
SESUG 2014

1

Paper CC135

Interacting with SAS® using Windows PowerShell ISE

Mayank Nautiyal
Epsilon

ABSTRACT

The most conventional method of using SAS on a Windows environment is via a Graphic User Interface (GUI)
application. There are numerous SAS users who have a UNIX background and can definitely take advantage of the
Windows PowerShell Integrated Scripting Environment (ISE) to gain job efficiency in Windows. The Windows
PowerShell ISE is a host application for Windows PowerShell. One can run commands, write, test, and debug
scripts in a single Windows-based graphic user interface with multiline editing. This paper will demonstrate how
frequently used SAS procedures can be scripted and submitted at the PowerShell command prompt. Job scheduling
and submission for batch processing will also be illustrated.

INTRODUCTION

Often, we write SAS programs which are repetitive and many a times need simple tweaks like in data set or variable
names. Scripting can eliminate the need to write these repetitive SAS programs and replace them with one word
user-defined aliases. This not only saves time in writing the same program multiple times but also increases
efficiency by running the job in background. Such tasks have been implemented on UNIX platform but not much has
been explored on Windows platform. Like UNIX, Windows PowerShell offers the similar power of scripting which can
be utilized to run SAS programs. A programmer with minimal scripting and BASE SAS background could take
advantage of these techniques to simplify repetitive tasks. This paper will present methods which can eliminate the
need of writing repetitious SAS programs and how SAS jobs can be scheduled and submitted for batch processing in
Windows environment.

ABOUT WINDOWS POWERSHELL

Windows PowerShell is a command shell by Microsoft which provides command prompt and scripting environment at
the same time. With PowerShell one can not only enter commands, but can write scripts from the PowerShell
command line. A user can write, test, and debug scripts in a single Windows-based graphic user interface with
multiline editing. It also provides easy features of copy, paste, editing, syntax highlighting etc. in one interface.
PowerShell commands are referred to as Cmdlets. PowerShell gives users the privilege to create their own Cmdlets,

and assign aliases to the exiting or user defined Cmdlets.Table1 shows Powershell equivalents of UNIX commands
used in this paper:

UNIX Command PowerShell Command

Read read-host

Print write-output

Date get-date

More get-content

Export $env

Alias set-alias

Table 1. Some Powershell equivalents of UNIX commands used in this paper

USING POWERSHELL SCRIPT TO WRITE, RUN SAS PROGRAM AND EXPORT THE OUTPUT ON
POWERSHELL SCREEN

Multiple times we write SAS programs which are repetitive in nature and the only change needed to get the desired

output is either change in name of data set or variables. PROC PRINT, PROC CONTENTS, PROC FREQ, AND

PROC DATASETS are few such examples which fall in this category. Following PowerShell Script (saved as

content.ps1) and SAS program (saved as content.sas) can be used to check the content of a SAS data set with
minimal effort:

SESUG 2014

2

#ASSIGNING SAS EXECUTION FILE TO VARIABLE SASCMD

$SASCMD="C:\Program Files\SASHome_94\SASFoundation\9.4\sas.exe"

#ASSIGNING SAS CONFIGURATION FILE TO VARIABLE SASCFG

$SASCFG="C:\Program Files\SASHome_94\SASFoundation\9.4\nls\en\sasv9.cfg"

#ASSIGNING SAS PROGRAM CONTENT.SAS TO VARIABLE SASPRGM

$SASPRGM=" C:\Users\MNautiyal\Documents\sas_easy\pgm\content.sas"

#ASSIGNING SAS OUTPUT CONTENT.LST TO VARIABLE SASPRGM

$SASLSTS=" C:\Users\MNautiyal\Documents\sas_easy\pgm\content.lst"

#ASSIGNING SAS LOG CONTENT.LOG TO VARIABLE SASPRGM

$SASLOG=" C:\Users\MNautiyal\Documents\sas_easy\pgm\content.log"

#VARIABLE DSNAME CAPTURES THE FIRST INPUT PARAMETER (i.e. NAME OF DATA SET) AT

COMMAND LINE

$DSNAME=$args[0]

#VARIABLE DSNAME IS DECLARED AS AN ENVIRONMENT VARIABLE SO THAT IT CAN BE EXPORTED

TO THE SAS PROGRAM

$ENV:DSNAME=$DSNAME

#CMD COMMAND CALLS FOR SAS PROGRAM CONTENT.SAS

cmd /c " ""$SASCMD"" -nosplash -config ""$SASCFG"" -sysin ""$SASPRGM"" -log

""$SASLOG"" -print ""$SASLST"""

#GET-CONTENT COMMAND PRINTS THE LOG and LST ON SCREEN

GET-CONTENT -Encoding UTF8 $SASLOG

GET-CONTENT -Encoding UTF8 $SASLST

Apart from comments, the basic functionality of this script is that it calls program content.sas and passes one
parameter DSNAME (data set name) to it. Once the program completes execution, the script prints out content.log
and content.lst on the screen. The SAS program content.sas shown below uses PROC CONTENTS procedure and

%SYSGET macro function to capture the argument passed at the command prompt.

LIBNAME OUT '.' ;

OPTIONS MLOGIC SYMBOLGEN ;

PROC CONTENTS DATA = OUT.%SYSGET(DSNAME) ;

RUN ;

By declaring OUT library at the location where data set is present eliminates the need for SAS program “content.sas”
to be available in the same directory as the data set. This script can be assigned an alias and executed from any
directory.

For example if the script is saved in “C:\Users\MNautiyal\Documents\sas_easy\scripts” as

content.ps1, it can be assigned an alias (content in this case) by using set-alias command at the

command prompt as follows:

> set-alias content "C:\Users\Mnautiyal\Documents\sas_easy\scripts\content.ps1”

In order to use this alias, submit following command at the command prompt:

> content dsname

Submitting the above command will print log and output of the content.sas program on PowerShell screen. It is
important to note here that the alias should be executed from the directory containing data set of interest. Table
OUTPUT1 shows output of the above submission.

Few more such examples of executing pre-defined SAS programs are shown in Appendix A and B. Appendix A
demonstrates how we can print desired number of observations in a data set by submitting alias print. While,

Appendix B demonstrates, how we can check frequency of a variable or cross-tabulation between variables by
submitting alias freq at the PowerShell terminal.

SESUG 2014

3

Another similar application of PowerShell scripting is, giving the user power to submit a code at the command prompt
and obtaining a quick result at the PowerShell terminal itself. The following script demonstrates how we can achieve
this task:

 #ASSIGNING SAS EXECUTION FILE TO VARIABLE SASCMD

$SASCMD="C:\Program Files\SASHome_94\SASFoundation\9.4\sas.exe"

#ASSIGNING SAS CONFIGURATION FILE TO VARIABLE SASCFG

$SASCFG="C:\Program Files\SASHome_94\SASFoundation\9.4\nls\en\sasv9.cfg"

#ASSIGNING SAS PROGRAM QUERY.SAS TO VARIABLE SASPRGM

$SASPRGM="C:\Users\MNautiyal\Documents\sas_easy\pgm\query.sas"

#ASSIGNING SAS OUTPUT QUERY.LST TO VARIABLE SASPRGM

$SASLSTS=" C:\Users\MNautiyal\Documents\sas_easy\pgm\query.lst"

#ASSIGNING SAS LOG QUERY.LOG TO VARIABLE SASPRGM

$SASLOG=" C:\Users\MNautiyal\Documents\sas_easy\pgm\query.log"

#VARIABLE QUERY READS THE INPUT PARAMETER (EXAMPLE: A SMALL PIECE OF SAS CODE) AT

COMMAND LINE

$QUERY=READ-HOST

#WRITE LIBNAME STATEMENT IN QUERY.SAS PROGRAM

WRITE-OUTPUT "LIBNAME OUT '.' ;" >

C:\Users\MNautiyal\Documents\sas_easy\pgm\query.sas

#APPEND THE ARGUMENT $QUERY TO QUERY.SAS PROGRAM

WRITE-OUTPUT $QUERY >> C:\Users\MNautiyal\Documents\sas_easy\pgm\query.sas

#CMD COMMAND CALLS FOR SAS PROGRAM CONTENT.SAS

cmd /c " ""$SASCMD"" -nosplash -config ""$SASCFG"" -sysin ""$SASPRGM"" -log

""$SASLOG"" -print ""$SASLST"""

#GET-CONTENT COMMAND PRINTS THE LOG and LST ON SCREEN

GET-CONTENT -Encoding UTF8 $SASLOG

GET-CONTENT -Encoding UTF8 $SASLST

This script creates a SAS program query.sas by outputting the libname statement to a blank SAS program and then

appending the SAS code submitted at the command prompt to it. We can assign an alias to the script query.ps1 as
follows:

> set-alias query "C:\Users\Mnautiyal\Documents\sas_easy\scripts\query.ps1”

When submitted at the command prompt, it waits for the user to enter a SAS code. The SAS code should be entered
in one line (i.e. without inserting an <enter> in the code). In order to get a better picture of this application we can
examine a sample data set shoes.sas7bdat provided in sashelp library. Below is the ouput of submitting content

shoes at the command prompt. It shows PROC CONTENTS (log has been suppressed here) of the shoes data set.

The CONTENTS Procedure

Data Set Name OUT.SHOES Observations 395

Member Type DATA Variables 7

Engine V9 Indexes 0

Created 06/19/2013 23:29:58 Observation Length 88

Last Modified 06/19/2013 23:29:58 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label Fictitious Shoe Company Data

Data Representation WINDOWS_64

SESUG 2014

4

Encoding us-ascii ASCII (ANSI)

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 743

Obs in First Data Page 395

Number of Data Set Repairs 0

ExtendObsCounter YES

Filename C:\Users\MNautiyal\Documents\data\shoes.sas7bdat

Release Created 9.0401B0

Host Created X64_7PRO

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

6 Inventory Num 8 DOLLAR12. DOLLAR12. Total Inventory

2 Product Char 14

1 Region Char 25

7 Returns Num 8 DOLLAR12. DOLLAR12. Total Returns

5 Sales Num 8 DOLLAR12. DOLLAR12. Total Sales

4 Stores Num 8 Number of Stores

3 Subsidiary Char 12

Output 1. Contents of shoes.sas7bdat data set. Log has been suppressed.

If we want to look at sum of sales by region we can submit our query at the command prompt as follows:

> query

PROC SQL ; SELECT REGION , SUM(SALES) AS SUM_SALES FROM OUT.SHOES FORMAT COMMA8.0 GROUP
BY REGION ; QUIT ;

NOTE: Libref OUT was successfully assigned as follows:

 Engine: V9

 Physical Name: C:\Users\MNautiyal\Documents\data

2 PROC SQL ;

2 ! SELECT REGION, SUM(SALES) AS SUM_SALES FORMAT COMMA8.0 FROM

OUT.SHOES GROUP BY REGION ;

2 !

QUIT ;

NOTE: The PROCEDURE SQL printed page 1.

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.04 seconds

 cpu time 0.04 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

The SAS System 21:09 Sunday, August 3, 2014 1

 Region SUM_SALES

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 Africa 2342588

 Asia 460231

 Canada 4255712

SESUG 2014

5

 Central America/Caribbean 3657753

 Eastern Europe 2394940

 Middle East 5631779

 Pacific 2296794

 South America 2434783

 United States 5503986

 Western Europe 4873000

Output 2. Output of the proc sql query submitted at the command prompt

You might notice strange character “ƒ” in the output which can be avoided by enabling formchar options in the SAS

program. It is also important to keep in mind that user-defined aliases are lost when you open a new PowerShell
window, so in order to preserve these aliases one should use EXPORT-ALIAS and IMPORT-ALIAS command to

make the aliases permanent.

JOB SCHEDULING AND BATCH PROCESSING OF SAS JOBS IN WINDOWS

Automating execution of SAS programs allows the user to run jobs unattended. PowerShell scripts can be used to
perform job scheduling and batch processing in Windows. Such processing runs SAS programs in background and
writes the results to log and lst files which can be viewed later. Let’s look at an example of a PowerShell script which
can run SAS jobs in batch mode.

 #ASSIGNING SAS EXECUTION FILE TO VARIABLE SASCMD

$SASCMD="C:\Program Files\SASHome_94\SASFoundation\9.4\sas.exe"

#ASSIGNING SAS CONFIGURATION FILE TO VARIABLE SASCFG

$SASCFG="C:\Program Files\SASHome_94\SASFoundation\9.4\nls\en\sasv9.cfg"

FUCNTION BATCH

{

#ASSIGNING SAS PROGRAM TO VARIABLE SASPRGM

$SASPRGM="C:\Users\MNautiyal\Documents\sas_easy\pgm\$args.sas"

#ASSIGNING SAS OUTPUT QUERY.LST TO VARIABLE SASPRGM

$SASLSTS=" C:\Users\MNautiyal\Documents\sas_easy\pgm\$args.lst"

#ASSIGNING SAS LOG QUERY.LOG TO VARIABLE SASPRGM

$SASLOG=" C:\Users\MNautiyal\Documents\sas_easy\pgm\$args.log"

#CMD COMMAND CALLS FOR SAS PROGRAM CONTENT.SAS

cmd /c " ""$SASCMD"" -nosplash -config ""$SASCFG"" -sysin ""$SASPRGM"" -log

""$SASLOG"" -print ""$SASLST"""

#GET-CONTENT COMMAND PRINTS THE LOG and LST ON SCREEN

GET-CONTENT -Encoding UTF8 $SASLOG

GET-CONTENT -Encoding UTF8 $SASLST

}

BATCH sasjob1

BATCH sasjob2

BATCH sasjob3

The above script (saved as sasbatchjobs.ps1) has pretty much similar structure as the scripts discussed in previous
section. Only variation is that SAS program(s) to be called are defined in a function called BATCH. This function
accepts only one argument i.e. name of SAS program to be executed. So, if there are three SAS jobs (sasjob1.sas,
sasjob2.sas and sasjob3.sas) which are to be executed sequentially, they can be passed as an argument to the
function BATCH in order of execution.

Now, if we want to schedule execution of these SAS jobs at a particular time of a day or we want them to be
scheduled to run at regular intervals, then we can schedule execution of sasbatchjobs.ps1 script accordingly. The
following script (saved as scheduler.ps1) requires the user to modify the initial 9 variables, which are used to
schedule a job at desired time and interval. Illustrative comments have been incorporated to describe each step.

SESUG 2014

6

$ONETIMEJOB="Y" #1) IS THIS A ONE TIME JOB ?

$RUNJOBDAILY="N" #2) IS THIS A DAILY JOB ?

$RUNJOBWEEKLY="N" #3) IS THIS A WEEKLY JOB ?

$RUNJOBHOURLY="N" #4) IS THIS AN HOURLY JOB ?

$RUNJOBMONTHLY="N" #5) IS THIS A MONTHLY JOB ?

$BEGINDAY="02" #6) DAY OF JOB ?

$BEGINMONTH="08" #7) MONTH OF JOB ?

$BEGINYEAR="2014" #8) YEAR OF JOB ?

$BEGINTIME="15:03" #9) TIME OF JOB IN 24-HOUR FORMAT ?

#CONCATENATE MONTH, DAY, YEAR AND BEGINTIME TO CREATE A FORMAT SIMILAR TO GET-DATE

$BEGIN="$BEGINMONTH/$BEGINDAY/$BEGINYEAR $BEGINTIME"

#CREATE A VARIABLE TO PROCESS ONETIME JOBS

$ONETIME=1

#CREATE A FUNCTION WAIT_TIME WHICH CALCULATES WAIT TIME BETWEEN REPETITIVE JOBS

FUNCTION WAIT_TIME

{

#READ FLAG VALUE TO MAKE SURE SCHEDULAR EXECUTES NEXT RUN

$FLAG=(GET-CONTENT C:\Users\Mnautiyal\Documents\sas_easy\scripts\flag.txt)[0]

#IF FLAG VALUE IS 0 THEN SCHEDULE NEXT RUN OF JOB ELSE BREAK THE SCHEDULAR

IF ($FLAG –EQ 0)

{

#CURRENT DATE

$CDATE= GET-DATE

#TIMESPAN BETWEEN CURRENT AND NEXT JOB

$WTIME=NEW-TIMESPAN –START $CDATE –END $BEGIN

#GET THE ABSOLUTE VALUE OF TIMESPAN

$ABSWTIME=$WTIME.NEGATE()

WRITE-HOST $WTIME

WRITE-HOST $ABSWTIME

#CALCULATE TOTAL SLEEP SECONDS BASED ON HOURLY (ARGS[0]), DAILY(ARGS[1]), WEEKLY

(ARGS[2]) OR MONTHLY (ARGS[3])JOBS

$SLEEPSECONDS=$ARGS[0]*$ARGS[1]*$ARGS[2]*$ARGS[3] - $ABSWTIME.TOTALSECONDS

WRITE-HOST $SLEEPSECONDS

#PUT THE SCRIPT ON SLEEP

START-SLEEP -S $SLEEPSECONDS

SESUG 2014

7

#RUN THE SAS JOB WHEN WAIT TIME ENDS

START-JOB C:\Users\Mnautiyal\Documents\sas_easy\scripts\sasbatchjobs.ps1

}

ELSE

{

BREAK

}

}

FUNCTION SCHEDULE

{

#THIS CONDITION RUNS ONLY FOR THE FIRST RUN. IT CALCULATES TIME BETWEEN EXECUTION TIME

AND CURRENT TIME. PUTS THE SCRIPT ON SLEEP FOR THAT PERIOD AND THEN EXECUTES IT

IF ($ONETIME -EQ 1)

{

$CDATE= GET-DATE

$WTIME=NEW-TIMESPAN –START $CDATE –END $BEGIN

WRITE-HOST $WTIME

$SLEEPSECONDS=$WTIME.TOTALSECONDS

WRITE-HOST $SLEEPSECONDS

START-SLEEP -S $SLEEPSECONDS

START-JOB C:\Users\Mnautiyal\Documents\sas_easy\scripts\sasbatchjobs.ps1

}

$ONETIME=$ONETIME + 1

#IF IT’S A ONETIME JOB THEN BREAK

IF ($ONETIMEJOB -EQ "Y")

{

BREAK

}

#IF IT’S AN HOURLY JOB THEN CALL AND PASS 3600 SECONDS TO THE WAIT_TIME FUNCTION

ELSEIF ($RUNJOBHOURLY -EQ "Y")

{

WAIT_TIME 3600 1 1 1

SCHEDULE

}

#IF IT’S A DAILY JOB THEN CALL AND PASS 3600*24 SECONDS TO THE WAIT_TIME FUNCTION

ELSEIF ($RUNJOBDAILY -EQ "Y")

{

SESUG 2014

8

WAIT_TIME 3600 24 1 1

SCHEDULE

}

#IF IT’S A WEEKLY JOB THEN CALL AND PASS 3600*24*7 SECONDS TO THE WAIT_TIME FUNCTION

ELSEIF ($RUNJOBWEEKLY -EQ "Y")

{

WAIT_TIME 3600 24 7 1

SCHEDULE

}

#IF IT’S A MONTHLY JOB THEN CALL AND PASS 3600*24*7*(TOTAL NUMBER OF DAYS IN THAT

MONTH) SECONDS TO THE WAIT_TIME FUNCTION

ELSEIF ($RUNJOBMONTHLY -EQ "Y")

{

$MONTH=(GET-DATE).MONTH

$YEAR=(GET-DATE).YEAR

$DAYSINMONTH=[DateTime]::DaysInMonth($YEAR, $MONTH)

WAIT_TIME 3600 24 1 $DAYSINMONTH

SCHEDULE

}

SCHEDULE

In case of one time run, the function SCHEDULE runs only once, but if a job is supposed to run multiple times then it
calls function WAIT_TIME. WAIT_TIME calculates the sleep time between the runs and puts the script on sleep
accordingly. This script assumes that total time of execution of all the SAS jobs is less than the time between
repetitions of a cycle. It does not take day light savings factor into account. So, daylight saving might also cause
issues during execution. In order to break a scheduled task which runs on regular intervals, one can change the value
of FLAG variable from 0 to a non-zero value in the flag.txt file.

CONCLUSION

UNIX scripting knowledge can be leveraged to write scripts in Windows PowerShell. By running SAS jobs using
PowerShell scripts can definitely help in eliminating the need to write repetitive SAS programs. Jobs scheduled to run
in the background also contribute in gaining efficiency in job execution, since such processing runs and writes the
results to log and lst files without the need to open Editor, LOG or Output windows.

REFERENCES

Hemedinger, Chris. “Running Windows PowerShell Scripts.” Accessed on 07/27/2014. Available at
http://blogs.sas.com/content/sasdummy/2011/09/12/running-windows-powershell-scripts/

Levy, Shay. “#PSTip Handling negative TimeSpan objects.” PowerShell Magazine. Accessed on 07/27/2014.
Available at http://www.powershellmagazine.com/2013/02/18/pstip-handling-negative-timespan-objects/.

SESUG 2014

9

ACKNOWLEDGMENTS

I would like to thank the Southeast SAS Users Group for accepting my abstract and paper. I would also like to thank
Laureano Gomez at Aspen Marketing Services – a division of Epsilon, Ambuj Nautiyal at Microsoft and Jessica
Kneedler for providing feedback.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mayank Nautiyal
Epsilon
6 Concourse Parkway
Suite 2500,
Atlanta, GA 30328
mnautiyal@epsilon.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A

PowerShell Script : print.ps1

#ASSIGNING SAS EXECUTION FILE TO VARIABLE SASCMD

$SASCMD="C:\Program Files\SASHome_94\SASFoundation\9.4\sas.exe"

#ASSIGNING SAS CONFIGURATION FILE TO VARIABLE SASCFG

$SASCFG="C:\Program Files\SASHome_94\SASFoundation\9.4\nls\en\sasv9.cfg"

#ASSIGNING SAS PROGRAM PRINT.SAS TO VARIABLE SASPRGM

$SASPRGM=" C:\Users\MNautiyal\Documents\sas_easy\pgm\print.sas"

#ASSIGNING SAS OUTPUT PRINT.LST TO VARIABLE SASPRGM

$SASLSTS=" C:\Users\MNautiyal\Documents\sas_easy\pgm\print.lst"

#ASSIGNING SAS LOG PRINT.LOG TO VARIABLE SASPRGM

$SASLOG=" C:\Users\MNautiyal\Documents\sas_easy\pgm\print.log"

#VARIABLE DSNAME CAPTURES THE FIRST INPUT PARAMETER (i.e. NAME OF DATA SET) AT

COMMAND LINE

$DSNAME=$args[0]

#VARIABLE OBS CAPTURES THE FIRST INPUT PARAMETER (i.e. NUMBER OF OBSERVATIONS) AT

COMMAND LINE

$OBS=$args[1]

#VARIABLE DSNAME AND OBS ARE DECLARED AS AN ENVIRONMENT VARIABLE SO THAT THEY CAN

BE EXPORTED TO THE SAS PROGRAM

$ENV:DSNAME=$DSNAME

$ENV:OBS=$OBS

#CMD COMMAND CALLS FOR SAS PROGRAM CONTENT.SAS

cmd /c " ""$SASCMD"" -nosplash -config ""$SASCFG"" -sysin ""$SASPRGM"" -log

""$SASLOG"" -print ""$SASLST"""

#GET-CONTENT COMMAND PRINTS THE LOG and LST ON SCREEN

GET-CONTENT -Encoding UTF8 $SASLOG

GET-CONTENT -Encoding UTF8 $SASLST

mailto:mnautiyal@epsilon.com

SESUG 2014

10

SAS CODE: print.sas

LIBNAME OUT '.' ;

OPTIONS MLOGIC SYMBOLGEN ;

PROC PRINT DATA = OUT.%SYSGET(DSNAME) (OBS = %SYSGET(OBS));

RUN ;

Set Alias as follows:

PS > set-alias print "C:\Users\Mnautiyal\Documents\sas_easy\scripts\print.ps1”

Submit by calling the alias name, name of the data set (class data set used from sashelp library) and number of
observations as follows:

PS > print class 10

1 The SAS System 08:03 Saturday, August 9, 2014

1 LIBNAME OUT '.' ;

NOTE: Libref OUT was successfully assigned as follows:

 Engine: V9

 Physical Name: C:\Users\MNautiyal\Documents\data

2 OPTIONS MLOGIC SYMBOLGEN ;

3 proc print data = out.%sysget(dsname) (obs = %sysget(var));

4 run ;

NOTE: There were 10 observations read from the data set OUT.CLASS.

NOTE: The PROCEDURE PRINT printed page 1.

NOTE: PROCEDURE PRINT used (Total process time):

 real time 0.03 seconds

 cpu time 0.01 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.21 seconds

 cpu time 0.24 seconds

 The SAS System 08:03 Saturday, August 9, 2014 1

 Obs Name Sex Age Height Weight

 1 Alfred M 14 69.0 112.5

 2 Alice F 13 56.5 84.0

 3 Barbara F 13 65.3 98.0

 4 Carol F 14 62.8 102.5

 5 Henry M 14 63.5 102.5

 6 James M 12 57.3 83.0

 7 Jane F 12 59.8 84.5

 8 Janet F 15 62.5 112.5

 9 Jeffrey M 13 62.5 84.0

 10 John M 12 59.0 99.5

Output 3. Output of alias print submitted at the command prompt for class data set and 10 observations

SESUG 2014

11

APPENDIX B

PowerShell Script : freq.ps1

 #ASSIGNING SAS EXECUTION FILE TO VARIABLE SASCMD

$SASCMD="C:\Program Files\SASHome_94\SASFoundation\9.4\sas.exe"

#ASSIGNING SAS CONFIGURATION FILE TO VARIABLE SASCFG

$SASCFG="C:\Program Files\SASHome_94\SASFoundation\9.4\nls\en\sasv9.cfg"

#ASSIGNING SAS PROGRAM FREQ.SAS TO VARIABLE SASPRGM

$SASPRGM=" C:\Users\MNautiyal\Documents\sas_easy\pgm\freq.sas"

#ASSIGNING SAS OUTPUT FREQ.LST TO VARIABLE SASPRGM

$SASLSTS=" C:\Users\MNautiyal\Documents\sas_easy\pgm\freq.lst"

#ASSIGNING SAS LOG FREQ.LOG TO VARIABLE SASPRGM

$SASLOG=" C:\Users\MNautiyal\Documents\sas_easy\pgm\freq.log"

#VARIABLE DSNAME CAPTURES THE FIRST INPUT PARAMETER (i.e. NAME OF DATA SET) AT

COMMAND LINE

$DSNAME=$args[0]

#VARIABLE VAR CAPTURES THE FIRST INPUT PARAMETER (i.e. VARIABLE NAME) AT COMMAND

LINE

$VAR=$args[1]

#VARIABLE DSNAME AND OBS ARE DECLARED AS AN ENVIRONMENT VARIABLE SO THAT THEY CAN

BE EXPORTED TO THE SAS PROGRAM

$ENV:DSNAME=$DSNAME

$ENV:VAR=$VAR

#CMD COMMAND CALLS FOR SAS PROGRAM CONTENT.SAS

cmd /c " ""$SASCMD"" -nosplash -config ""$SASCFG"" -sysin ""$SASPRGM"" -log

""$SASLOG"" -print ""$SASLST"""

#GET-CONTENT COMMAND PRINTS THE LOG and LST ON SCREEN

GET-CONTENT -Encoding UTF8 $SASLOG

GET-CONTENT -Encoding UTF8 $SASLST

SAS CODE: freq.sas

LIBNAME OUT '.' ;

OPTIONS MLOGIC SYMBOLGEN ;

PROC FREQ DATA = OUT.%SYSGET(DSNAME);

TABLE %SYSGET(VAR)/MISSING;

RUN ;

Set Alias as follows:

PS > set-alias freq "C:\Users\Mnautiyal\Documents\sas_easy\scripts\freq.ps1”

SESUG 2014

12

Submit by calling the alias name, name of the data set and variable name

> freq class sex

1 LIBNAME OUT '.' ;

NOTE: Libref OUT was successfully assigned as follows:

 Engine: V9

 Physical Name: C:\Users\MNautiyal\Documents\data

2 OPTIONS MLOGIC SYMBOLGEN ;

3 proc freq data = out.%sysget(dsname);

4 table %sysget(var) ;

5 run ;

NOTE: There were 19 observations read from the data set OUT.CLASS.

NOTE: The PROCEDURE FREQ printed page 1.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.03 seconds

 cpu time 0.03 seconds

 The SAS System 08:14 Saturday, August 9, 2014

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.20 seconds

 cpu time 0.20 seconds

 The SAS System 08:14 Saturday, August 9, 2014 1

 The FREQ Procedure

 Cumulative Cumulative

 Sex Frequency Percent Frequency Percent

 ƒƒ

 F 9 47.37 9 47.37

 M 10 52.63 19 100.00

Output 4. Output of alias freq submitted at the command prompt for class data set and sex variable

In order to get a cross tabulation between two or more variables the second argument (i.e. VAR) should look like
(var1*var2):

> freq class male*age

1 LIBNAME OUT '.' ;

NOTE: Libref OUT was successfully assigned as follows:

 Engine: V9

 Physical Name: C:\sas_shortcuts\scripts

2 OPTIONS MLOGIC SYMBOLGEN ;

3 proc freq data = out.%sysget(dsname);

4 table %sysget(var) ;

5 run ;

NOTE: There were 19 observations read from the data set OUT.CLASS.

NOTE: The PROCEDURE FREQ printed page 1.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.04 seconds

 cpu time 0.04 seconds

SESUG 2014

13

 The SAS System 08:30 Saturday, August 9, 2014

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.17 seconds

 cpu time 0.18 seconds

 The SAS System 08:30 Saturday, August 9, 2014 1

 The FREQ Procedure

 Table of Sex by Age

 Sex Age

 Frequency

 Percent

 Row Pct

 Col Pct 11 12 13 14 15 16 Total

 ƒƒƒ

 F 1 2 2 2 2 0 9

 5.26 10.53 10.53 10.53 10.53 0.00 47.37

 11.11 22.22 22.22 22.22 22.22 0.00

 50.00 40.00 66.67 50.00 50.00 0.00

 ƒƒƒ

 M 1 3 1 2 2 1 10

 5.26 15.79 5.26 10.53 10.53 5.26 52.63

 10.00 30.00 10.00 20.00 20.00 10.00

 50.00 60.00 33.33 50.00 50.00 100.00

 ƒƒƒ

 Total 2 5 3 4 4 1 19

 10.53 26.32 15.79 21.05 21.05 5.26 100.00

Output 5. Output of alias freq submitted at the command prompt for class data set and sex*age variables

