
1

Paper BB69

PROC SQL for PROC SUMMARY Stalwarts

Christianna Williams PhD, Chapel Hill, NC

ABSTRACT

One of the endlessly fascinating features of SAS is that the software often provides multiple ways to accomplish the
same task. A perfect example of this is the aggregation and summarization of data across multiple rows or “BY
groups” of interest. These groupings can be study participants, time periods, geographical areas, or really just about
any type of discrete classification that one desires. While many SAS programmers may be accustomed to
accomplishing these aggregation tasks with PROC SUMMARY (or equivalently, PROC MEANS), PROC SQL can
also do a bang-up job of aggregation – often with less code and fewer steps. The purpose of this step-by-step paper
is to explain how to use PROC SQL for a variety of summarization and aggregation tasks, and will use a series of
concrete, task-oriented examples to do so. For each example, both the PROC SUMMARY method and the PROC
SQL method will be presented, along with discussion of pros and cons of each approach. Thus, the reader familiar
with either technique can learn a new strategy that may have benefits in certain circumstances. The presentation
style will be similar to that used in the author’s previous paper, “PROC SQL for DATA Step Die-Hards”.

INTRODUCTION

Descriptive analytic and data manipulation tasks often call for aggregating or summarizing data in some way, whether
it is calculating means, finding minimum or maximum values or simply counting rows within groupings of interest.
Anyone who has been working with SAS for more than about two weeks has probably learned that there are nearly
always about a half dozen different methods for accomplishing any type of data manipulation in SAS (and often a
score of user group papers on these methods) and summarizing data is no exception. The two primary and most
flexible strategies for aggregating data are probably PROC SUMMARY and PROC SQL, and many SAS
programmers are comfortable with one technique but not the other. The purpose of this paper is to serve as a sort of
“cross-walk” between PROC SUMMARY and PROC SQL, demonstrating how each can be used to accomplish a
series of aggregation tasks. The examples are explained in substantial detail, with variations and coding tips
sprinkled throughout. By demonstrating what is “easy” to do with one method, and more convoluted with the other, I
hope to give you the toolkit to make an informed choice of methods for different types of tasks – even if that takes you
out of your current programming “comfort” zone. The details can be important, and differences in the behavior of the
two methods in some areas (for example, the handling of missing data on grouping variables) could cause
unexpected results for the uninformed or unwary programmer.

I wanted to make the examples quasi-realistic (and to use data with which I was already familiar); thus, all of the
examples are based on a data set containing demographic and health information on the approximately 1.4 million
residents of US nursing homes in the fourth quarter of 2012. These data (in many different summary forms, thanks to
PROC SQL and PROC SUMMARY!) are reported in the 2013 edition of the Centers for Medicare and Medicaid
Nursing Home Data Compendium (CMS, 2014).

EXAMPLE 1: SUMMARIZE A SINGLE MEASURE OVER ALL ROWS

Let’s say we want to get the earliest, latest and median date of birth for all the nursing home residents in the country.
While a birth date is a bit of an odd type of measure to summarize, I use it because it helps to demonstrate some of
the less obvious differences between PROC SUMMARY and PROC SQL. On my data file the variable DOB is the
resident’s birth date, and it is a SAS date formatted as MMDDYY10. (i.e. mm/dd/yyyy). SAS dates, of course, are
integers, which are the number of days since January 1, 1960. Assigning them a FORMAT (from which there are
many to choose!) has NO effect on the underlying value of the variable, but it does make them easier for most
humans to read.

For most examples, in this paper, I’m going to use PROC SUMMARY because it is set up to produce an output data
set, and that is what I usually want to do. However, here, I’m going to first use PROC MEANS to show one
potentially important difference between MEANS and SUMMARY.

PROC MEANS DATA = Residents2012 N MIN MAX MEDIAN ;

VAR dob ;

RUN;

2

Output 1 lists the birth dates for 5 residents in the file (to prove the DOB variable is formatted), and then shows the
PROC MEANS result. You can see that even though the original variable is formatted, the statistics in the output or
not. Adding a FORMAT statement to the PROC MEANS code above has no effect. Also, while we could use the
MAXDEC= option or the FW= option to control the way the statistics are printed (e.g. removing decimal places), they
still would be easily seen as dates.

Print Date of Birth for 5 Residents

 Obs dob

 1 12/27/1943

 2 03/22/1957

 3 07/01/1924

 4 05/31/1953

 5 06/12/1943

Output of Means Procedure for Date of Birth

 Analysis Variable : dob Date of Birth (SAS)

 N Minimum Maximum Median

1409404 -21700.00 19083.00 -10832.00

Output 1. Even though the date of birth variable has a date format on the raw data, this is lost
in the PROC MEANS Output.

However, we get a pleasant surprise if we use PROC SUMMARY:

PROC SUMMARY DATA = Residents2012 ;

VAR dob ;

OUTPUT OUT = dobsum1

 N = numdob

 MIN = mindob

 MAX = maxdob

 MEDIAN = meddob ;

RUN;

PROC PRINT DATA = dobsum1 NOOBS;

TITLE 'Output of SUMMARY Procedure for Date of Birth';

RUN;

PROC PRINT DATA = dobsum1 NOOBS LABEL;

TITLE 'Output of SUMMARY Procedure for Date of Birth (with LABEL option)';

RUN;

The PROC PRINT output is shown in Output 2, and we see that PROC SUMMARY assigns the FORMATs of the
underlying variable to the summary statistics, which is helpful here. It is a little less fortunate that other variable
attributes (namely LABELs) are also assigned to all the summary statistic variables, as shown in the bottom part of
Output 2. This is even the case for the N variable. There is a way around this, which I’ll come back to in a minute.
One final note on the inheritance of attributes of the raw variables in PROC SUMMARY: variable numeric LENGTH
is NOT inherited – the summary stats will have a numeric length of 8 bytes, regardless of the numeric length of the
variable summarized. This is a good thing in order to maintain precision – it might be OK to store small integers with
a length of 3 or 4, for example, but we probably wouldn’t be happy if the mean or standard deviation of such a
variable was shoehorned into that little space!!

Another feature of the PROC SUMMARY output are the automatic variables _TYPE_ and _FREQ_. The _TYPE_

3

indicates the level of aggregation, and can be very useful when multiple CLASS variables are specified, but is beyond
the scope of this paper. The _FREQ_ variable tells us how many observations were aggregated in producing the
summary statistics – here because we are aggregating over the entire file (i.e. no CLASS variables), it tells us the
number of observations in the entire data set. The difference between this and the N variable (numdob), tells us how
many observations have missing data for date of birth.

Output of SUMMARY Procedure for Date of Birth

TYPE _FREQ_ numdob mindob maxdob meddob

 0 1409749 1409404 08/03/1900 03/31/2012 05/06/1930

Output of SUMMARY Procedure for Date of Birth (with LABEL option)

 Date of Date of Date of Date of

 Birth Birth Birth Birth

TYPE _FREQ_ (SAS) (SAS) (SAS) (SAS)

 0 1409749 1409404 08/03/1900 03/31/2012 05/06/1930

Output 2. Using PROC SUMMARY and then PROC PRINT we see that the aggregates retain the
FORMATs (and LABELs) of the raw data.

Presumably you are reading this paper because you want to learn about summarizing data with PROC SQL, and
here we are already on page 3 with ‘nary a SELECT clause to be seen. So, before I tell you how to get more
informative labels on the PROC SUMMARY output variables, let’s demonstrate how to use PROC SQL to summarize
a single measure across the entire input file. In this code, we are not creating a new data set – the result will go to
whatever output destinations are active. We are using summary functions that have very familiar names.

PROC SQL ;

SELECT N(dob) AS dob_N

 ,MIN(dob) AS dob_Min

 ,MAX(dob) AS dob_Max

 ,MEDIAN(dob) AS dob_Median

FROM Residents2012;

QUIT;

Output 3 shows the result.

dob_N dob_Min dob_Max dob_Median

--

 1409404 -21700 19083 -10832

Output 3. Using PROC SQL to aggregate date of birth, the FORMAT of the underlying variable
is not inherited.

Immediately we see that the date format is not retained in the output. The same would be true even if we inserted a
CREATE TABLE clause before the SELECT above. And we must give the columns names (e.g. the “AS dob_N”
syntax above). Otherwise, the output would have NO headers on the columns (try it at home!), and if you were
creating a data set and did not assign column names (aka “aliases”), SAS would make up names for the new
variables, and I guarantee you that you would not be happy with the result. The names – at least on my machine –
come out as things like _TEMG001, and there is nothing in the log to tell you that you have done something stupid!

Also note that the N variable is counting the number of non-missing values for its argument – it gives the same result
as the N statistic in PROC SUMMARY/MEANS. We can use the COUNT(*) syntax to get the number of rows

4

aggregated and the NMISS function to explicitly get the number of rows with missing data for the analysis variable.
This is shown below, along with the way to add FORMATs to the summary statistics. Just to show that you can, I use
different FORMATs for the different functions. This is not possible with PROC SUMMARY without additional
processing (i.e. a subsequent DATA step). Note that I am also giving distinct LABELs to each of the new aggregate
columns.

PROC SQL ;

CREATE TABLE dobsum2 AS

SELECT COUNT(*) AS _FREQ_

 ,N(dob) AS dob_N LABEL ='DOB count' FORMAT=COMMA10.

 ,NMISS(dob) AS dob_NMiss LABEL='DOB # missing'

 ,MIN(dob) AS dob_Min LABEL = 'Earliest DOB' FORMAT=MMDDYY10.

 ,MAX(dob) AS dob_Max LABEL = 'Latest DOB' FORMAT=DATE9.

 ,MEDIAN(dob) AS dob_Median LABEL ='Median DOB' FORMAT=WORDDATE32.

FROM Residents2012;

QUIT;

Output 4 shows the result, both with and without the LABELs.

PROC PRINT of PROC SQL Results for Date of Birth

 dob_

 FREQ dob_N NMiss dob_Min dob_Max dob_Median

1409749 1,409,404 345 08/03/1900 31MAR2012 May 6, 1930

PROC PRINT of PROC SQL Results for Date of Birth (with LABEL option)

 DOB # Earliest Latest

 FREQ DOB count missing DOB DOB Median DOB

1409749 1,409,404 345 08/03/1900 31MAR2012 May 6, 1930

Output 4. With PROC SQL, you can easily assign desired FORMATs and LABELs to the
summary statistics

We saw earlier that by default PROC SUMMARY assigns the same FORMAT and LABEL to all the summary
statistics, which may not be ideal. However, there are a couple of very handy options to at least solve the LABEL
issue. The AUTONAME option saves you the trouble of giving names to each of the output statistics and
AUTOLABEL provides distinct and informative LABELs. You can use these options alone or together.

PROC SUMMARY DATA = Residents2012 ;

VAR dob ;

OUTPUT OUT = dobsum1A

 N =

 NMISS =

 MIN =

 MAX =

 MEDIAN = / AUTONAME AUTOLABEL;

RUN;

Output 5 shows the result, both with and without the LABELs.

5

Output of SUMMARY Procedure for Date of Birth with AUTONAME and AUTOLABEL options

 dob_

TYPE _FREQ_ dob_N NMiss dob_Min dob_Max dob_Median

 0 1409749 1409404 345 08/03/1900 03/31/2012 05/06/1930

Output of SUMMARY Procedure for Date of Birth with AUTONAME and AUTOLABEL options

Printing with LABEL option

 Date of Date of

 Date of Birth_ Date of Date of Birth_

TYPE _FREQ_ Birth_N NMiss Birth_Min Birth_Max Median

 0 1409749 1409404 345 08/03/1900 03/31/2012 05/06/1930

Output 5. The AUTONAME option of PROC SUMMARY gives distinct, informative names to the
summary statistics requested, and AUTOLABEL provides meaningful labels.

So, which is better for this purpose – SUMMARY or SQL? Well, as usual, I think it depends on the specifics of the
task. The AUTONAME and AUTOLABEL options in SUMMARY are very handy – if the naming/labeling conventions
are acceptable. Note that If the LABEL of the original variable is long, then it may get truncated by the AUTOLABEL
option. It is also a nice feature of SUMMARY that the FORMAT of the original variable is inherited – however, if you
ever need to give different FORMATs to different statistics, PROC SQL is a little simpler. In summary, PROC SQL
gives you more flexibility, but for this simple task, may require a little more code.

EXAMPLE 2: SUMMARIZE MORE THAN ONE MEASURE FOR SPECIFIED GROUPS

Ok…let’s move on to a slightly more complex example. Let’s say that we to aggregate several measures by state.
Here we use two variables – Age, which is an integer value corresponding to the resident’s age in years and
Age_ge95, which is a dichotomous indicator that has value 1 if the resident is age 95 or older and 0 otherwise. The
following PROC SUMMARY step counts the number of residents per state with non-missing age [N(age) = NumRes];
counts the number of residents per state who are 95 years old or older [SUM(Age_ge95) = Num_95plus] calculates
the average resident age and the proportion who are 95 of greater [MEAN = MeanAge Prop_95plus]. Of course, the
CLASS statement means that these summarizations will be done separately for each state (the STATE variable is the
two-letter postal abbreviation for each state); hence the data set AGESUM1 will have one observation per state (plus
District of Columbia), while the NWAY option on the PROC SUMMARY statement means that there will be no overall
row in the output. Unlike with a BY statement, the data set does not need to be sorted by the variable(s) listed on the
CLASS statement. The DROP = _: data set option on the AGESUM1 data set will remove the variables in the output
that start with underscore – in this case, it is a shorthand way of eliminating the automatic _TYPE_ and _FREQ_
variables. Finally, the ID statement will add the census region (1-4) and the name of the state to each row in the
output. The ID statement is useful to add columns that are at the same level of aggregation as the CLASS variable
(as in the case of StateName) or higher (as in the case of CensRegion); otherwise the ID variable values will simply
be the values of these variables on the last observation in the input data for each level of the CLASSification
variables, which could be very misleading if those values had not been constant across all observations within a
category of the CLASS variables.

PROC SUMMARY DATA = Residents2012 NWAY;

CLASS state ;

VAR age Age_ge95;

OUTPUT OUT = agesum1 (DROP = _:)

 N(age) = NumRes

 SUM(Age_ge95) = Num_95plus

 MEAN = MeanAge Prop_95plus ;

ID CensRegion StateName ;

RUN;

6

The first 10 rows of the AGESUM1 data set (which has 51 total rows) are shown in Output 6.

 Cens Num_ Prop_

STATE Region Statename NumRes 95plus MeanAge 95plus

 AK 4 Alaska 582 25 75.3110 0.04296

 AL 3 Alabama 22878 1379 77.8930 0.06026

 AR 3 Arkansas 17813 1300 79.4921 0.07297

 AZ 4 Arizona 12421 649 76.0120 0.05224

 CA 4 California 105510 6910 76.6874 0.06547

 CO 4 Colorado 16374 1288 79.5175 0.07864

 CT 1 Connecticut 25303 2744 81.3481 0.10842

 DC 3 District of Columbia 2623 202 76.9203 0.07698

 DE 3 Delaware 4263 339 79.4570 0.07950

Output 6. Partial listing of PROC SUMMARY output data set after aggregation of two
measures by state.

Note that the output data is sorted by the CLASS variable – this will happen regardless of whether the input data was

sorted. Also note that the order of the columns on the output data set is first the class variables, then the ID variables

(if any) and then the requested statistics – in the order they are specified on the OUTPUT statement.

The PROC SQL code to achieve a similar result is as follows:

PROC SQL ;

CREATE TABLE agesum2 AS

SELECT state

 ,N(age) AS NumRes

 ,SUM(Age_ge95) AS Num_95plus

 ,MEAN(Age) AS MeanAge

 ,MEAN(Age_ge95) AS Prop_95plus

FROM Residents2012

GROUP BY state

ORDER BY state ;

QUIT;

The GROUP BY clause functions similarly to the PROC SUMMARY CLASS variable – it dictates the groupings on
which the SUMMARY functions operate. The ORDER BY clause is not required, but it specifies the sort order of the
output table AGESUM2. There is nothing to prevent you from ordering the new table by some other column (which
would not be possible with PROC SUMMARY – it would require a separate PROC SORT step. Note that the code
does not SELECT Statename or CensRegion so these columns will not be on the new table. I will come back to this
point in a moment, but note that the only columns that are SELECTED are either the GROUP BY variable or a
summary function.

The first 10 rows of the AGESUM2 data set are shown in Output 7. This is identical to the PROC SUMMARY output

above except for the absence of CensRegion and Statename. Note that I could easily have added FORMATS and
LABELS to the new columns, as shown in Example 1 if desired.

7

 Num_ Prop_

STATE NumRes 95plus MeanAge 95plus

 AK 582 25 75.3110 0.04296

 AL 22878 1379 77.8930 0.06026

 AR 17813 1300 79.4921 0.07297

 AZ 12421 649 76.0120 0.05224

 CA 105510 6910 76.6874 0.06547

 CO 16374 1288 79.5175 0.07864

 CT 25303 2744 81.3481 0.10842

 DC 2623 202 76.9203 0.07698

 DE 4263 339 79.4570 0.07950

 FL 76261 5554 79.2542 0.07281

Output 7. Partial listing of PROC SQL output data set after aggregation of two measures by
state.

The most obvious way to add CensRegion and Statename to the summary file generated by PROC SQL – just
adding them to the SELECT clause as shown below – does not work as expected.

PROC SQL ;

CREATE TABLE NotWhatWeWant AS

SELECT state

 ,StateName

 ,CensRegion

 ,N(age) AS NumRes

 ,SUM(Age_ge95) AS Num_95plus

 ,MEAN(Age) AS MeanAge

 ,MEAN(Age_ge95) AS Prop_95plus

FROM Residents2012

GROUP BY state

ORDER BY state ;

QUIT;

We do not get an error, but we get the following notes in the SAS log (Output 8):

NOTE: The query requires remerging summary statistics back with the original data.

NOTE: Table WORK.NOTWHATWEWANT created, with 1409749 rows and 7 columns.

Output 8. Log Notes after adding Statename and CensRegion – which are neither GROUP BY
variables or functions of GROUP BY variables to the SELECT clause.

The issue is that Statename and CensRegion are neither on the GROUP BY clause, nor are they functions of the
GROUP BY variables. And PROC SQL doesn’t “know” that these variables happen to have identical values for all
rows in a given level of the GROUP BY variables – that is that they are at the same or a higher level of aggregation.
So, in order to carry out the query without losing information SQL essentially merges (or ‘re-merges’) the summary
state-level data table with the resident-level table. Output 9 lists the first 5 observations for each of Alaska and
Alabama – the rows within each state are identical only because the values of Statename and CensRegion are, of
course, identical within a state. If other columns were in the SELECT that were not identical across rows in the input
Residents2012 data set (e.g. Age itself), the re-merge would still happen and these values would differ from row to
row as on the unsummarized file.

8

 Cens Num Num_ Prop_

 Obs STATE Statename Region Res 95plus MeanAge 95plus

 1 AK Alaska 4 582 25 75.3110 0.042955

 2 AK Alaska 4 582 25 75.3110 0.042955

 3 AK Alaska 4 582 25 75.3110 0.042955

 4 AK Alaska 4 582 25 75.3110 0.042955

 5 AK Alaska 4 582 25 75.3110 0.042955

 Cens Num Num_ Prop_

 Obs STATE Statename Region Res 95plus MeanAge 95plus

 583 AL Alabama 3 22878 1379 77.8930 0.060263

 584 AL Alabama 3 22878 1379 77.8930 0.060263

 585 AL Alabama 3 22878 1379 77.8930 0.060263

 586 AL Alabama 3 22878 1379 77.8930 0.060263

 587 AL Alabama 3 22878 1379 77.8930 0.060263

Output 9. Partial listing of PROC SQL output data set “re-merge”

There are a few different ways to achieve the desired result here – getting these two additional columns onto the
summary data set without generating all these additional rows – but the most efficient way is to simply add them to
the GROUP BY clause. Recall that the data set does not need to be sorted by the GROUP BY variables. This is
shown in the code below. I’ve also demonstrated a few other possible refinements. I’ve added FORMATs to each of
the summary variables. Note that I also multiply the MEAN of the Boolean Age_ge95 variable by 100 to convert it
from a proportion (0-1) to a percent (0-100). Finally, as I noted earlier, I am specifying different columns on the
ORDER BY clause than those on from the GROUP BY. This does not affect the aggregation at all – it simply
specifies the SORT order of the resulting data set. Unlike in the BY statement of the DATA Step, or PROC SORT or
most (all?) other SAS procedures, the DESCENDING keyword (specifying that the ordering will be from largest to
smallest) goes after the column name that it modifies.

PROC SQL ;

CREATE TABLE agesum2b AS

SELECT CensRegion

 ,state

 ,statename

 ,N(age) AS NumRes FORMAT=COMMA9.

 ,SUM(Age_ge95) AS Num_95plus FORMAT=COMMA7.

 ,MEAN(Age) AS MeanAge FORMAT=6.2

 ,100*MEAN(Age_ge95) AS Pct_95plus FORMAT=6.2

FROM Residents2012

GROUP BY CensRegion, state, statename

ORDER BY CensRegion, Pct_95plus DESCENDING ;

QUIT;

The first 10 rows of the resulting AgeSum2b data set are listed in Output 10.

9

 Cens Num_ Mean Pct_

STATE Region Statename NumRes 95plus Age 95plus

 RI 1 Rhode Island 8,221 928 83.01 11.29

 CT 1 Connecticut 25,303 2,744 81.35 10.84

 NH 1 New Hampshire 6,960 704 82.48 10.11

 MA 1 Massachusetts 43,152 4,297 81.29 9.96

 VT 1 Vermont 2,804 271 82.17 9.66

 PA 1 Pennsylvania 81,267 7,086 81.13 8.72

 NY 1 New York 109,754 9,510 79.57 8.66

 NJ 1 New Jersey 47,190 3,870 79.20 8.20

 ME 1 Maine 6,408 504 81.73 7.86

 ND 2 North Dakota 5,661 746 83.74 13.18

Output 10. The first 10 rows of the PROC SQL summary data set with age measures
aggregated by state and, ordered from highest to lowest percent of residents aged 95 and
older within each census region.

There is one more variation I want to discuss before moving on to the next example task. Recall that we used the
NWAY option with PROC SUMMARY so that the output data set includes only the rows for each state – that is, there
is no overall row (i.e. the US average info). If we want an overall row, with PROC SUMMARY all we need to do is
remove the NWAY option.

PROC SUMMARY DATA = Residents2012;

CLASS state ;

VAR age Age_ge95;

OUTPUT OUT = agesum3 (DROP = _FREQ_)

 N(age) = NumRes

 SUM(Age_ge95) = Num_95plus

 MEAN = MeanAge Prop_95plus ;

ID CensRegion StateName ;

RUN;

Well, sort of. The output may not be precisely what we expected. I kept the _TYPE_ variable on the data set to help
decipher what is happening. Take a look at Output 11.

 Cens Num_ Prop_

STATE Region Statename _TYPE_ NumRes 95plus MeanAge 95plus

 4 Wyoming 0 1409404 108799 79.1431 0.07718

 AK 4 Alaska 1 582 25 75.3110 0.04296

 AL 3 Alabama 1 22878 1379 77.8930 0.06026

 AR 3 Arkansas 1 17813 1300 79.4921 0.07297

 AZ 4 Arizona 1 12421 649 76.0120 0.05224

 CA 4 California 1 105510 6910 76.6874 0.06547

 CO 4 Colorado 1 16374 1288 79.5175 0.07864

 CT 1 Connecticut 1 25303 2744 81.3481 0.10842

Output 11. The PROC SUMMARY result when we remove the NWAY option but retain ID
variables is unexpected.

The overall summary row is the one with _TYPE_ = 0. This is the US row. Unfortunately, State is missing because
this is the way that PROC SUMMARY indicates that a given classification variable was not used in the aggregation
for that row. This is made even more confusing because the values for Census region and StateName for this row

10

are NOT missing, and they are “wrong”. Recall what I said earlier about ID variables – here, because they are NOT
populated from the input data for the overall row, they are assigned the values from the last row – which is Wyoming,
since WY is alphabetically the last state abbreviation. We can get around this limitation by adding CensRegion and
Statename to the CLASS statement along with judicious use of the TYPES statement, as shown below.

PROC FORMAT;

VALUE $msUS ' ' = 'US' ;

RUN;

PROC SUMMARY DATA = Residents2012 ;

CLASS CensRegion state StateName;

TYPES () CensRegion*State*StateName ;

VAR age Age_ge95;

OUTPUT OUT = agesum3a (DROP = _:)

 N(age) = NumRes

 SUM(Age_ge95) = Num_95plus

 MEAN = MeanAge Prop_95plus ;

FORMAT state $msUS. ;

RUN;

For more about the very handy TYPES statement (and its cousin the WAYS statement), see the SAS documentation
or look for user papers on the topic (e.g. Williams, 2006). This example also makes use of a “trick” which I can’t in
good conscience recommend that you use unless you really know your data! I’m formatting the missing value of
state on the output data set to print as ‘US’, and one could do something similar for Statename and CensRegion.
This is probably OK to do in this case because there is no truly missing data on the CLASS variables (and even if
there were PROC SUMMARY would by default exclude it since we are not using the MISSING option), but in general
blithely formatting missing values to “look” like something else is probably not good practice. Likely a safer technique
would be to use the _TYPE_ variable in a subsequent DATA step to assign desired values to State, Census Region
and StateName for the overall row(s). A portion of the result is shown in Output 12.

 Cens Num_ Prop_

STATE Statename Region NumRes 95plus MeanAge 95plus

 US . 1409404 108799 79.1431 0.07718

 AK Alaska 4 582 25 75.3110 0.04296

 AL Alabama 3 22878 1379 77.8930 0.06026

 AR Arkansas 3 17813 1300 79.4921 0.07297

 AZ Arizona 4 12421 649 76.0120 0.05224

 CA California 4 105510 6910 76.6874 0.06547

 CO Colorado 4 16374 1288 79.5175 0.07864

 CT Connecticut 1 25303 2744 81.3481 0.10842

Output 12. PROC SUMMARY output for the US and each state, along with State name and
Census region, courtesy of the TYPES statement.

So, how do we do the same thing with PROC SQL? It is a little tricky, but it demonstrates some additional SQL
syntax. The code is shown below, followed by some explanation

11

PROC SQL ;

CREATE TABLE agesum2d AS

(SELECT 0 AS level

 ,. AS CensRegion

 ,'US' AS State

 ,'United States' AS Statename

 ,N(age) AS NumRes

 ,SUM(Age_ge95) AS Num_95plus

 ,MEAN(Age) AS MeanAge FORMAT=6.2

 ,100*MEAN(Age_ge95) AS Pct_95plus FORMAT=6.2

FROM Residents2012)

UNION CORRESPONDING

(SELECT 1 AS level

 ,CensRegion

 ,State

 ,Statename

 ,N(age) AS NumRes

 ,SUM(Age_ge95) AS Num_95plus

 ,MEAN(Age) AS MeanAge FORMAT=6.2

 ,100*MEAN(Age_ge95) AS Pct_95plus FORMAT=6.2

FROM Residents2012

GROUP BY CensRegion, State, Statename)

ORDER BY level, State ;

QUIT;

The UNION set operator allows us to stack or concatenate the results of two queries or SELECT clauses. The
CORRESPONDING option is important to make sure that like columns align. The first SELECT clause gets the
overall (US) statistics (Note the absence of a GROUP BY clause for the first SELECT), and as a stand-alone would
produce a single row. The second query is much like we saw earlier on, where we include census region, state and
state name on the GROUP BY, and will generate a row for each state (plus DC). Each of the SELECT clauses
(which could each stand alone) is placed in parentheses. Outside the parentheses is the backbone of the overall
CREATE TABLE query, which includes CREATE TABLE…, the set operator (UNION) and the final ORDER BY,
which operates after the two SELECT results have been stacked.

The first several rows of the data set produced by this query are shown in Output 13. There are a few other features
of the code to note. First, it is critical to assign values to CensRegion, State and StateName in the first SELECT. If
these columns were SELECTed from the source data, it would cause a Re-merge, which we definitely do not want.
On the other hand if they were left off the first query, they would get dropped entirely from the resulting data set
because of the way that UNION and CORRESPONDING work (Williams, 2012). Second, I create the column
“LEVEL”, which functions sort of like _TYPE_ from PROC SUMMARY in order to be able to put the resulting table in
the desired order – with the US row first, and then the rest of the states in alphabetic order. Without this (if the
ORDER BY included only State), the US row would come out between Texas (TX) and Utah (UT)!

 Cens Num_ Mean Pct_

State level Region Statename NumRes 95plus Age 95plus

US 0 . United States 1409404 108799 79.14 7.72

AK 1 4 Alaska 582 25 75.31 4.30

AL 1 3 Alabama 22878 1379 77.89 6.03

AR 1 3 Arkansas 17813 1300 79.49 7.30

AZ 1 4 Arizona 12421 649 76.01 5.22

CA 1 4 California 105510 6910 76.69 6.55

CO 1 4 Colorado 16374 1288 79.52 7.86

CT 1 1 Connecticut 25303 2744 81.35 10.84

Output 13. This example illustrates using PROC SQL to generate statistics at two different
levels of aggregation (overall US and by state)

12

EXAMPLE 3: COMBINE AGGREGATED VALUES WITH INDIVIDUAL VALUES

Sometimes you need to have the individual value joined with the aggregate value on the same observation. For
example, you might want to identify values that are above the median for the state. With PROC SUMMARY, we need
to do this in two steps – one to generate the summary-level values and one to merge these back in with the
individual-level data. For this example, the measure is the PHQ9, which is a brief ascertainment of resident mood,
with higher values possibly indicative of depression.

*determine if resident is above or below the median PHQ9 score for his/her state;

PROC SUMMARY DATA = Residents2012 NWAY;

CLASS state ;

VAR phq9 ;

OUTPUT OUT=PHQsum1 (DROP= _:) MEAN=StAvg_phq9 ;

RUN;

DATA phqsum1a ;

 MERGE Residents2012

 PHQsum1 ;

BY state ;

phq9_high1 = (phq9 > StAvg_phq9);

IF phq9 NE . then phq9_high2 = (phq9 > StAvg_phq9);

ATTRIB

 phq9_high1 LENGTH=3 LABEL='PHQ9 above state median, ignoring missing data'

 phq9_high2 LENGTH=3 LABEL='PHQ9 above state median, accounting for missing data'

;

RUN;

There is some missing data on the PHQ9; so, for illustration purposes, I create two different indicators of having a
high (above the state median) score: PHQ9_HIGH1 will be 0 if the resident has a missing PHQ9 value, and
PHQ9_HIGH2 will be missing if PHQ9 is missing. I think the correct choice depends on the purpose, but I show both
for two reasons – first, to make a point that the programmer should make a conscious choice about how to deal with
missing data (rather than SAS ‘deciding’) and second, to illustrate ways to make the distinction in the DATA step and
with PROC SQL. (We’ll deal later with missing data for the classification variable). For illustration, Output 14 shows
a PROC FREQ result for both the indicators.

 PHQ9 above state median, ignoring missing data

 Cumulative Cumulative

phq9_high1 Frequency Percent Frequency Percent

 0 938918 66.60 938918 66.60

 1 470831 33.40 1409749 100.00

 PHQ9 above state median, accounting for missing data

 Cumulative Cumulative

phq9_high2 Frequency Percent Frequency Percent

 . 55779 3.96 55779 3.96

 0 883139 62.65 938918 66.60

 1 470831 33.40 1409749 100.00

Output 14. Frequency of two indicators of high (above the state median) PHQ9 mood scores,
illustrating two different ways to handle missing data

13

With SQL, you can take advantage of the “re-merge” and get the summary and individual data on the same row with
a single step. And the ‘SELECT *’ syntax will pull ALL of the columns from the original resident-level file – to which
we add the two high-PHQ9 indicators (commas separating the columns, of course!). On the other hand, getting SQL
to account for missing data – that is, creating the high-PHQ9 indicator so that it will have a missing value if the
individual PHQ9 value is missing – is a little more complicated in SQL, requiring the use of the CASE expression, the
syntax of which may take some getting used to for DATA Step die-hards! But it works, and the result is identical to
what we obtained with the combination of PROC SUMMARY and the DATA Step merge. I don’t repeat the output,
but will point out that we get a NOTE in the log, informing us of the re-merge (refer to Output 8), but in this case, we
intended the re-merge, so we can safely ignore this note.

PROC SQL ;

CREATE TABLE phqsum2 as

SELECT *

 ,MEAN(phq9) as StAvg_phq9 FORMAT=6.1

 ,(phq9 > CALCULATED StAvg_phq9) AS phq9_high1

 LENGTH=3 LABEL='PHQ9 above state median, ignoring missing data'

 ,CASE

 WHEN (phq9 > CALCULATED StAvg_phq9) THEN 1

 WHEN (0 LE phq9 le CALCULATED StAvg_phq9) THEN 0

 ELSE .

 END AS phq9_high2

 LENGTH=3 LABEL = 'PHQ9 above state median, accounting for missing data'

FROM Residents2012

GROUP BY state

ORDER BY state, provnum, ResID ;

QUIT;

To take this example a little further, let’s say we don’t want to just add these indicators to our file, but we want to
select based on them. And, we add just a little twist. Let’s say what we want is to select those who are two or more
points above the gender-specific state average on the PHQ – so, now we have two classification variables (STATE
and SEX). Note that there a small number of observations are missing SEX, so again we need to be conscious of
how we deal with these. First, let’s include those missing SEX as a third category. To do this with PROC SUMMARY
we add the MISSING option to the PROC SUMMARY statement. This has no effect on the treatment of the analysis
variable – missing values on PHQ9 do not enter in to the calculation of the state average. We use NWAY so that we
get only the “two-way” rows, that is, no overall state rows, overall sex rows or the grand mean. So, the data set that
we output from PROC SUMMARY will have one observation per state (including DC) and sex combination and for
every state that has any residents with missing SEX, an additional observation will be output. We do have to sort our
original data set (which is rather large) by STATE and SEX in order to merge the state-gender averages back in. And
then we output all the rows that are more than 2 points above the state-gender mean (ignoring data on PHQ9).

** Select Residents at least 2 points above the state average, by sex ;

PROC SUMMARY DATA = Residents2012 NWAY MISSING ;

CLASS state sex;

VAR phq9 ;

OUTPUT OUT=PHQsum_bySex1 (DROP= _:) MEAN=StAvg_phq9_bySex ;

RUN;

PROC SORT DATA = Residents2012 ;

BY state sex ;

RUN;

DATA PHQ_High1 ;

 MERGE Residents2012 PHQsum_bySex1 ;

BY state sex ;

phq9_high1 = (phq9 > (StAvg_phq9_bySex + 2));

IF phq9_high1;

RUN;

14

The resulting data set is resident-level, including only the individuals with high PHQ9 scores, and the frequency
distribution by gender is shown in Output 15. (As an aside, clearly women greatly outnumber men among those with
high PHQ9 scores, but they also greatly outnumber men in the nursing home population as a whole – about 2 to 1).

 Gender

 Cumulative Cumulative

 sex Frequency Percent Frequency Percent

--

Missing 18 0.01 18 0.01

Men 90956 31.93 90974 31.94

Women 193847 68.06 284821 100.00

Output 15. Gender distribution of those with high PHQ9 scores, defined as more than 2
points above the gender-state specific mean

The PROC SQL code to achieve the same result is below:

PROC SQL ;

CREATE TABLE PHQ_high2 as

SELECT *

 ,MEAN(phq9) as StAvg_phq9_bySex FORMAT=6.1

 ,(phq9 > (CALCULATED StAvg_phq9_bySex + 2)) AS phq9_high1

FROM Residents2012

GROUP BY state, sex

HAVING phq9_high1 = 1

ORDER BY state, provnum, sex, ResID ;

QUIT;

The GROUP BY clause dictates the groupings for which the summary functions (here the MEAN) are calculated, and
SQL treats missing values on the GROUP BY variables just the same as non-missing values (so we get the same
result as for PROC SUMMARY with the MISSING option. Because we are selecting columns other than the GROUP
BY columns and the summary functions, SQL does a re-merge. The CALCULATED keyword before
StAvg_phq9_bySex is required because without it SQL expects all columns referred to in the SELECT expression to
be on the table(s) referred to in the FROM clause. The HAVING expression acts at the GROUP level and you must
use it (rather than WHERE) when the selection is based on a summary function. The PHQ_high2 data set created by
the PROC SQL code is identical to the PHQ_high1 data set created by PROC SUMMARY, PROC SORT and the
DATA step.

One final note before moving on to the next example. If you did not want to include those with missing SEX in the
summary calculations or in identifying those with high values, here is what to do:. With the PROC SUMMARY
method, remove the MISSING option from the PROC SUMMARY statement, and then, in the DATA step add the
stipulation that “sex NE .” to the subsetting IF statement (or to the definition of PHQ_high). This is important
because those with missing SEX will be missing StAvg_phq9_bySex, and thus, assuming they had a non-missing
PHQ9 score would ALWAYS get selected since a non-missing value is always greater than a missing value. With
PROC SQL, the simplest thing to do would be to add a WHERE clause (it must be directly after the FROM clause)
stating “WHERE sex NE .”.

EXAMPLE 4: NESTING SUMMARY FUNCTIONS

This next example may at first seem quite similar to the previous ones, but as we go through it, you’ll see that it
requires somewhat different logic. Here we want to select the nursing home with the largest number of residents in
each state. The nursing home identifier is called PROVNUM. Thinking about PROC SUMMARY, we can use it to
count the number of residents in each nursing home, but a separate step will be required to identify the largest
number (or MAX) of residents – essentially we need to perform a summary function (identifying the max by state) on
the summary function (count of residents per provider). Here is the code for the PROC SUMMARY method:

15

PROC SUMMARY DATA = Residents2012 NWAY;

CLASS state provnum ;

VAR ResID ;

OUTPUT OUT=ResPerFac1 (DROP = _:) N=NumRes ;

RUN;

PROC SUMMARY DATA = ResPerFac1 NWAY ;

CLASS state ;

VAR NumRes ;

OUTPUT OUT=MaxResPerState (DROP = _:)

 MAX=MaxRes ;

RUN;

* merge the MaxPerState back with the provider-level summary;

DATA MostRes1 ;

MERGE ResPerFac1

 MaxResPerState;

BY state ;

IF NumRes = MaxRes ;

RUN;

In the first PROC SUMMARY, one row is output for each nursing home (provnum). I put state on the CLASS
statement so that it would also be on the resulting file (and the data will be sorted by state and provnum). Just to give
a concrete picture of the result of this first step, the first 10 observations are shown in Output 16.

 Num

STATE PROVNUM Res

AK 025010 20

AK 025015 10

AK 025018 127

AK 025019 14

AK 025020 73

AK 025021 55

AK 025024 36

AK 025025 86

AK 025026 15

AK 025027 56

AK 025028 10

Output 16. Ten observations showing PROC SUMMARY result of counting the number of
residents in each nursing home (PROVNUM)

The second PROC SUMMARY step takes the result of the first one as its input. Here, because we want to get the
largest number of residents per state, we CLASS on state only and use the MAX function. We cannot identify the
largest provider in this same step because the output is state-level. So a third step – a DATA Step MERGE is
needed to combined the provider-level summary info with the state-level summary info, and make the selection. The
result has the largest provider in each state. Note that if there were a “tie” for largest nursing home, all the providers
with that largest value would be included. The result for the first 10 states is shown in Output 17.

16

 Num Max

STATE PROVNUM Res Res

AK 025018 127 127

AL 015390 253 253

AR 04A293 250 250

AZ 035145 241 241

CA 555020 754 754

CO 065122 199 199

CT 075135 387 387

DC 095022 358 358

DE 085037 172 172

FL 105030 410 410

Output 17. Ten observations showing PROC SUMMARY result identifying the nursing home
in each state with the largest number of residents

The SQL code to achieve the same result appears a little complicated at first, but it is really quite elegant. SQL will
not allow you to nest summary functions directly, but you can nest queries, which has the same effect. Here is the
code:

PROC SQL ;

CREATE TABLE MostRes2 AS

SELECT * FROM

 (SELECT state

 , provnum

 , COUNT(ResID) AS NumRes

 FROM Residents2012

 GROUP BY state, provnum)

GROUP BY state

HAVING NumRes = MAX(NumRes) ;

QUIT;

Look first at the nested query in parentheses. This part does the same thing as the first PROC SUMMARY above –
namely, calculates the number of residents in each nursing home. It creates a sort of virtual table, called an in-line
view. That virtual table is then queried in the outer query (starting with SELECT *); this selects the rows from the in-
line view (GROUPed BY state) that meet the criteria of having the NumRes (provider-level) equal to the maximum
value, defined at the state level by virtue of the GROUP BY clause. This yields an identical result to the SUMMARY
method.

EXAMPLE 5: SUMMARY STATISTICS FOR A CALCULATED COLUMN

The last example is a fairly simple one, but I include it to demonstrate another nice feature of PROC SQL – the
capacity to compute summary functions on new (or CALCULATED) columns. Let’s say we want to compute
descriptive statistics by census region on resident age at the date of the assessment, and while we have date of birth
and assessment date on our resident file, we don’t have age at assessment computed. Unfortunately, we can’t put
an expression on the VAR statement in PROC SUMMARY, so we have to do this in two steps.

The code is shown below. In the DATA step we calculate resident age at assessment, based on birth date (dob) and
assessment date (AsmntDate), both SAS dates. There are many different ways to compute age, but I like this one,

which I learned from Ron Cody (Cody 2004). And then in the second step (PROC SUMMARY) we simply calculate
the desired summary statistics, with census region (CensRegion) as the CLASS variable.

17

DATA CalcAge ;

 SET Residents2012 ;

 AgeAsmnt = FLOOR(YRDIF(dob,AsmntDate,"ACTUAL")) ;

 RUN;

PROC SUMMARY DATA = CalcAge NWAY;

CLASS CensRegion ;

VAR AgeAsmnt ;

OUTPUT OUT=SumCalcAge1 (DROP = _:)

 MEAN=

 STD=

 MEDIAN= / AUTONAME ;

RUN;

The full result (just four observations) is PRINTed in Output 18.

 Age Age Age

 Asmnt_ Asmnt_ Asmnt_

CensRegion Mean StdDev Median

1: Northeast 80.0918 13.3366 83

2: Midwest 79.2095 13.7717 83

3: South 78.2158 13.2843 81

4: West 76.9725 14.6354 80

Output 18. Summary statistics on resident age at assessment, by census region

A single PROC SQL step can get us the same result. The code is shown below. Note that if we wanted to round or
format or otherwise transform the summary statistics, this could also be done in the same step, while with PROC
SUMMARY, post-processing (probably another DATA Step) would be required. I will also point out that we don’t
actually SELECT the implied AgeAsmnt column – because that would result in an undesired re-merge, resulting in a
data set with a row for each resident. So, if you wanted to have the age at assessment on the resident-level data set
for future use, the DATA Step and PROC SUMMARY method might be preferable.

PROC SQL ;

CREATE TABLE SumCalcAge2 AS

SELECT CensRegion

 ,MEAN(FLOOR(YRDIF(dob,AsmntDate,"ACTUAL"))) AS AgeAsmnt_Mean

 ,STD(FLOOR(YRDIF(dob,AsmntDate,"ACTUAL"))) AS AgeAsmnt_SD

 ,MEDIAN(FLOOR(YRDIF(dob,AsmntDate,"ACTUAL"))) AS AgeAsmnt_Md

FROM Residents2012

GROUP BY CensRegion ;

QUIT;

CONCLUSIONS

I confess that I still use PROC SUMMARY a lot. However, whenever I find myself following PROC SUMMARY with a
MERGE back into my original file or needing to do other pre- or post-processing in conjunction with PROC
SUMMARY, I ask myself whether PROC SQL couldn’t get the job done with fewer steps. I will also admit that PROC
SQL can seem like a bit of a “black box” and it does “think” differently than the DATA step and PROC SUMMARY,

which means – as when you are developing ANY new code – you should check that you are getting the result you

18

want
1
. I hope that the examples in this paper have taken a little of the mystery out of PROC SQL and demonstrated

how useful it can be for a variety of data aggregation tasks. Nonetheless, PROC SUMMARY has some real
advantages too, such as the AUTONAME and AUTOLABEL features, and, of course, it can compute quite a few
statistics (such as different quantiles) that are not available in PROC SQL. SAS often does provide multiple paths to
the same goal with data manipulations, but there are often subtle (or not so subtle) differences in the methods that
may make one a better choice than another in a particular situation. Part of being a truly accomplished SAS
programmer is knowing the different methods in sufficient detail that you can choose the right tool for the task. Best
of Luck!

REFERENCES AND RECOMMENDED READING

Centers for Medicare and Medicaid Services, “Nursing Home Data Compendium 2013 Edition”, Available at
https://www.cms.gov/Medicare/Provider-Enrollment-and-
Certification/CertificationandComplianc/downloads/nursinghomedatacompendium_508.pdf

Cody, R. 2010. SAS Functions by Example, 2
nd

 edition. Cary, NC. SAS Institute Inc.

Schreier, Howard. 2008. PROC SQL by Example: Using SQL within SAS®. Cary, NC: SAS Institute Inc.

Williams, C. 2012. “Queries, Joins and WHERE clauses, Oh My! Demystifying PROC SQL”. Proceedings of SAS
Global Forum 2012. Available at: http://support.sas.com/resources/papers/proceedings12/149-2012.pdf

Williams, C. 2006. “Any WAY you want it: Getting the right TYPEs of Observations out of PROC SUMMARY or
MEANS” Proceedings of NESUG 2006. Available at: http://www.lexjansen.com/nesug/nesug06/cc/cc30.pdf

Williams, C. 2012. “PROC SQL for DATA Step Die-Hards” Proceedings of NESUG 2012. Available at:
http://www.lexjansen.com/nesug/nesug12/hw/hw03.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Christianna Williams
E-mail: Christianna.S.Williams@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

1
 As a side note, one technique I use frequently when testing new code is to use PROC COMPARE to check that an

old method and a new method give the same result. In fact, I used this very handy procedure to check all the
examples in this paper – that is, to check that the PROC SUMMARY and PROC SQL methods really did give
identical results.

https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/CertificationandComplianc/downloads/nursinghomedatacompendium_508.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/CertificationandComplianc/downloads/nursinghomedatacompendium_508.pdf
http://support.sas.com/resources/papers/proceedings12/149-2012.pdf
http://www.lexjansen.com/nesug/nesug06/cc/cc30.pdf
http://www.lexjansen.com/nesug/nesug12/hw/hw03.pdf
mailto:Christianna.S.Williams@gmail.com

