
1

Paper BB63

A Quick View of SAS® Views

Elizabeth Axelrod, Abt Associates Inc.

ABSTRACT

Looking for a handy technique to have in your toolkit? Consider SAS® Views, especially if you work with large data
sets. After a brief introduction to Views, I’ll show you several cool ways to use them that will streamline your code
and save workspace.

INTRODUCTION

SAS Views are a handy technique to have in your toolkit, especially if you work with large data sets.
While there are three kinds of SAS Views (DATA Step Views, PROC SQL Views, and SAS/ACCESS Views)
this paper will focus on only of them: DATA Step Views.

WHAT IS A DATA STEP VIEW?

A SAS DATA Step View is the set of instructions needed to create a data set; it is not the data set itself. A
View is useful because it gives you access to the data without creating an actual file. It’s sort of like a
template for a data set (or a virtual data set) – it holds everything you need to know about a data set –
except the data. Here are a few important points to keep in mind about Views:

 During program execution the View is compiled, but input records are processed only when the View is

referenced by another DATA or PROC Step.

 When referenced, the View passes data, one record at a time, to the ‘calling’ DATA or PROC step. In a manner
similar to a MACRO, if you don’t reference the View, nothing happens – no records are processed.

 Every time the View is referenced, the records will be processed. (Caution!! More on this later)

 You may create a maximum of ONE View per DATA step.

WHY USE A VIEW?

DATA step Views are really cool, but I suspect they’re underutilized. The literature about them can be a
bit technical (sometimes daunting). But I hope to illustrate how easy they are to code and use. Views
can provide an elegant, simple solution to a lot of what I call ‘oh darnit’ situations. I’m going to give you
some examples of what I mean by this, but the essential benefit is that you can use a View to preprocess
your data without creating a temporary, intermediate data set that might clutter-up (or exceed) your
SAS WORK area. The following examples illustrate simple uses of a DATA Step View.

Example 1

You have two data sets that you want to merge, so you can append Region-level data from FileA onto
FileB. Oh Darnit! You realize that FileB doesn’t have REGION. But it does have STATE, and you can
create REGION from STATE.

FileA FileB

REGION VAR1 VAR2 STATE VAR3

1 XX 123 MA 15

2 YY 234 NH 15

3 ZZ 345 VT 30

4 AA 456 SC 35

Table 1. Sample data for Example 1

2

Without using a View, you would have to create an intermediate data set that contains the newly-
created REGION:

data PREP;

 set FileB;

 region = put(state,$region.);

run;

data out.FileC;

 merge PREP

 FileA;

 by REGION;

run;

But you realize that you don’t need to keep the intermediate data set PREP. This is a perfect situation
for a View! Here’s all you have to do to modify the code:

data PREP / view = PREP;

 set FileB;

 region = put(state,$region.);

run;

data out.FileC;

 merge PREP

 FileA;

 By REGION;

run;

That’s how easy it is to replace a temporary, intermediate SAS data set with a SAS View!

The code “/ view = PREP” informs SAS that you want to create a View called PREP, not a data set
called PREP. When this code is executed, the first data step is compiled, but no data are processed…
until the second data step is run, and the View PREP is referenced. At this point, records from FileB are
processed, one record at a time, and passed to the ‘calling’ data step. No intermediate file is created.

Since the sample data sets are so teeny, this may seem like a trivial gain, but imagine you’re processing
millions of records. Now we start to see the benefit of creating a View, rather than an intermediate file
that you have no use for after the code is run.

At this point I’d like to mention a convention I use. I name my Views using a consistent prefix (or suffix)
so I can readily distinguish them from data sets. In my subsequent examples I will use V_ as a prefix to
all my View names. This is strictly a user convention, and not required by SAS.

Example 2

We want to merge two data sets, keep records that are in both files, then sort the result and output a
permanent data set. The following code (which does not take advantage of Views) achieves this:

3

50 data v_foo / view=v_foo;

51 merge one (in=in1)

52 two (in=in2)

53 ;

54 by keyvar;

55 if in1 & in2;

56 run;

NOTE: DATA STEP view saved on file WORK.V_FOO.

NOTE: A stored DATA STEP view cannot run under a different operating

system.

NOTE: DATA statement used (Total process time):

 real time 0.04 seconds

 cpu time 0.00 seconds

57 proc sort data=v_foo

58 out=whatever;

59 by othervar;

60 run;

NOTE: There were 10 observations read from the data set WORK.V_FOO.

NOTE: View WORK.V_FOO.VIEW used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

NOTE: There were 19 observations read from the data set WORK.ONE.

NOTE: There were 10 observations read from the data set WORK.TWO.

NOTE: The data set WORK.WHATEVER has 10 observations and 5

variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.04 seconds

 cpu time 0.03 seconds

data foo;

merge one (in=in1)

 two (in=in2);

by keyvar;

if in1 & in2;

run;

proc sort data=foo

out=whatever;

by othervar;

run;

But we realize that we don’t need the file foo for any further processing, and it’s so large that it will
quickly consume our workspace. This is a perfect candidate for using a View. All we have to do is to
inform SAS that we’re making a View, and not a data set. Here’s what the code it looks like:

data v_foo / view=v_foo;

merge one (in=in1)

 two (in=in2);

by keyvar;

if in1 & in2;

run;

proc sort data=v_foo

out=whatever;

by othervar;

run;

Here is the log that results from running this code.

Notice that when the first
data step is run, the view is
defined, but no records are
processed.

It’s only when the next step
(in this case, a PROC Sort)
references the View, that the
data step above is executed
and records are processed
and made available, one-by-
one, to the calling PROC.

4

445 data mismatch /* SAS data set */

446 v_foo / view=v_foo; /* SAS View */

447 ;

448 merge one (in=in1)

449 two (in=in2)

450 ;

451 by name;

452 if in1 & in2 then

453 output v_foo;

454 else /* not in both */

455 output mismatch;

456 run;

NOTE: DATA STEP view saved on file WORK.V_FOO.

NOTE: A stored DATA STEP view cannot run under a different

operating system.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

Example 3 (finally… the cool stuff!)

In Example 2 we enhanced our code by using a View, but we can make it even better. In the example
above, we’re only keeping records that are in both files (one and two). What about the mismatched
records? Ideally, we might want to create a separate data set that captures these mismatches. But a
data step can only create one View. So how can we capture the mismatches? We can create a View …
AND one or more data sets in a single data step!

We start with our example above, and add some code to create a data set (not a View) of mismatches.
We’ll also we add a step (in this case a PROC FREQ) to take a look at the mismatches.

data mismatch /* SAS data set */

 v_foo / view=v_foo; /* SAS View */

merge one (in=in1)

two (in=in2);

by keyvar;

if in1 & in2 then

output v_foo;

else /* not in both */

output mismatch;

run;

proc sort data=v_foo

out=whatever;

by othervar;

run;

proc freq data=mismatch;

tables /* some revealing vars */ ;

run;

Sequence of processing steps is important!

If you are creating a data set and a View in the same data step, it is critical that in your subsequent
processing, you reference the View before you reference the data set – otherwise, you’ll get an error.
Referencing the View in a subsequent step is what causes the code to execute and process the data.
Take a look at the following log to see how this works:

Even though we’re creating a
data set (along with a View),
notice that when this code is
run, only the View is defined.

The data set mismatch is not
created until the View is
referenced in the next step…

5

458 proc sort data=v_foo

459 out= whatever;

460 by weight;

461 run;

NOTE: There were 10 observations read from the data set WORK.V_FOO.

NOTE: View WORK.V_FOO.VIEW used (Total process time):

 real time 0.01 seconds

 cpu time 0.03 seconds

NOTE: There were 19 observations read from the data set WORK.ONE.

NOTE: There were 10 observations read from the data set WORK.TWO.

NOTE: The data set WORK.MISMATCH has 9 observations and 5 variables.

NOTE: The data set WORK.WHATEVER has 10 observations and 5 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 cpu time 0.03 seconds

462

463 proc freq data=mismatch;

464 tables var1 var2 /list missing;

465 run;

NOTE: There were 9 observations read from the data set WORK.MISMATCH.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

530 data mismatch

531 v_foo / view=v_foo;

532 ;

533 merge one (in=in1)

534 two (in=in2)

535 ;

536 by name;

537 if in1 & in2 then

538 output v_foo;

539 else /* not in both */

540 output mismatch;

541 run;

NOTE: DATA STEP view saved on file WORK.V_FOO.

NOTE: A stored DATA STEP view cannot run under a different operating

system.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

542

543 proc freq data=mismatch;

ERROR: File WORK.MISMATCH.DATA does not exist.

544 tables var1 var2 /list missing;

ERROR: No data set open to look up variables.

545 run;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

The log below shows what would happen if we try to use the data set mismatch before we reference the
View.

Now, when the PROC Sort
references the View (and
these records are
processed), our data set
mismatch is also created,
and becomes available for
subsequent processing.

Ta-da! The data set
mismatch is available for us
to use.

Ouch! All we did was
change the order of the
steps. Since we haven’t
referenced the View, the
first data step hasn’t
executed, and the data set
mismatch was not created.

Once again, we define the
View. This code is compiled,
but won’t execute until the
View is referenced.

6

Example 4 (more cool stuff!)

As long as you’re careful and follow the basic guidelines, you can even nest your Views!

data v_one / view=v_one;

set one;

 /* do something here */

run;

data v_two / view=v_two;

set v_one;

 /* do something else here */

run;

proc sort data=v_two

 out=three;

 by keyvars;

run;

WATCH OUT!

Keep in mind that every time a View is referenced, the data step that defines the View is executed, and records will
be processed, one record at a time, and made available to the calling step. Consider this code:

data v_prep / view=v_prep; /* Define the View */

 set one;

 region = put(state,$region.);

run;

proc means data=v_prep; /* execute the data step – process the records */

run;

data freq data=v_prep; /* execute the data step AGAIN – process the records */

 tables var1 var2;

run;

proc sort data=v_prep /* execute the data step YET AGAIN – process the records */

 out=two;

 by var1 var2;

run;

If you’re going to reference a View multiple times in your program stream, you might want to consider a different
approach. Do you really want to execute that first data step more than once? It might be more efficient to actually
create a data set, which you can reference more than once.

SUMMARY / GUIDELINES

Here are tips to keep in mind as you work with Views:

 You may create a maximum of ONE View per DATA Step. But…

 You can also create one or more data sets when you create a View.

 You may NOT create a View from a PROC step.

 You may create nested Views.

 EVERY time you reference a View, your data will be processed again – so be careful!

CONCLUSION

SAS data step Views are extremely useful when working with large data sets, streamlining your code and saving
workspace. They’re also incredibly easy to code. Once you start using them, you’ll wonder how you managed
without them!

7

RECOMMENDED READING

 Stokes, James C., “SAS® Data Views Simply Stated”, SUGI 29 Proceedings,
http://www2.sas.com/proceedings/sugi29/067-29.pdf

 Boling, John C., “SAS Data Views: A Virtual View of Data”, SUGI 22 Proceedings
http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER36.PDF

 SAS Language Reference: Concepts

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Elizabeth Axelrod
Abt Associates Inc.
55 Wheeler Street
Cambridge, MA 02138
elizabeth_axelrod@abtassoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/sugi29/067-29.pdf
http://www2.sas.com/proceedings/sugi29/067-29.pdf
http://www2.sas.com/proceedings/sugi29/067-29.pdf
http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER36.PDF
http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER36.PDF

