The SAS macro program with positional parameters is defined with the following syntax.

%MACRO macro-name(parameter-1,parameter-2,…,parameter-n);

 <SAS PROGRAM LINES>

%MEND macro-name;

The positional parameters inside the %MACRO line are named as if you were using multiple %LET statements in the
order that you assign the values in the macro call. In other words, you must specify the values of the macro
parameters in the same order in which they are defined.

So, in our example, we will take the ODS statements and create the SAS macro programs with three positional

parameters: 1) PDF report file name as rpt_file_name, 2) report title as rpt_title and 3) the WHERE

statement conditions as rpt_where_statement. These parameters will allow dynamic processes to create

separate PDF’s for each product type. Here is how the macro program will be set with the ODS statements. We will
call the macro program “snack_reports” with the three positional parameters defined.

options mprint;

%MACRO snack_reports(rpt_file_name, rpt_title, rpt_where_statement);

options nodate;

ods pdf file="C:\SESUG 2014\&rpt_file_name._Sales_Report.pdf" style=festival;

title;

SESUG 2014

4

footnote;

title1 "Monthly &rpt_title Sales Report";

title2 "(Sold between &beg_date and &end_date)";

PROC Report DATA=work.monthly_snack_sales NOWINDOWS HEADLINE HEADSKIP;

 where &rpt_where_statement;

 COLUMN product qtysold price;

 DEFINE product / 'Snack' group;

 DEFINE qtysold / 'Quantity Sold' analysis sum format=comma10.0;

 DEFINE price / 'Average Price' analysis mean format=comma6.2;

 /* Creates grand total line */

 RBREAK AFTER / SUMMARIZE;

 compute after;

 product = 'GRAND TOTAL';

 endcomp;

RUN;

ods pdf close;

%MEND snack_reports;

There are several key points about this macro program.

 The macro program starts with %MACRO statement and ends with %MEND statement with the same macro
name “snack_reports”.

 From each of the three parameters defined in the %MACRO statement, there are macro variables invoked
within the macro program with the ampersand “&” in yellow.

 In the report file statement, we added a period to the end of the macro name so SAS knows that

“&rpt_file_name,” is the macro name, not the rest of the file name.

 We use the double quotes when invoking macro variables so SAS can see they are macro variables that it
needs to “re-write” the text inside the quotes.

 The macro variables we created for the data step is reused in the ODS process: &beg_date and

&end_date lll. This is the beauty of using macro variables in multiple places in the SAS code so we don’t

have to re-write it every time.

 We have to submit the SAS macro program so it can be loaded into SAS. Make sure you submit all lines
from %MACRO line to %MEND line.

 The options: options mprint;, is to allow the macro program to write to the log. This is helpful for

debugging the SAS macro codes.

By now, we have loaded the macro program “snack_reports”. In order to run the macro program, we have to “call”

the macro by preceding the macro program name with “%” like the following.

%snack_reports(Chips, Chips, index(upcase(product),'CHIP'));

%snack_reports(Popcorn, Popcorn, index(upcase(product),'POPCORN'));

%snack_reports(Rinds, Pork Rinds, index(upcase(product),'RIND'));

Note, how we make sure we supply the text value to each of the positional parameters in the exact order. The first
one is for the file name, the second one is for the report title and the third one is for the WHERE statement. By
submitting these three lines, we are calling up the macro program three times which will generate three PDF files
using the supplied parameters. So, we are using the magic of dynamically writing the ODS statement three times for
chips, popcorn and pork rinds as shown below (display 2, display 3, and display 4.).

Monthly Chips Sales Report

(Sold between 01JUN2004 and 30JUN2004)

Snack Quantity Sold Average Price

Baked potato chips 176 1.97

Barbeque potato chips 177 1.99

Classic potato chips 880 0.99

SESUG 2014

5

Easy dip tortilla chips 172 1.99

Multigrain chips 125 2.87

Ruffled potato chips 176 1.99

Salt and vinegar potato chips 128 2.87

Sun-dried tomato multigrain chips 130 2.87

Tortilla chips 349 0.99

WOW potato chips 58 2.99

WOW tortilla chips 109 2.87

GRAND TOTAL 2,480 2.22

Display 2. Chips sales report with quantity sold and average price for the month of June 2004.

Monthly Popcorn Sales Report

(Sold between 01JUN2004 and 30JUN2004)

Snack Quantity Sold Average Price

Buttery popcorn 161 1.99

Carmelized popcorn 70 2.99

Cheddar cheese popcorn 139 2.87

Low-fat popcorn 167 1.49

GRAND TOTAL 537 2.34

Display 3. Popcorn sales report with quantity sold and average price for the month of June 2004.

Monthly Pork Rinds Sales Report

(Sold between 01JUN2004 and 30JUN2004)

Snack Quantity Sold Average Price

Barbeque pork rinds 130 1.71

Extra hot pork rinds 431 0.99

Fried pork rinds 147 1.49

GRAND TOTAL 708 1.40

Display 4. Pork rinds sales report with quantity sold and average price for the month of June 2004.

CONCLUSION

The two Macro Magic techniques has saved us a significant amount of manual labor of coding of rewriting hard-
coded SAS codes. This example may not seem like it needs a lot of re-coding to do. But these two techniques will
be a big help if we have a large number of repetitive SAS statements or conditions to re-write. This is not limited to
just making the WHERE statements or ODS statements. You will be amazed how useful these techniques can be
applied to dozens or hundreds of routine reports especially on a weekly or monthly basis. Macro Magic can be
expanded to include other SAS procedures and other DATA steps. Let the Macro Magic do the re-writing the SAS
codes for you! I am confident that you will add these two valuable techniques to your expanding SAS bag of coding
tips.

ACKNOWLEDGEMENTS:

I would like to thank the Southeast SAS Users Group for accepting my abstract and paper as well as for conducting a
successful conference.

SESUG 2014

6

REFERENCES

SAS Certification Prep Guide: Base Programming for SAS 9 Third Edition Cary, NC: SAS Institute Inc. 2011

SAS Certification Prep Guide: Advanced Programming for SAS 9 Third Edition Cary, NC: SAS Institute Inc. 2011

SAS Help Data Sets Cary, NC: SAS Institute Inc. 2013

The Web's Free 2013 Medical Coding Reference. (http://www.icd9data.com/)

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Robert Williams

WellPoint, Inc.

1300 Amerigroup Way

Virginia Beach, VA 23464

Robert.Williams@wellpoint.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAMPLE SAS CODE

This is the full sample SAS code for this paper including SESUG_DX_LISTING table (Table 1) and the sample claims
data. Run the first two DATA steps to import the diagnosis listing and the sample claims data. The rest of the code is
for the two Robo-Coding techniques.

/* This creates SAS macro varibles for begin and end dates */

%let beg_date = 01JUN2004;

%let end_date = 30JUN2004;

/* This writes what values are in the SAS macro variables */

/* so we can "see" it in the SAS log */

%put The begin date is: &beg_date;

%put The end date is: &end_date;

/* Pulls the sales data for the date range */

data work.monthly_snack_sales;

 set SASHELP.SNACKS;

 where date between "&beg_date"d and "&end_date"d;

run;

options mprint;

/* Loads up the MACRO that includes the ODS reports */

%MACRO snack_reports(rpt_file_name, rpt_title, rpt_where_statement);

options nodate;

ods pdf file="\\va01pstodfs003.corp.agp.ads\users\VA1\rwilli4\My Documents\VASUG and

SESUG Presentations\SESUG 2014\SAS Coding Sandbox\&rpt_file_name._Sales_Report.pdf"

style=festival;

title;

footnote;

title1 "Monthly &rpt_title Sales Report";

title2 "(Sold between &beg_date and &end_date)";

PROC Report DATA=work.monthly_snack_sales NOWINDOWS HEADLINE HEADSKIP;

 where &rpt_where_statement;

 COLUMN product qtysold price;

 DEFINE product / 'Snack' group;

 DEFINE qtysold / 'Quantity Sold' analysis sum format=comma10.0;

 DEFINE price / 'Average Price' analysis mean format=comma6.2;

http://www.icd9data.com/
mailto:Robert.Williams@wellpoint.com

SESUG 2014

7

 /* Creates grand total line */

 RBREAK AFTER / SUMMARIZE;

 compute after;

 product = 'GRAND TOTAL';

 endcomp;

RUN;

ods pdf close;

%MEND snack_reports;

/* Calls the SAS Macro snack_reports for each sales product */

%snack_reports(Chips, Chips, index(upcase(product),'CHIP'));

%snack_reports(Popcorn, Popcorn, index(upcase(product),'POPCORN'));

%snack_reports(Rinds, Pork Rinds, index(upcase(product),'RIND'));

