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ABSTRACT 

Data size and dimensionality can grow big easily in data mining problems. Feature selection plays an increasingly 
crucial role in modern industry to improve predictive model interpretability, avoid overfitting and multicollinarity. More 
important is that we need the feature selection to be done fast in big data. VIF regression is a fast algorithm which 
does feature selection in large regression problems. VIF regression handles big number of features streamwise. Such 
streamwise regression method has its advantages over traditional stepwise regression as it offers faster 
computational speed without loss of its accuracy. We implement the algorithm in SAS language and provide a 
comprehensive example so that SAS users can get benefits from SAS platform or server which usually stores their 
big data sets and also from the VIF regression, a much-needed fast feature selection for large data sets. 
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INTRODUCTION 

Big Data containing millions of observations and huge number of features are quite common in data mining problems, 
especially from such areas as gene sequencing, sensor data, image processing and finance related data, etc. 
Though R-Squared or similar measure of goodness of fit for regression always increase as the number of predictors 
grows,  modeling with reasonable number of explanatory variables is more desirable because the issues of 
collinearity and overfitting. Parsimonious models also offer better interpretability which is critical in real business. 
There are numerous model selection approaches and selection criteria can be based on prediction, fit, etc. However, 
it is most desired to develop and implement fast algorithms applicable to real big datasets. Stepwise regression using 
criteria such as he AIC (Akaike, 1973), BIC (Schwarz, 1978), Mallow’s Cp (Mallows, 1973), cross-validations, etc., 
can be very slow for large sets because all remaining variables are evaluated at each stage. Fast algorithms for 
stepwise regressions are also available, for example, Lasso/LAR (Efron et al, 2004), the Dantzig Selector (Candes 
and Tao, 2007), or coordinated descent (Friedman, Hastie and Tibshirani, 2010). But the speed is not scalable 
because the penalty λ needs to be computed and often via cross-validation (Dupuis and Victoria, 2013). VIF 
regression proposed by Lin, Foster and Ungar in 2011 uses an improved streamwise regression approach, which 
search over the predictors only one-pass, and a computationally efficient method of testing each potential predictor 
for addition to the model. For a classical linear model, 

      ,                                                                                   (1) 

With   observations y            and   predictors        ,    , where             is an     design matrix 

of features,              is the vector of coefficient parameters, and error            . The computation 

complexity of VIF is       under the sparsity assumption that only a subset of   of the   predictors in (1) has nonzero 
coefficients, and     (Miller, 2002).  This property enables the VIF regression to handle larger datasets as 

illustrated by Lin, Foster and Ungar in 2011. VIF regression algorithm also guarantee good control of the marginal 
false discovery rate (mFDR) (Foster and Stine, 2008) with no overfitting. 

In this paper, you will see a brief introduction to VIF Regression algorithm as well as a real data example which tests 
the performance of VIF regression as well as some comparisons, like LARS and stepwise regression. 

VIF REGRESSION 

We can formulate variable selection algorithms generally as estimating   that minimize the penalized sum of squared 

errors 

argmin{‖    ‖ 
    ‖ ‖  },                                                         (2) 

 where ‖ ‖    ∑ |  |
  

        for     and ‖ ‖   ∑        
 
   . 

Stepwise regression like forward selection, backward selection and forward-backward combination evaluates 
variables only using marginal correlations stagewise. Also its siblings such as LASSO and LARS, the small step-size 
forward stagewise regression using    norm, they suffer from collinearity among the predictors. VIF regression 
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corrects this bias by pre-sampling a small set of data to compute the variance inflation factor (VIF) of each candidate.  

Another drawback of stepwise regression is the computational complex. Optimally resolving (2) with a    penalty 

requires searching over all    possible subsets, which is NP hard (Natarajan, 1995) and thus computationally 

expensive even when   is small. VIF regression incorporates its evaluation step with a streamwise regression 

algorithm using an  -investing rule. Streamwise regression (Zhou et al., 2006) evaluates each candidate variable on 

a single pass, and so is extremely fast.  

VIF algorithm is essentially characterized by the following two components: 

 Evaluation step: approximate the partial correlation of each candidate variable with the 

response variable by correcting the marginal correlation using variance inflation factor (VIF) 

calculated from a small pre-sampled set. 

 Search step: test each variable sequentially using an  -investing rule (Foster and Stine, 2008). 

Variables will be added only when they are able to pay the price of reducing a statistically 

sufficient variance in the predictive model. The  -investing rule guarantees no model overfitting 

and provides highly accurate models. 

 

1.  -Investing and Sequential Testing  

An  -investing rule is an adaptive, sequential procedure for testing multiple hypotheses (Foster and Stine, 2008). 

The rule works as follows. Suppose that this is a game with a series of tests. A gambler begins his game with 
initial wealth,   ; intuitively, this is an allowance for type I error. In the  th test (game), at level   , if a rejection is 

made, then the gambler earns a pay-out   ; otherwise, his current wealth    will be reduced by          . The 

test level    is set to be            where   is the time at which the last hypothesis was rejected. Thus, once 

the gambler successfully rejects a null hypothesis, he earns more to spend the next few times. Furthermore, the 
game becomes easier to play in the near future, in the sense that    will remain inflated in the short term. The 

game continues until the player goes bankrupt, that is,     . 

2. Fast Evaluation Procedure 

At each step of the regression, suppose that a set of predictors,           , has been chosen in the model. 
We assume that all of the variables    are centered. 

i) Obtain residuals          
    

    
   and RMSE  ̂     ‖ ‖ √   | |     from 

the previous step. 

ii) Sample a small subset                     of observations; let    denote the 

corresponding subsample of predictors  . 

iii) Fit   on      ‖    ‖ and compute the coefficient estimate  ̂             ‖    ‖. 

iv) Fit     
  on    

      
  }  and compute   

      
   

      
     

       
         

‖    ‖ . 

v) Compute and return the approximate t-ratio as  ̂     ̂      ̂√    
  . 

 

3. Streamwise Variable Selection 

Using an  -investing rule allows us to test an infinite stream of hypotheses while controlling mFDR. In the context 

of variable selection, this implies that we may order the variables in a sequence (possibly dynamically) and 
include them into the model in a streamwise manner without overfitting. 

VIF regression procedure is stated in Figure 1. The ability to test the variables in a streamwise way has many 
advantages. First, the one-pass algorithm can save a great amount of computation if the data are massive. In 
most search algorithms, adding each new variable necessitates going through the whole space of candidates; 
the computation is expensive if the data size,    , is huge. VIF regression alleviates this burden by reducing 

the loops to only one round. Second, this allows one to handle dynamic variable sets. These include the cases 
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where   is extremely large or unknown, resulting in a problem in applying static variable selection criteria. This 

also allows one to first test the lower-order interactions and then decide which higher-order interactions need to 
be tested. 

 

The boosted Streamwise Regression using an  -investing 

 

Input:    data  ,   ,   ,… (centered); 

Set:        initial wealth         and pay-out        , and 

subsample size  ; 

                          ̅;  ̂       ;    ;      ;    . 

Sample:                      

Repeat 

       set threshold               

       attain  ̂  from the Fast Evaluation Procedure 

       if    |  |        //compute p-value to threshold 

          then         //add feature to model 

                 update      ̂ ,  ̂        

                           ,     

       else                     

       end if 

       i=i+1 

until maximum CPU time or memory is reached 

 

Figure 1. VIF Regression Algorithm 

REAL APPLICATION IN SAS 

We present a real analysis using the communities and crime data available at 
https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized. This data set combines socio-
economic data from 90’ Census, law enforcement data from 1990 Law Enforcement Management and crime data 
from 1995 FBI UCR. It consists of 2215 observations on 125 predictors, and   the regression model is to predict the 
number of assaults in 1995. In the EM flow as shown in Fig. 1, we make comparable results for stepwise regression, 
LARS and VIF regression. In the comparison, VIF regression and stepwise regression select similar number of 
variables, however, the results from stepwise regression implies overfitting problem. LARS yields the biggest Average 
Squared Error in both train and validation data after 20 iteration steps. 

Figure 2 demonstrates that VIF Regression outperforms the other two in terms of providing the minimum Average 
Square Error from validation. It selects 20 predictors in the setting of  =200,                . Stepwise 

regression using AIC selection criterion was able to scale down the set of predictors to 21; however, it suffers the 
overfitting problem. It has the minimum error in train data among all the three methods, 147205.3, while the second 
lowest is 157860.5. In validation data, in contrast, its error is obviously higher than VIF regression. 

 

https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
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Figure 2. EM flow for the comparison analysis 

 

 

 

Output 1. Output from Model Comparison node 

 

Multicollinarity is a known danger for causing overfitting in regression analysis. It produces large standard errors in 
the related independent variables and may introduce large error in prediction. Removing such data redundancy 
(variables with high correlation) improves statistical robustness for regression models.  

CONCLUSION 

VIF regression is a streamwise regression approach to select variables based on VIF and fast robust estimates. It 
has been proven to be an efficient algorithm in finding good subsets of variables from a huge space of candidates, 
and such algorithm is applicable to solve some online problems when features are generated and added to the model 
dynamically. We implement the algorithm using SAS and please contact us for the code. 
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