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ABSTRACT 

The independent means t-test is commonly used for testing the equality of two population means. However, this test 
is very sensitive to violations of the population normality and homogeneity of variance assumptions. In such 
situations, Yuen’s (1974) trimmed t-test is recommended as a robust alternative. The purpose of this paper is to 
provide a SAS macro that allows easy computation of Yuen’s symmetric trimmed t-test. The macro output includes a 
table with trimmed means for each of two groups, Winsorized variance estimates, degrees of freedom, and obtained 
value of t (with two-tailed p-value).  In addition, the results of a simulation study are presented and provide empirical 
comparisons of the Type I error rates and statistical power of the independent samples t-test, Satterthwaite’s 
approximate t-test and the trimmed t-test when the assumptions of normality and homogeneity of variance are 
violated.   

Keywords: heteroscedasticity, non-normality, Independent means t-test, Satterthwaite approximate t-test, trimmed 

means, simulation 

INTRODUCTION 

The independent means t-test and Satterthwaite’s approximate t-test are provided in SAS with PROC TTEST®. 
However, in some conditions, neither of these tests provides adequate Type I error control. The purpose of the 
present paper is to provide a SAS macro for computing a more robust inferential procedure: Yuen’s (1974) t-test 
based on trimmed means. The macro programming language and an output example (including the trimmed values 
of two groups’ means, Winsorized variances, the degrees of freedom and p-value corresponding with the trimmed t) 
are provided. In addition, the results of a simulation study comparing the Type I error control and power of the 
trimmed t test against the independent sample t-test and Satterthwaite’s approximate test are presented. 

PROBLEMS WITH THE T-TEST 

NON-NORMALITY AND HETEROGENEITY OF VARIANCE.  

Testing for the equality of means across independent groups is “a common inferential problem” (Keselman, Wilcox, 
Lix, Algina, & Fradette, 2007; p. 267). The independent means t-test relies on a strong assumption of equal variances 

(homoscedasticity) as the test statistic is a ratio of the difference in sample means to an estimate of the standard 
error of the difference, using a pooled variance estimate.  Alternative approaches (e.g., Satterthwaite’s approximate 
test) relax this assumption, approximating the t distribution and the corresponding degrees of freedom. Although the 
t-test may be one of the most basic and widely used statistical procedures to compare two group means (Hayes & 

Cai, 2007), statisticians to date are still evaluating the various conditions and factors for which this test is robust 
under the violation of the equality of variances assumption. Research on preliminary tests suggests that the choice 
between the t-test and the Satterthwaite’s test, conditioning on a preliminary test of the assumption of homogeneity of 
variance, is not effective (Grissom, 2000; Hayes & Cai, 2007; Moser, Stevens, & Watts, 1989; .Rasch, Kubinger, & 
Moder, 2011; Zimmerman, 2004, 2010). 

Keselman, Wilcox, Othman, and Fradette (2002) have suggested the use of trimmed means to achieve robustness in 
the presence of non-normality and variance heterogeneity.  Lix and Keselman (1998) studied the performance of the 
Welch test (a close relative of Satterthwaite’s test) in addition to the performance of Alexander and Govern, James, 
and Brown and Forsythe tests for testing mean equality in the presence of unequal variances. These tests can 
generally control Type I error rate when group variances are heterogeneous and data are normally distributed. 
However, these tests become liberal when the assumptions of normal distribution and homogeneity of variances are 
violated, and they become even more liberal with unbalanced groups. For all the investigated distributions in the Lix 
and Keselmann study, a symmetric trimming was applied by removing 20% of the observations from each tail of the 
groups’ set of scores. Their results showed that the studied methods generally exhibited a very good Type I error 
control when computed with trimmed means and Winsorized variances. Using a one-way completely randomized 
experiment, Keselmann, Wilcox, Algina, Fradette, and Othman (2004) compared seven methods known to be robust 
to the effects of non-normality and variance heterogeneity. For six methods (WJ or Welch-James-type 
heteroscedastic tests) known to provide good Type I error control and power (Algina & Keselman, 1998), using either 
symmetric or asymmetric trimming, Winsorized means and variances, were applied.  The power of these tests  was 
compared to the power of the one-step-M-Estimator trimmed means (MOMT; Wilcox & Keselman; 2003), test for the 
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detection of treatment effects. Preliminary power results showed minor differences between the WJ tests due to data 
transformation or sample size. However, there were power differences favoring the WJ tests (.27) over the MOMT 
(.13). 

Robust methods such as modified Ft  and modified S1 have been also recommended to overcome the sensitivity of the 
t-test to variance heterogeneity. Yusof, Abdullah, Yahaya, and Othman (2012) proposed the use of the trimmed 
mean, as a central tendency measure in the Ft  test, and the median as the central tendency measure in S1 when 

comparing the equality of two groups. These methods were compared in terms of Type I error under conditions of 
normality and non-normality represented by skewed-g and h-distributions. 

Nguyen, Rodriguez de Gil, Kim, Bellara, Kellermann, Chen, and Kromrey (2012) conducted a simulation study to 
investigate the performance of the t-test, Satterthwaite’s approximate t-test, and the conditional t-test in terms of Type 
I error control and statistical power. Factors manipulated in the study included total sample size (10, 20, 50, 100, 200, 
300, 400), sample size ratio between groups (1:1, 1:3, 1:4), variance ratio between groups (1:1, 1:2, 1:4, 1:8, 1:12, 
1:16, 1:20), population effect size (0, .2, .5, .8), alpha for testing treatment effect (.01, .05, .10, .15, .20, and .25), and 

alpha for testing the homogeneity of variance (01, .05, .10, .15, .20, .25, .30, .40, .45, and .50). For each condition, 

100,000 replications were simulated, which provided a maximum standard error of an observed proportion (e.g., Type 
I error rate estimates) of .0015, and a 95% CI no wider than ± .003 (Robey & Barcikowski, 1992). Overall, the 
Satterthwaite’s approximate t-test performed best in control of Type I error rates under all conditions. Results 
indicated that to maintain adequate Type I error control, the independent means t-test required that the homogeneity 

of variance assumption was met in addition to equal sample size between groups, regardless of the tenability of the 
normality assumption. The alpha level used for the Folded F test had an impact on Type I error control for the 
conditional t-test. The more conservative the alpha level, the larger the Type I error. Because of lower statistical 
power of the folded F-test, the study recommended the conditional t-test using relatively large alpha levels. The 
results also showed that an increase in total sample size did not improve the control of Type I error rate for the 
independent means t-test, but larger samples provided better Type I  error control for the conditional t-test. 

Kellermann et al. (2013) extended the Nguyen et al. (2012) study to investigate the performance of the t-test, 
Satterthwaite’s approximate t-test, and conditional t-test under heteroscedastic populations. In addition to the normal 
population, four non-normal populations where studied, with varying values of skewness and kurtosis (γ1 = 1.00, γ2 = 
3.00; γ1 = 1:50, γ2 =5:00; γ1 = 2.00, γ2 = 6.00; γ1 = 0.00, γ2 =25.00) respectively. Findings were similar to the 
Nguyen et al. (2012) results with normal populations. Both the Satterthwaite’s and conditional t-tests provided 
tremendous improvements in Type I error control compared to the independent means t-test when group variances 
were unequal. However, extreme skewness contaminated the Type I error control for these tests. On the other hand, 
kurtosis did not seem to have the same effect. Increasing sample size (n ≥ 200) helped improve the Type I error 
control for the Satterthwaite’s and conditional tests, but not for the independent t-test.  

THE TRIMMED-T TEST 

Yuen (1974) proposed the Trimmed t test for the independent two-sample case, under unequal population variances. 
In each sample, the trimmed mean is computed by removing g observations from each tail of the distribution: 
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where  
x1,…,xn are the ordered values in a sample 
g = observations trimmed from each tail of the sample distribution 
n – 2g = the number of observations in the trimmed sample. 

In addition to the trimmed mean, the Winsorized mean is required to compute the appropriate variance estimate. 
Instead of “trimming,” this method replaces the most extreme g observations by the next-most-extreme value. 
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Given the Winsorized mean, the Winsorized sum-of-squared deviations is computed as: 
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Note that this is just the regular sum-of-squares approach using the replaced values and the Winsorized mean. From 
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the Winsorized sum-of-squared deviations, the Winsorized variance is obtained as: 
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Note that we have returned to the trimmed sample size here. 

Finally, the obtained value of the trimmed t is computed by dividing the difference between the trimmed means by the 
estimated standard error of the difference: 
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The degrees of freedom are obtained from 
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Yuen’s (1974) conducted a simulation study to determine whether the use of trimmed means and Winsorized 
variances resulted in a robust test for  mean equality under nonnormality when population variances were unequal. 
Results were compared to the performance of the Welch t-test. Variables manipulated included sample sizes (10 or 
20), standard deviation ratios (0.25, 0.5, 2.0 and 4.0), trimming rate (g) (from 1 observation to .25nj observations), 
and a variety of distribution shapes. For unequal sample sizes, the amount of trimming was in fixed proportions. Ten 
thousand replications per condition were generated. Results showed a Type I error control for the trimmed means 
closer to the nominal alpha level than those obtained with the Welch’s test, although some under some conditions, 
the trimmed t still deviated quite a bit from the nominal level. Yuen suggested an adaptive trimming approach; that is, 
the number of observations trimmed (g) should be chosen depending on the degree of leptokurtosis. 

SAS MACRO 

%macro strimmed_t (data = _LAST_, IV = X, DV = Y, trimpct = 0, trim = 0); 

 *remove observations with missing values if present; 

data &data; 

 set &data; 

 if MISSING(&IV) + MISSING(&DV) > 0 then 

 delete; 

 * Sort the data by DV value and number the observations in each group; 

proc sort data = &data; 

 by &IV &DV; 

data sorted; 

 set &data; 

 by &IV; 

 if first.&IV then 

 count = 0; 

 count + 1; 

* Count number of observations per group, compute full-sample means and variances; 

proc means noprint data = sorted; 

 by &IV; 

 var &DV; 

 output out = counts N = group_size mean = sample_mean var = sample_var; 
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data _null_; 

 set counts; 

 by &IV; 

 if _N_ = 1 then 

  call symput('Group1',&IV); 

 if _N_ = 2 then 

  call symput('Group2',&IV); 

run; 

 *check if N - 2g - 1 > 0; 

data check_1; 

 set counts; 

 if _N_ = 1 then 

  do; 

  if &trimpct NE 0 then 

  ncheck_1 = group_size - 2*(ROUND(group_size * &trimpct/100)) -1; 

 if &trim NE 0 then 

 ncheck_1 = group_size - 2*&trim -1; 

 call symput('ncheck1',ncheck_1); 

 end; 

 if _N_ = 2 then 

 do; 

  if &trimpct NE 0 then 

  ncheck_2 = group_size - 2*(ROUND(group_size * &trimpct/100)) -1; 

 

  if &trim NE 0 then 

 ncheck_2 = group_size - 2*&trim -1; 

 call symput('ncheck2',ncheck_2); 

 end; 

run; 

%if (&ncheck1 le 0)|(&ncheck2 le 0) %then 

 %do; 

 data _null_; 

  file print notitles; 

  put @1 'Trim too much' / 

  @1 'Please check your data' / 

  @1 'Macro has exited'; 

 return; 

 run; 

 %end; 

%if (&ncheck1 le 0)|(&ncheck2 le 0) %then 

  %return; 

* Check to be sure two groups (and only two groups) are present; 

proc means noprint data = counts; 

 var group_size; 

 output out = check_2 N = n_groups; 

run; 

 

data check_2; 

 set check_2; 

 call symput('N_check',n_groups); 

run; 

%if &n_check NE 2 %then 

 %do; 

 data _null_; 

 file print notitles; 

 put @1 'Analysis must be based on two groups only' / 

  @1 'Please check your data' / 

 @1 'Macro has exited'; 

 return; 

 run; 

 %end; 

%if &n_check NE 2 %then 

 %return; 
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* Determine n of cases to trim from each tail (trim) and delete those cases; 

data trimmed; 

 merge sorted counts; 

 by &IV; 

 if &trimpct = 0 then 

 do; 

 * if trim is specified, this executes; 

 trim = &trim; 

 if count LE &trim then 

 delete; 

 if count GT group_size - &trim then 

 delete; 

 end; 

 if &trimpct NE 0 then 

 do; 

 * if trimpct is specified, this executes; 

 trim = ROUND(group_size * &trimpct/100); 

 if count LE trim then 

 delete; 

 if count GT group_size - trim then 

  delete; 

 end; 

* Compute trimmed means and both largest and smallest remaining value in each group 

(to be used in Winsorization); 

proc means noprint data = trimmed; 

 var &DV; 

 by &IV; 

 output out = trimmed_mn mean = trimmed_mean min = smallest max = largest; 

* Replace trimmed observations with largest or smallest remaining value; 

data winsorized; 

 merge sorted trimmed_mn counts; 

 by &IV; 

 if &trimpct = 0 then 

 do; 

 * if trim is specified, this executes; 

 trim = &trim; 

 if count LE &trim then 

 &DV = smallest; 

 if count GT group_size - &trim then 

 &DV = largest; 

 end; 

 if &trimpct NE 0 then 

 do; 

 * if trimpct is specified, this executes; 

 trim = ROUND(group_size * &trimpct/100); 

 if count LE trim then 

 &DV = smallest; 

 if count GT group_size - trim then 

 &DV = largest; 

 end; 

 * Compute Winsorized mean and Winsorized SS; 

proc means noprint data = winsorized n mean css; 

  var &DV; 

  by &IV; 

  output out = winsor2 n = group_n mean = winsorized_mean css = winsorized_ss; 

 * Extract summary statistics needed for trimmed t calculation and final output; 

data group_stats; 

 merge trimmed_mn winsor2 counts; 

 by &IV; 

 if &trimpct = 0 then 

 trim = &trim; 

 if &trimpct NE 0 then 

 trim = ROUND(group_n * &trimpct/100); 
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 if _N_ = 1 then 

 do; 

 trim_mn1 = trimmed_mean; 

 n1 = group_n; 

 SS1 = winsorized_ss; 

 trim1 = trim; 

 sample_mean1 = sample_mean; 

 sample_var1 = sample_var; 

 end; 

 if _N_ = 2 then 

 do; 

 trim_mn2 = trimmed_mean; 

 n2 = group_n; 

 SS2 = winsorized_ss; 

 trim2 = trim; 

 sample_mean2 = sample_mean; 

 sample_var2 = sample_var; 

 end; 

 * Place summary statistics into a single observation in SAS; 

proc means noprint data = group_stats; 

var trim_mn1 n1 SS1 trim1 sample_mean1 sample_var1 trim_mn2 n2 SS2 trim2 

sample_mean2 sample_var2; 

 output out = one_row mean =; 

 * Compute trimmed t, df, and p-value; 

data ttest; 

 set one_row; 

 win_var1 = SS1/(n1 - 2*trim1 - 1); 

 win_var2 = SS2/(n2 - 2*trim2 - 1); 

 trimmed_t = (trim_mn1 - trim_mn2) / SQRT(win_var1/(n1 - 2*trim1) + win_var2/(n2 - 

2*trim2)); 

 c = (win_var1/(n1 - 2*trim1)) / (win_var1/(n1 - 2*trim1) + win_var2/(n2 - 

2*trim2)); 

 df = (c**2/(n1 - 2*trim1 - 1) + (1 - c)**2/(n2 - 2*trim2 - 1))**-1; 

 pvalue = 2*(1 - PROBT(abs(trimmed_t),df)); 

data _null_; 

 set ttest; 

 trim_n1 = n1 - 2*trim1; 

 trim_n2 = n2 - 2*trim2; 

 totalTrim1 = 2*trim1; 

 totalTrim2 = 2*trim2; 

 file print notitles; 

 put @1 'Trimmed t-test Macro Output' // 

  @1 'Before trimming:' / 

  @10 'Group' @31 'N' @39 ' Mean' @47 ' Variance' / 

  @10 '---------------' @28 '-------' @ 37 '---------' @47 '----------' / 

 @10 "&Group1" @28 n1 5. @37 sample_mean1 BEST8. @48 sample_var1 BEST8. /

 @10 "&Group2" @28 n2 5. @37 sample_mean2 BEST8. @48 sample_var2 BEST8. //

 @1 'Trimmed Cases:' 

 @30 'Total N' / 

 @10 'Group' @30 'Trimmed'  / 

 @10 '---------------' @30 '-------'  / 

 @10 "&Group1" @30 totalTrim1 5.  / 

 @10 "&Group2" @30 totalTrim2 5.  // 

 @1 'After trimming:' / 

 @37 ' Trimmed' @47 'Winsorized' / 

 @10 'Group' @31 'N' @39 ' Mean' @47 ' Variance' / 

 @10 '---------------' @28 '-------' @ 37 '---------' @47 '----------' / 

 @10 "&Group1" @28 trim_n1 5. @37 trim_mn1 BEST8. @48 win_var1 BEST8. / 

 @10 "&Group2" @28 trim_n2 5. @37 trim_mn2 BEST8. @48 win_var2 BEST8. // 

 @1 'Trimmed t-test:' / 

 @10 'Obtained t:' @30 trimmed_t BEST8. / 

 @10 'df: '  @30 df BEST8. / 

 @10 'p-value:' @30 pvalue BEST8.; 
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 return; 

run; 
%mend strimmed_t; 

MACRO EXECUTION 

In order to use the strimmed_t macro, users first need to create a SAS dataset that inputs their own data. Then the 
macro is called using as arguments:  
data = name of user’s dataset 

IV  = independent variable 

 DV = dependent variable 

 trimpct = percentage of trimmed observations 

 trim = number of trimmed observations 

In this execution, 26 observations from two groups are used to illustrate the macro and read into the SAS dataset 
EXAMPLE. 

data EXAMPLE; 

input group score; 

cards; 

 1 12 

 1 14 

 1 18 

 1 25 

 1 32 

 1 44 

 2 17 

 2 22 

 2 14 

 2 12 

 2 30 

 2 29 

 2 19 

 1 12 

 1 14 

 1 18 

 1 25 

 1 32 

 1 44 

 2 17 

 2 22 

 2 14 

 2 12 

 2 30 

 2 29 

 2 19 

 ; 

The following code is used to call the macro after the date is read. This code identifies the dataset (named 
“EXAMPLE” in this example) to be employed for analysis, the names of the independent variable (“group” in this 
example) and dependent variable (“score” in this example), the percentage of trimmed observations (could be 5%, 
10%, or 20%, and is selected as 5% in the execution). 

% strimmed_t (data=EXAMPLE,IV = group, DV = score, trimpct = 5, trim = 0); 

In the case the users want to trim the data according to number of observations rather than percentage of 
observations, they can plug the number of observations that need to be trimmed to “trim” variable. For example, if 
there are 3 observations selected to be trimmed, the code will look like:  
% strimmed_t (data=test,IV = a, DV = b, trimpct = 0, trim = 3); 

OUTPUT EXAMPLE OF MACRO 

Sample output of the Strimmed_t macro is shown in Output 1. In this table, there is descriptive information of 2 
groups including number of observations, the mean and variance of each group before trimming, and the trimmed 
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mean and Winsorized variance for each group after trimming. Then the numbers of observations are trimmed for 
each group (similar for both since this macro uses the symmetric trimming method) is presented. Finally, the obtained 
t value, the degree of freedom and p-value of the trimmed t-test are also included. 
 

Before trimming: 

         Group                N         Mean     Variance 

         ---------------   -------  -------- ------------ 

                    1         12    24.16667     135.4242 

                    2         14    20.42857     45.18681 

 

Trimmed Cases:               Total N 

         Group               Trimmed 

         ---------------     ------- 

                    1            2 

                    2            2 

 

After trimming: 

                                     Trimmed   Winsorized 

         Group                N        Mean     Variance 

         ---------------   -------  ---------  ---------- 

                    1         10        23.4     165.5185 

                    2         12    20.33333     50.4026 

 

Trimmed t-test: 

         Obtained t:         0.669169 

         df:                   13.681 

         p-value:            0.514522 

Output 1. Sample Output for the Strimmed t-test Macro  

SIMULATION 

Figure 1 displays the distribution of Type I error rates of the independent means t-test, Satterthwaite’s test, and the 
trimmed t-test at alpha = .05. Satterthwaite’s test controlled Type I error around the predetermined alpha level. On the 
other hand, the independent means t-test showed a considerable variability in Type I error rates. The Type I error 
rates of the trimmed t-test depends on the degree of trimming. As more observations were trimmed (from 5% to 
20%), the overall behaviors of trimmed t-test deteriorated showing larger variability in Type I error control. For the 
trimmed t-test, the majority of simulation conditions including large sample and nonnormal conditions yielded Type I 
error over the nominal alpha level. 

 

Figure 1. The distribution of estimated type i error rates of independent means t-test, satterthwaite’s test, and 
trimmed t-test at alpha = .05 

The performance of the two conditional tests was investigated in comparison to the independent means t-test and 
Satterthwaite’s test. Figure 2 shows the performance of conditional t-test, in which the rejection of homogeneous 
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variance leads to Satterthwaite’s test instead of the independent means t-test, became comparable to that of 
Satterthwaite’s test as the alpha for testing the homogeneity of variance increased over .20. 

 

Figure 2. The distribution of estimated Type I error rates of independent means t-test, Satterthwaite’s test, 
and conditional t-test at alpha = .05. C (01) means conditional t-test when the alpha for testing the 
homogeneity of variance equals .01. 

Figure 3 shows the performance of conditional trimmed t-test, in which the rejection of homogeneous variance leads 
to trimmed t-test instead of the independent means t-test, was not impacted by the significance level set for the 
homogeneity of variance test. In other words, conditional decisions between the independent means t-test and 
trimmed t- test yielded inflated Type I error rates regardless of the power of Folded F test when 5% of the 

observations were trimmed. Similar patterns emerged with apparently increased variability in Type I error rates for 10% 
and 20% trimming. 

 

 
Figure 3. The distribution of estimated Type I error rates of independent means t-test, Satterthwaite’s Test, 
and conditional trimmed t-test at Aalpha = .05. CT (01) means conditional trimmed t-test with 5% trimming 
when the alpha for testing the homogeneity of variance equals .01. 

Table 1 presents the proportion of conditions meeting the Bradley’s liberal criterion for Type I error control. 
Satterthwaite’s test always met the liberal criterion when the total sample size exceeded 200. Unless the total sample 
size was very small such as 10, Satterthwaite’s test showed reasonable performance in controlling Type I error within 
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the Bradley’s criterion. The trimmed t-test in general outperformed the independent means t-test across the total 
sample size conditions. Interestingly, the trimmed t-test performed better with the total sample size about 50 and 100 
than with larger samples. Even when the total sample size was very small (i.e., 10), the proportion of conditions 
meeting the Bradley’s criterion was over 60% except the conditions of large degree of trimming (20%). Similar 
patterns were observed with the conditional trimmed t-test regardless of the alpha set for testing the homogeneity of 
variance. 

Table 1. 

Proportions of Cases Meeting the Bradley’s Liberal Criterion by Tests and Conditions at α = .05 

Condition t-test Conditional Satterthwaite Trimmed t-test Conditional Trimmed t-test 

N    5% 10% 20% 5% 10% 20% 

10 0.47 0.68 0.65 0.62 0.62 0.56 0.51 0.51 0.63 

20 0.49 0.76 0.81 0.59 0.54 0.45 0.64 0.60 0.50 

50 0.45 0.93 0.94 0.77 0.67 0.53 0.75 0.69 0.56 

100 0.44 0.97 0.97 0.74 0.64 0.59 0.74 0.65 0.59 

200 0.42 1.00 1.00 0.69 0.59 0.55 0.69 0.59 0.54 

300 0.41 1.00 1.00 0.63 0.56 0.52 0.63 0.56 0.52 

400 0.41 1.00 1.00 0.59 0.56 0.52 0.59 0.55 0.52 

N ratio 
   

 
   

  

1:4 0.14 0.71 0.73 0.56 0.48 0.39 0.57 0.49 0.41 

2:3 0.29 0.91 0.91 0.59 0.55 0.56 0.59 0.55 0.49 

1 0.92 0.97 0.97 0.69 0.62 0.47 0.66 0.59 0.58 

3:2 0.67 0.98 0.98 0.75 0.67 0.62 0.73 0.66 0.60 

4:1 0.18 0.98 0.97 0.73 0.65 0.60 0.76 0.70 0.65 

Variance ratio         

1:1 1.00 0.95 0.92 0.94 0.91 0.88 0.98 0.99 0.99 

1:2 0.62 0.93 0.94 0.88 0.84 0.73 0.91 0.87 0.76 

1:4 0.40 0.91 0.93 0.72 0.60 0.52 0.70 0.59 0.52 

1:8 0.29 0.89 0.91 0.58 0.49 0.42 0.56 0.47 0.41 

1:12 0.27 0.89 0.89 0.53 0.44 0.39 0.52 0.42 0.39 

1:16 0.26 0.89 0.89 0.50 0.44 0.39 0.49 0.42 0.39 

1:20 0.23 0.89 0.89 0.49 0.44 0.37 0.47 0.42 0.36 

Shape          

0,0 0.43 0.96 0.97 0.94 0.94 0.92 0.95 0.95 0.93 

1,3 0.44 0.96 0.97 0.77 0.61 0.41 0.77 0.59 0.42 

1.5,5 0.45 0.93 0.93 0.44 0.36 0.31 0.42 0.36 0.31 

2,6 0.46 0.77 0.77 0.28 0.22 0.19 0.29 0.24 0.23 

0,25 0.42 0.91 0.91 0.89 0.84 0.81 0.88 0.85 0.84 

Note. Conditional=conditional t-test at α=.25 of Folded F-test. For shape, two values indicate skewness and kurtosis, 

respectively. 

We conducted power analysis only with the conditions meeting the Bradley’s liberal criterion because high power 
associated with high Type I error is not compelling. Overall, Satterthwaite’s test on average produced higher power 
followed by the trimmed t-test and the independent means t-test. For the trimmed t-test, more trimming with the loss 

of observations possibly leads to lower power as demonstrated in Figure 4. 
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Figure 4. The distribution of power of independent means t-test, Satterthwaite’s test, and trimmed t-test at 
alpha = .05 

CONCLUSION 

The literature has recommended the trimmed-t test as a robust alternative to the independent means t-test. The 
macro strimmed_t presented in this study provides a simple means for computing the trimmed t and offers flexibility in 
the specification of either the percentage of cases to be trimmed from each tail of the sample distributions or the 
number of cases to be trimmed. The macro uses only SAS/BASE programming to provide utility without the need for 
more advanced components of the SAS system. 

In its present form, the macro provides symmetric trimming (the same number of observations are trimmed from each 
tail of each sample). Nonetheless, this can be readily modified to trim samples asymmetrically. Additional 
enhancements, such as adding graphic presentations of the samples before and after trimming can also be easily 
incorporated into the current macro code. 
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