
 SESUG 2014
Paper AD-102

More Hash: Some Unusual Uses of the SAS® Hash Object

Haikuo Bian, Regions Bank; Carlos Jimenez, Regions Bank;

 David Maddox, Regions Bank

ABSTRACT
Since the introduction of the SAS® Hash Object in SAS® 9.0 and recent enhancements, the popularity of the
methodology has been grown. The significant effects of the technique in conjunction with the large memory capacity
of modern computing devices has brought new and exciting capabilities to the data step. The most often cited
application of the SAS Hash Object is table lookup. This paper will highlight several unusual applications of the
methodology including random sampling, “sledge-hammer matching”, anagram searching, dynamic data splitting,
matrix computation, and unconventional transposing.

INTRODUCTION
The SAS hash object is a high performance look-up table that resides in memory and provides an efficient
mechanism for data storage and retrieval based on lookup keys. It is implemented as a DATA step component and
is not part of the DATA step itself. It is, in effect, a black box device that can be used inside the DATA step.
However, it does not understand the DATA step language and must be manipulated using the object-dot syntax. It is
important to understand that all hash object operations are performed at the DATA step run time. One of the most
popular and effective uses of the hash object is the table lookup. There are a number of excellent papers by Paul
Dorfman, Peter Eberhardt, and others that thoroughly discuss table lookup via the hash object. Our purpose in this
paper is to highlight a few additional uses of the hash object and how it can be used to perform certain programming
tasks. The applications that we will examine are “sledge-hammer matching”, anagram searching, dynamic data
splitting, matrix computation, unconventional transposing, and random sampling.

“SLEDGE-HAMMER MATCHING”
The term “Sledge-hammer Matching” was coined in a SAS-L discussion. The term is informal and calling it a

“Domino match” may be more appropriate.

Here is an example - if we have two columns, one represents “From”, and the other is “To”. They can be two-ways,

such as transportation hubs, or one-way, such as family trees. The purpose is to exhaust all the possible “To”s for a

specific “From”. The following example represents a two-way scenario:

From To

A B

B C

B D

C E

C B

And the expected outcome will be like this:

A B C D E

B C D E

C B D E

SOLUTION
There are three key components in the following solution.

1. For the sake of efficiency and to lessen the prospect of being trapped in an indefinite loop, a collection of
distinct ‘From’s has been prebuilt.

2. Load every possible ‘To’ for a specific ‘From’ to a hash table distinctively for all the possible levels. For
every newly added ‘To’, a new search loop will be initiated. Even though some keys could be searched
repeatedly, performance is not an issue since the process is being performed in memory.

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

2

3. Concatenate the final outcome by looping through the hash table containing all of the distinct values of ‘To’.

The code may be implemented as follows:

/*Prepare the sample data*/

data have;

 input from $ to $ @@;

 cards;

A C A B B C B A C A A F A G C B D A E D F G D C F A A H

;

/*Prepare the distinct "From"s*/

proc sql;

 create table have1 as

 select distinct from from have;

quit;

data want;

 if _n_=1 then

 do;

 if 0 then

 set have (rename=(from=_from to=_to));/*Prepare the

 environment for Hash 'h' variables*/

 declare hash h(dataset:'have (rename=(from=_from to=_to))',

 multidata:'y'); /*Load the source table into Hash, Rename to

 prevent overriding*/

 h.definekey('_from'); /*Define Hash key element as _from, aka,

 _from is the key for Hash 'h'*/

 h.definedata(all:'y');/*Define all of the variables in the source

 table as data elements*/

 h.definedone(); /*Hash 'h' definition finished*/

 end;

 declare hash h1(ordered:'a'); /*Declare another Hash table for manipulating

 data on the fly, ‘h1’ will be initiated freshly for every implicit data step

 loop*/

 h1.definekey('new'); /*'new' is the key element for Hash 'h1'*/

 h1.definedata('new');/*'new' is also the data element for Hash 'h1'*/

 h1.definedone();/*Hash 'h1' definition finished*/

 declare hiter hit('h1'); /*Declare hiter object on Hash 'h1'*/

 retain new ' '; /*Prepare the environment for Hash 'h1' variables*/

 set have1;

 length newvar $50;

 /* Do-loop below is to exhaust 'To's for current 'From' on the first level,

 and load them into Hash 'h1'*/

 do rc=h.find(key:from) by 0 while (rc=0);

 if _to ne from then /*Only load non-from onto Hash 'h1'*/

 h1.replace(key:_to, data:_to);

 rc=h.find_next(key:from);

 end;

 /* Do-loop above is to exhaust 'To's for current 'From' on the first level, and

 load them onto Hash 'h1'*/

 /*Outer do-loop is to exhaust 'To's for current 'From' on all levels*/

 do rc=hit.first() by 0 while (rc=0);

 rc=h.find(key:new);

 /*Inner do-loop is to keep adding new 'To's to Hash 'h1' */

 do rc=0 by 0 while (rc=0);

 if _to ne from and h1.find(key:_to) ne 0 then

 do;

 h1.replace(key:_to, data:_to); /*To add new 'To's to

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

3

 Hash 'h1'*/

 rc=hit.first(); /*To reset searching point back to

 the top of the hiter 'hit'*/

 go to outer;

 end;

 else rc=h.find_next(key:new); /*Moving on to find next 'To'*/

 end;

 /*Inner do-loop is to keep adding new 'To's to Hash 'h1' */

 rc=hit.next();/*Moving down to next avaible 'From'*/

 outer:

 end;

 /*Outer do-loop is to exhaust 'To's for current 'From' on all levels*/

 /*The do-loop below is to catenate all of the 'To's in Hash 'h1'*/

 do rc=hit.first() by 0 while (rc=0);

 newvar=catx(' ',newvar,new);

 rc=hit.next();

 end;

 /*The do-loop above is to concatenate all of the 'To's in Hash 'h1'*/

 keep from newvar; /* Final output only has two variables: 'from' and 'newvar'*/

run;

DYNAMIC DATA SPLITTING
There are many ways to subset a SAS table conditionally. Both PROC SQL and the DATA Step (without the hash
object) can provide methods to turn a big table into smaller ones. However, both approaches require that
programmers at least know the number of output tables, even to prename them before starting the subsetting
process. Here the hash object will provide a convenient solution with an above par efficiency.
See the following table. For the sake of simplicity, only one variable is included; however, the basic concept is not
limited the number of variables.

Date

01/01/04

02/01/04

03/01/04

04/01/05

05/01/05

07/01/05

08/01/05

08/01/06

09/01/07

10/01/07

11/01/07

12/01/09

01/01/10

The table has been sorted by date. The requirement is to subset it based on continuity of “Month”. Different subsets
are generated if there is a gap > 1 month. So for the example above, the final outcome will include 6 tables, with
“01/01/04 02/01/04 03/01/04” being in the first table, and “12/01/09 01/01/10” in the 6

th
 one. You have no idea how

many such groups existing in the table, and what are they, unless additional data processing is done to collect this
information and to store it in either macro variables or a separated table in the downstream process. This traditional

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

4

approach will not only have the overhead of requiring preprocessing the data, but also increases the complexity of the
programming.

SOLUTION
The idea behind using the hash object in this application is to load the data to a hash table while monitoring the gap.
When a gap is identified, the data in the hash table is output, and the contents of hash table is deleted. The same
process is repeated and dynamic subsets are produced until the end of the input table is reached.

data have;

 input date mmddyy10.;

 format date date9.;

 cards;

01/01/04

02/01/04

03/01/04

04/01/05

05/01/05

07/01/05

08/01/05

08/01/06

09/01/07

10/01/07

11/01/07

12/01/09

01/01/10

;

data _null_;

 /*Below is to define a Hash 'h' to hold subset data*/

 if _n_=1 then

 do;

 declare hash h(ordered:'a');/*'a' to preserve the accending

 order*/

 h.definekey('date');

 h.definedata('date');

 h.definedone();

 end;

 /*Above is to define a Hash 'h' to hold subset data*/

 set have end=last;

 /*Check the existance of gap (>1 month)*/

 if intck('month',lag(date),date) >1 then

 do;

 /*if gap exists, group number increaded by 1*/

 n+1;

 /*if gap exists, output the subset with group number attached*/

 rc=h.output(dataset:cats('split',n));

 /*After the output, delete all the data in Hash 'h', preparing a

 clean slate for the next subset*/

 rc=h.clear();

 end;

 /*To output the last subset*/

 if last then

 do;

 rc=h.replace();

 rc=h.output(dataset:cats('split',n+1));

 end;

/*To load data onto Hash 'h'*/

 rc=h.replace();

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

5

run;

ANAGRAMS WITHIN WORDS
We know that an anagram is a type of word play, in which the letters of a word are rearranged to generate a new
word, using all the original letters exactly once, for example, “cat” to “act”. This puzzle challenge is a variant from the
classic anagram. It can be first found from the following source:
http://programmingpraxis.com/2014/02/21/anagrams-within-words/

Given two words, determine if the first word, or any anagram of it, appears in consecutive characters of the second
word. For instance, “cat” appears as an anagram in the first three letters of “actor”, but “car” does not appear as an
anagram in “actor” even though all the letters of “car” appear in “actor”. And if an anagram is present, output the
results.

SOLUTION
There could be many ways to determine if an anagram match exists. One way of doing it is to break up the ‘word’ into
‘letters’ and compare them after sorting. Programmers will be able to envision that arrays seems to be a good
mechanism for the job. As it is not that difficult to break a ‘word’ into an array with length of $1, and more importantly,
Call Sortc() would be useful for the sorting. However, to make the code as robust as possible, it would be necessary
to use the dictionary metadata tables for length information to predetermine the dimension of Array() before the
matching process. Then, after the sorting, a reconcatenation may also be needed before the comparison. To
summarize, if using Array(), it would be necessary to (1) Use the dictionary tables to get the length of ‘word’, and use
it as the Array dimension (2) Breaking up ‘word’ in to ‘letters’ , and load them into Array (3) Sorting the Array()
elements (4) Concatenating Array() elements after sorting (5)Comparing. Using the hash object,only steps (2) and
(5) would be required. The size of a hash object is dynamic and is only limited by computer memory. The hash
object provides a built in sorting mechanism, and it is easy to compare different hash objects using the equals()
method.

/*Sample data: determine if 'container' contains the anagram of 'word'*/

data anagram;

 input (word container) (: $100.);

 cards;

cat actor

dinner thundering

cab actor

num immunoglobulin

;

run;

data want;

 /*Do-loop below is to setup 2 Hash objects, 'h1' and 'h2', for downstream

 comparison*/

 if _n_=1 then

 do;

 declare hash h1(ordered:'y', multidata:'y');

 h1.definekey('letter');

 h1.definedone();

 declare hash h2(ordered:'y', multidata:'y');

 h2.definekey('letter');

 h2.definedone();

 end;

 /*Do-loop above is to setup 2 Hash objects, 'h1' and 'h2', for downstream

 comparison*/

 set anagram;

 /*To reset Hash 'h1' for each record*/

 _rc=h1.clear();

 /*Do-loop below is to load 'word' onto Hash 'h1', letter by letter, in

 accending order*/

 do _i=1 to lengthn(word);

 letter=substr(word,_i,1);

http://programmingpraxis.com/2014/02/21/anagrams-within-words/

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

6

 _rc=h1.add();

 end;

 /*Do-loop above is to load 'word' onto Hash 'h1', letter by letter, in

 accending order*/

 /*Do-loop below is to block-load 'container' onto Hash 'h2', letter by letter,

 in accending order.

 For one time, only load the exact number of letters (a block) as 'word' has,

 then shifting one letter to the next block*/

 do _j=0 to lengthn(container)-lengthn(word);

 /*To reset Hash 'h2' between blocks*/

 _rc=h2.clear();

 /*Do-loop below is to extract blocks from 'container'*/

 do _i=1 to lengthn(word);

 letter=substr(container,_j+_i,1);

 _rc=h2.add();

 end;

 /*Do-loop above is to extract blocks from 'container'*/

 /*To determine the equality between 'h1' and 'h2'*/

 _rc=h1.equals(hash:

 'h2', result: _eq);

 /*If the equality is confirmed, then output and move on to the next

 record*/

 if _eq then

 do;

 output;

 return;

 end;

 end;

 /*Do-loop above is to block-load 'container' onto Hash 'h2', letter by letter,

 in accending order.

 For one time, only load the exact number of letters (a block) as 'word' has,

 then shifting one letter to the next block*/

 drop _: letter;

run;

MATRIX COMPUTATION
One of the most often encountered problems in a data management is the lookup, and SAS offers a rich arsenal of
tools to tackle this issue. One can glimpse a non-exhausted list from this paper: Merging Data Eight Different Ways.
However, lookups are often designed to match variable values in different tables. What if the match needed to be
between variable values in one table and variable NAMES in another?

Let's say you have a Source table with variables containing binary values 1 or 0, something like this:

Value1 Value2 Value3 Value4

1 0 0 0

0 1 1 0

0 0 1 1

1 0 1 0

1 1 1 1

http://support.sas.com/resources/papers/proceedings09/197-2009.pdf

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

7

And another Lookup table that contains lookup values:

Value Return

1 5

2 18

3 2

4 1

In the Lookup table, variable “Value” dictates the variable names in the Source table and (value = 1) reflects Value1,
the first variable in Source table, (value=2) points to Value2, the second variable in Source table and so forth.
Therefore, when A=1, then Return=5; when B=1, then Return=18, etc. Now you are asked to obtain the summary of
all Values across the same row. Something like this (the commented column is for illustration only and is not ncluded
in the final output):

Value1 Value2 Value3 Value4 Total

1 0 0 0 5 /*(5)*/

0 1 1 0 20 /*(18+2)*/

0 0 1 1 3 /*(2+1)*/

1 0 1 0 7 /*(5+2)*/

1 1 1 1 26 /*(5+18+2+1)*/

The same results can also be achieved using PROC FORMAT, except a format table based on the table above would
need to be pre-built if there are many variables, and the customized format has to be applied to all of the variables.

SOLUTION
The key is to validate the link between variable positions in the Source table and the values in Lookup table. Here an
array index is used to identify variable positions, and then the same index is used to load the Lookup table into a
hash object.

/*Sample data: Source table*/

data source;

 input value1 value2 value3 value4;

 cards;

1 0 0 0

0 1 1 0

0 0 1 1

1 0 1 0

1 1 1 1

;;;;

 run;

/*Sample date: Lookup table*/

data lookup;

 input value return;

 cards;

1 5

2 18

3 2

4 1

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

8

;;;;

data want;

/*Loading Lookup table into Hash object h*/

 if _n_=1 then do;

 declare hash h(dataset:'lookup');

 h.definekey('value');

 h.definedata('return');

 h.definedone();

 call missing (value,return);

 end;

 set source;

 array _v value1-value4;

 do over _v; /*Here to use do-over on implicit array index*/

 if _v=1 then do;

 rc=h.find(key:_i_); /*_i_ is the automatic variable for implicit array

 index*/

 total=sum(total,return);

 end;

 end;

 drop value return rc;

run;

UNCONVENTIONAL TRANSPOSING
In order to implement some statistical procedures or present the report in required formats, data needs to be
delivered in a certain way. Suppose we have results of X number of races run by Y number of runners. Consider that
the incoming data is something like this:

 Finished Rank Race1 Race2 Race3

1 David Ethan David

2 Adam David Bob

3 Ethan Adam Adam

4 Chris Bob Chris

5 Bob Chris Ethan

In the above data, there are 3 races run by 5 runners. It is not in an ideal format where you can easily evaluate the
overall performance for individual runners. If we can convert the data into following form, then the computation of
runners’ rank becomes possible:

Runner Name Rank_Race1 Rank_Race2 Rank_Race3

Adam 2 3 3

Bob 5 4 2

Chris 4 5 4

David 1 2 1

Ethan 3 1 5

SOLUTION

In following code, we will assemble the whole output inside the hash object. Using runner names as the hash key,
updating the data elements whenever a key is ‘find’, then upload it into the hash table. When finished, output the
whole hash table into a SAS table.

/*Incoming raw data*/

data input;

 input rank (race1-race3) ($);

 cards;

1 David Ethan David

2 Adam David Bob

3 Ethan Adam Adam

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

9

4 Chris Bob Chris

5 Bob Chris Ethan

;

run;

data _null_;

 if _n_ eq 1 then

 do; /*This is to define needed Hash object for output table*/

 declare hash ha(ordered:'y');

 ha.definekey('Runner_Name');

 ha.definedata('Runner_Name','Rank_Race1','Rank_Race2','Rank_Race3');

 ha.definedone();

 call missing(of Rank_Race1 - Rank_Race3);

 end;

 set input end=last;

 array r{3} race1-race3; /*Setup an array to go through all the runners race by

 race*/

 array o{3} Rank_Race1 - Rank_Race3; /*Setup an array to sync with the race

 array r(*)*/

 do i=1 to dim(r);

 if not missing(r{i}) then /*Cope with possible missing values*/

 do;

 Runner_Name=r{i}; /*Assing runner names to the Hash key*/

 rc=ha.find();/*Download the most current data per this Hash

 key (runner name)*/

 o{i}=rank; /*Update the data elements that needs to be

 updated*/

 ha.replace();/*Upload the freshly updated data into the

 Hash object*/

 call missing(of Rank_Race:); /*Reset data elements after

 uploading*/

 end;

 end;

 if last then /*If reach the end of the incomming data, output the whole Hash

 table into a SAS table*/

 ha.output(dataset:'want');

run;

RANDOM SAMPLING
There are many established sampling methods in SAS, including but not limited to the DATA step, PROC SQL and
PROC SURVEYSELECT. What we are attempting to share here is the simplicity of using the hash object in random
sampling; furthermore, its unique tangible flow would make users feel as if they were literally picking apples from a
basket.

SOLUTION
The idea is to load the targeted table into a hash object. Then, depending on with or without replacement, a random
sample is obtained. In the sample code, random sampling is performed based on the Uniform Distribution. The
sample data set is SASHELP.CLASS, and the sample size is 10 observations. The sample code can be easily
modified to do sampling based on proportions.

/*Random sample with replacement*/

data want_wr;

 if _n_=1 then /*Define Hash object*/

 do;

 declare hash h(ordered:'a');

 h.definekey('_n_'); /*Use data step implicit counter as the Hash

 key*/

 h.definedata('name');/*for the purpose of demo, only only variable

 'name' has been included*/

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

10

 h.definedone();

 end;

 set sashelp.class (keep=name) end=last;

 _rc=h.replace(); /*Load data into Hash table*/

 if last then

 do while (1); /*This is to let go a infinite loop, which will be stopped

 when certain condition is met*/

 _nobs=h.num_items; /*Get the total number of the observations in

 Hash table*/

 _rc=h.find(key:round(ranuni(1)*_nobs)); /*Random key ranges from 1

 to the total number of the observations in the Hash

 table*/

 _n+1; /*Count the sample size*/

 output;

 if _n ge 10 then /*when reaches targeted size, stop processing*/

 stop;

 end;

 drop _:;

run;

/*Random sample without replacement*/

data want_wor;

 if _n_=1 then /*Define Hash object*/

 do;

 declare hash h(ordered:'a');

 h.definekey('_n_'); /*Use data step implicit counter as the Hash

 key*/

 h.definedata('name');/*for the purpose of demo, only only variable

 'name' has been included*/

 h.definedone();

 end;

 set sashelp.class (keep=name) end=last;

 _rc=h.replace(); /*Load data into Hash table*/

 if last then

 do while (1); /*This is to let go a infinite loop, which will be stopped

 when certain condition is met*/

 _nobs=h.num_items; /*Get the total number of the observations in

 Hash table,

 and not like the one in 'replacement code,

 this number changes*/

 _key=round(ranuni(1)*_nobs);

 _rc=h.find(key:_key);

 do while (_rc ne 0); /*When there is NO corresponding keys,

 this loop is fired up to keep generate keys randomly until

 there is a hit*/

 _key=round(ranuni(1)*_nobs);

 _rc=h.find(key:_key);

 end;

 _rc=h.remove(key:_key); /*This is my favorite part: "NO

 replacement" is literally done!

 The data is removed from Hash table once it has been selected*/

 _n+1; /*Count the sample size*/

 output;

 if _n ge 10 then /*when reaches targeted size, stop processing*/

More Hash: Some Unusual Uses of the SAS® Hash Object, continued
 SESUG 2014

11

 stop;

 end;

 drop _:;

run;

Conclusion

The SAS hash object offers many pleasant surprises for SAS programmers, and its potential and capacity has yet to
be fully understood and explored. We hope this paper will generate some interest that will encourage more SAS
users to use and experience the benefits of including the hash object in their work.

References

SAS(R) 9.3 Component Objects: Reference, SAS Institute Inc., Cary, NC, USA

Dorfman P and Eberhardt P 2011 “Two Guys on Hash.”
 Proceedings of the Annual Southeast SAS Users Group Conference, Alexandria, VA

Dorfman, P and Shajenko L. 2006 “Data Step Hash Objects and How to Use Them.”
 Proceedings of the Annual Northeast SAS Users Group Conference, Philadelphia, PA

Dorfman P and Snell G. 2003 “ Hashing: Generations.”
 Proceedings of the Twenty-Seventh Annual SAS Users Group International Meeting, Seattle, WA

CONTACT INFORMATION

Haikuo Bian
Risk Compliance Department
Regions Bank
1900 5th Avenue North, 9th floor Birmingham, AL 35203
Phone: 205-264-4925
haikuo.bian@regions.com

Garland D. (David) Maddox, Jr
Business Loan Center – Performance Analytics and Reporting
Regions Bank
250 Riverchase Parkway East, Birmingham, AL 35244
Phone: 205-560-6339
Garland.MaddoxJr@Regions.com

Carlos Jimenez
Risk Compliance Department
Regions Bank
1900 5th Avenue North, 9th floor Birmingham, AL 35203
Phone: 205-264-5416
Carlos.m.Jimenez@regions.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:haikuo.bian@regions.com
mailto:Garland.MaddoxJr@Regions.com
mailto:Carlos.m.Jimenez@regions.com

