

1

Paper CC45
@/@@ This Text file. Importing Non-Standard

Text Files using @,@@ and / Operators.
Russell Woods, Wells Fargo Home Mortgage, Fort Mill SC

ABSTRACT
SAS® in recent years has done a fantastic job at ad ding newer and more powerful tools to the analyst and developer
tool boxes, but these options are only as effective as the data that is available to them. Most of you would have no
trouble dealing with a simple delimited or column formatted text file. However, data can often be provided in a non-
standard format that must be parsed before analysis can be performed, or the final results have very specific
formatting rules that must be adhered to. In these cases we can use some simple SAS operators, ‘@’, ‘@@’ and ‘/’
in conjunction with conditional statements to interact with any flat file that has some kind of distinguishable pattern. In
this presentation I will demonstrate the step-by-step process I used to analyze several non-standard text files and
create import specifications capable of importing them into SAS. It is my hope that once you master t hese
techniques it will not matter if you are preparing an audit report for the federal government or a side-effects analysis
for the FDA you will easily be able to accommodate any specifications they may have.

INTRODUCTION
Living in a data-driven world requires being able to work with data in various formats, not only data that is clean
and simplistic. The majority of programmers probably know how to import simple text files where one row
correlates to one record and the format is either delimited or each column is well defined. That is relatively easy.
However, consider encountering a file where your input statement has to be different based on some indicator
present in the file? This will require you to read ahead and apply some logic statements to import the file
successfully. Luckily, SAS provides all the tools needed to work with thi s kind of complex text file. In the following
paper a primer on file importing for the uninitiated will be provided then a step by step process will be laid out to
solve the problem of importing complex text files.

PRIMER ON FILE IMPORTING
To start, it is important to establish the fundamentals of importing text files. Whether a simple text file or something
more exotic is being imported, the basic elements are going to be the same. The DATA step combined with the
infile and input statements will be doing the heavy lifting for any text importing. Importing a simple text file where
each row of text corresponds to 1 record can often times be done with the import data wizard or some very basic
code. For the following examples the Theatre.Expenses SAS training dataset was used as a basis.

Textfile1: Simple Text File Dataset1: Simple text file after import

2

DATA SimpleImport; infile '\\Simple.txt' firstobs = 4;
format FlightID $10. Date date9. Expenses best12.;
input

@1 FlightID $10.

@20 Date
date9
.

@40 Expenses ;
run;

Hopefully this is relatively straight forward. The desired dataset has three columns, so the input statement has three
variables. No matter how complicated the text file you are importing, the basic structure of the input statement is not
going to change. The only wrinkle added, as the title suggests, are the @, @@ and / operators.

SAS Operator Operator function

@ Holds an input record for the execution of the next INPUT statement within
 the same iteration of the DATA step.1

@@ Holds the input record for the execution of the next INPUT statement across
 iterations of the DATA step. 1

/ Advances to the next line in the text file.

Table 1. Operator definitions

By default, when you end an input statement, SAS advances to the next line of input. Therefore, if you are required
to move through the text file in a non-sequential way or multiple records are on a single line you will need to use the
trailing @ and double trailing @@.

SEEING @ AND @@ IN ACTION
In the following scenario, it is demonstrated how @ and @@ can be used when importing text. They are similar
in function, but each fulfills a specific role

Textfile2: Multiple records on one row

Table2: Multiple records on one
row after import.

It is possible to use the @ or the @@ to import this text file successfully, though in this particular case it makes a lot
more sense to just use the @.

1 SAS Support documentation:
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000146292.htm

3

DATA AmpersandImport;
infile '\\Simple ampersand.txt' firstobs = 4; format
FlightID $10. Date date9. Expenses best12.;

input

@1 FlightID $10.
@20 Date date9.
@40 Expenses @;

output;
input

@50 FlightID $10.
@69 Date date9.
@89 Expenses ;

output;
run;

In the above code sample, the first record in the line is imported identical to what was done in the previous
example. The line then ends with a @, which causes SAS to hold the input record and stay at the current location.
The next record on that line is then imported using another straightforward input statement. The output statement
must be used because a single iteration of the DATA step is creating two records. The single ampersand does not
hold the location across iterations of the DATA step so both records in the line must be imported on each pass.

DATA AmpersandImport2;
infile '\\Simple ampersand.txt' firstobs = 4; format
FlightID $10. Date date9. Expenses best12.;

if Counter = 0 then

input
@1 FlightID $10.
@20 Date date9.
@40 Expenses @@;

else
input
@50 FlightID $10.
@69 Date date9.
@89 Expenses ;

Counter +1; if Counter = 2 then Counter = 0;
run;

While there are a lot of similarities between using @ and @@, this code example should illustrate some important
distinctions. The most important one being that the first example runs through the DATA step 5 times, while the
second actually runs through it 10. This is due to the flexibility of @@ holding the input record across iterations of
the DATA step. It becomes obvious that in this particular example the @ is more efficient and looks cleaner, but it is
an important academic exercise to see that both can be successfully used.
One possible case where the @@ can be very powerful is when a delimited file has varying numbers of records in
each row. Using the @@ it is possible to write code to import one single complete record then hold the pointer at the
point where the next record starts. This makes it possible to ignore the number of records in a single row as the
DATA step is only concerned with importing 1 record at a time. When it reaches a line break it starts importing on
the next line.

4

Textfile3: Varying number of records on one row (tab delimited).

Table3: All 19 rows are imported into the table successfully.

DATA MixedLineImport; infile '\\Mixed Line Width.txt' firstobs = 4 dlm = '09'x;
informat FlightID $10. Date date9. Expenses best12.;
format Date date9. Expenses dollar12.2;

input

FlightID $
Date
Expenses @@;

run;

This import is slightly different than the other examples due to the source file being tab delimited. Still, by adding
‘@@’ this curious text file immediately becomes easy to read into a dataset. If the ‘@@’ were removedthis DATA
statement would create a table with only 7 records instead of the correct, 19. SAS would import the f irst record in a
row, see no @@ and upon the ending of the INPUT statement, advance to the next line of the text file, skipping any
other entries in that row. The @@ prevents this by holding the input record across iterations of the DATA step.

IMPORTING COMPLEX DATA
Taking stock (get to know your data):
American football career statistics for the 2014 NFL season were chosen to serve as the sample dataset. This
dataset has a few components that make it non-trivial to import, but is still relatively straightforward. Step 1 in any
data analysis process is to get to know your data, know the patterns and make decisions about what the final
output should look like.

5

Textfile4: A subset of complex text file football statistics (Sourced from NFL.com career statistics).

A few items to notice right away are that the player name is only mentioned once, the player can have a varying
number of seasons and there is a total line included. It should also be noted that it is possible for a player to have
two rows of data for one season (Marshawn Lynch was traded in 2010 so played for two teams).

Criteria to be used when importing this file:
1. Create two tables. One table will have player name and the total line associated with them. The second table

will be comprised of a separate record for each year that a player played. In the event that a player was with two
teams, the two seasons will be combined into one. Statistics for the year will be summed and averaged
accordingly and the team name column will be concatenated.

2. Player name will be carried through for each record even though in the text file it is only listed once.

DECIDE THE TABLE STRUCTURE (COLUMN ORDER AND FORMATS):
Once the text file is analyzed the next logical step is to finalize the format of the final data set. It is much easier to
code your input statements if the formatting decisions have already been made. For the two datasets being created
the following formatting decisions were made:

informat
PlayerName $20. Position $2. Season 4. Team $25. GamesPlayed 4.
Ru_Attempts 5. Ru_yds 10. ru_yards_game 6.2 ru_avg 6.2 ru_td 4.
re_Receptions 5. re_targets 5. re_yds 10. re_yards_game 6.2 re_avg 6.2 re_YAC 6.2 re_td
4. Fumbles 3. Fumbles_Lost 3.;

6

The difference between using informat, format or a combination of the two is an important one. In this example by
using informat the resulting dataset will look identical to the text file, making for easy comparisons.

START SMALL BY IMPORTING A SINGLE LINE OF TEXT THEN EXPAND
Starting small and breaking up a project into small, easily testable segments is a best practice useful in creating any
complex solution; importing complex datasets is no exception. In the example provided, applying our decided upon
formats and simply importing every line is an easy and effective way to test that the formats and column locations line
up correctly.

DATA FootballInfo;
infile '\\Football base file.txt';

informat

PlayerName $20. Position $2. Season 4. Team $25. GamesPlayed 4.
Ru_Attempts 5. Ru_yds 10. ru_yards_game 6.2 ru_avg 6.2 ru_td 4.
re_Receptions 5. re_targets 5. re_yds 10. re_yards_game 6.2 re_avg 6.2 re_YAC 6.2 re_td
4. Fumbles 3. Fumbles_Lost 3.;

input

@1 PlayerName $20.
@21 Position $2.
@27 Season 4.
@34 Team $11.
@45 GamesPlayed 4.
@50 Ru_Attempts 5.
@56 Ru_yds 6.
@62 ru_yards_game 6.2
@68 ru_avg 6.2
@75 ru_td 4.
@80 re_receptions 5.
@85 re_targets 5.
@91 re_yds 6.
@97 re_yards_game 6.2
@103 re_avg 6.2
@109 re_YAC 6.2
@116 re_td 4.
@123 Fumbles 3.
@127 Fumbles_Lost 3.;

run;

Table4: Importing each row as one record regardless of all other factors.

Using this strategy of starting small it is possible to easily validate that the starting positions and informats chosen for each
column are correct. A quick analysis of each observation shows that every column was imported correctly and

7

the data is in the correct formats and is displaying correctly. With this established, the task of eliminating the
extraneous rows, breaking the text file into two datasets and combining seasons can be performed.

IDENTIFY THE CONDITIONAL LOGIC THAT MUST BE APPLIED
In our example there are a few condition we must identify in order to import the line correctly.

Conditions to identify in order to import the line correctly:
1. Identify the first row and import the date of the file (06/30/2014).

2. Identify the start or the end of a page.

3. Identify the total line associated with a particular player.

4. Continue assigning a player’s name until all seasons are completed.

1: Identify the first row and import the date of the file (06/30/2014).
The first line of the text file will always be a header row so the code to grab the date is nothing special.

format ReportDate date9.;
retain ReportDate;

if _n_ = 1 then

input
@121 ReportDate mmddyy10.

/////;
else;

A format statement is used so the date is not displayed as number of days and _n_ = 1 establishes when the first line
of text is being imported. All the header information is extraneous, therefore the ‘/’ is used to dropdown 5 lines.
Additional logic statements could be used in lieu of the 5 ‘/’, however this solution is very simple and as long as the
page headers are standardized should work in all cases. The first line of data is 6 lines down from the start of the
page header, but the input statement itself will move to the next row of text upon completion. The 5 ‘/’ and the input
statement itself advancing make up the 6 rows required to get to the first row of data.

2: Identify the start or the end of a page.
Similar to what was done with the very first line of the text file, it will be necessary to skip the header row for each
page of the file. This can be done by either identifying the start or the end of a page. The start of a page can be
identified by the text ‘Football Statistics’. The end of a page is a little more involved and can be done in a number
of different ways. For this example the end of a page is going to be identified as a Totals line that is immediately
followed by a blank line.

3: Identify the total line associated with a particular player.
The Totals line is also easy to identify. We can import the same range as PlayerName and look for a value equal
to ‘Totals’.

4: Continue assigning a player’s name until all seasons are completed.
Each player has at least two lines associated with him. To be included on this file they have played for at least one
season and will include a total line where each value will be equal to the value for their one season of play. The logic
for this item will again check the same range as PlayerName and will continue importing seasons until it finds a value
of ‘Totals’

8

If the different logical conditions are broken up into small enough pieces they become very effortless to code. The
key is analyzing all the patterns beforehand and separating them into their individual components.

PUTTING EVERYTHING TOGETHER
From our four conditional statements above we now know the general form that the import process will take.

1. Import the report date from the first row of the file.

2. Skip down 6 rows to the first row of data (skip the header).

3. Import player data for one season.

4. Output dataset for season statistics.

5. Look ahead to next line, if it is another season of data, go back to step #3, otherwise continue.

6. Import the totals line.

7. Output dataset for career totals.

8. Look ahead to next line, if it is another player go back to step #3, if it is the end of a page go back to step #2, if

it is the end of the file import completed.

Once broken down to the most basic elements, each additional step and condition is simple. The final code is shown
below:

DATA

FootballInfo (drop = LookAhead _Season _Team
_GamesPlayed _Ru_Attempts _Ru_yds _ru_yards_game _ru_avg
_ru_td _re_Receptions _re_targets _re_yds _re_yards_game
_re_avg _re_YAC _re_td _Fumbles _Fumbles_Lost) Totals (drop = position Season _Season _Team _GamesPlayed
_Ru_Attempts _Ru_yds _ru_yards_game _ru_avg _ru_td
_re_Receptions _re_targets _re_yds _re_yards_game
_re_avg _re_YAC _re_td _Fumbles _Fumbles_Lost LookAhead);

infile '\\Football base file.txt' truncover;

format ReportDate date9.;

informat

/*Establishing formats for imported variables*/
LookAhead $20.
PlayerName $20. Position $2. Season 4. Team $25.
GamesPlayed 4. Ru_Attempts 5. Ru_yds 10. ru_yards_game 6.2 ru_avg 6.2 ru_td 4. re_Receptions 5. re_targets 5. re_yds 10. re_yards_game 6.2 re_avg 6.2 re_YAC 6.2 re_td 4. Fumbles 3. Fumbles_Lost 3.

/*Temporary variables in the event a player was traded. When
this occurs it is necessary to import an additional ros of
data and combine the two rows into one. These are dropped
in the final data set*/
_Season 4. _Team $25. _GamesPlayed 4.
_Ru_Attempts 5. _Ru_yds 10. _ru_yards_game 6.2 _ru_avg 6.2 _ru_td 4. _re_Receptions 5. _re_targets 5. _re_yds 10. _re_yards_game 6.2 _re_avg 6.2 _re_YAC 6.2 _re_td 4. _Fumbles 3. _Fumbles_Lost 3.;

9

/*ReportDate: Is imported from the first row and applied to every row in the
dataset.
PlayerName: This variable is imported from the first row of each player and
applied to each row of data.*/

retain ReportDate PlayerName;

/*Read in first 20 characters and hold the input record.
this will be used by conditional logic to decide how to continue.*/
input

@1 Lookahead $20. @;

/*You are at the first row of the report. Grabs ReportDate and jumps down to the first row of data.*/ if _n_ = 1 then
do;

input
@120 ReportDate mmddyy10.
//////
@1 PlayerName $20. @;

end;

/*Importing a standard row of player data*/
input

@21 Position $2.
@27 Season 4.
@34 Team $11.
@45 GamesPlayed 4.
@50 Ru_Attempts 5.
@56 Ru_yds 6.
@62 ru_yards_game 6.2
@68 ru_avg 6.2
@75 ru_td 4.
@80 re_receptions 5.
@85 re_targets 5.
@91 re_yds 6.
@97 re_yards_game 6.2
@103 re_avg 6.2
@109 re_YAC 6.2
@116 re_td 4.
@123 Fumbles 3.
@128 Fumbles_Lost 2.;

/*Read in first 20 characters and hold the input record.
The @@ must be used here because the first 20 characters can be

entirely made up of
blanks. The @@ ensures
 won't advance to

the next row looking for data and skip observations. This will
be used by conditional logic to decide how to continue.*/
input

@1 Lookahead $20.
@27 _season 4. @@;

/*This checks for a player who has been traded and played for multiple teams in
the same season. The additional season will be imported then combined.*/ if _season = Season then do; input

@34 _Team $11.
@45 _GamesPlayed 4.
@50 _Ru_Attempts 5.
@56 _Ru_yds 6.
@62 _ru_yards_game 6.2

@68 _ru_avg 6.2

10

@75 _ru_td 4.
@80 _re_receptions 5.
@85 _re_targets 5.
@91 _re_yds 6.
@97 _re_yards_game 6.2
@103 _re_avg 6.2
@109 _re_YAC 6.2
@116 _re_td 4.
@123 _Fumbles 3.
@128 _Fumbles_Lost 2.;

Team = strip(Team) || "/" || strip(_Team); GamesPlayed =
GamesPlayed + _GamesPlayed; Ru_Attempts = Ru_Attempts +
_Ru_Attempts; ru_yds = ru_yds + _ru_yds; ru_yards_game = ru_yards_game + _ru_yards_game; ru_avg = ru_avg +
_ru_avg;
ru_td = ru_td + _ru_td; re_receptions = re_receptions + _re_receptions; re_targets =
re_targets + _re_targets;
re_yds = re_yds + _re_yds; re_YAC = re_YAC +
_re_YAC; re_td = re_td + _re_td; fumbles =
fumbles + _fumbles;
Fumbles_lost = Fumbles_lost + _Fumbles_lost;

/*The data step should always be ended looking at a row of player data. After
importing and combining, the next row is imported to be used by conditional
logic to decide how to continue.*/
input

@1 Lookahead $20.
@27 _season 4. @@;

end;

/*The FootballInfo observation is output. This has to go after the code section
looking at multiple seasons to ensure the correct record is generated.*/
output FootballInfo;

/*Identifies totals row and imports according.*/ if Lookahead =
'Totals' then do;

input
@21 Position $2.
@27 Season 4.
@45 GamesPlayed 4.
@50 Ru_Attempts 5.
@56 Ru_yds 6.
@62 ru_yards_game 6.2
@68 ru_avg 6.2
@75 ru_td 4.
@80 re_receptions 5.
@85 re_targets 5.
@91 re_yds 6.
@97 re_yards_game 6.2
@103 re_avg 6.2
@109 re_YAC 6.2
@116 re_td 4.
@123 Fumbles 3.
@127 Fumbles_Lost 3.;

output Totals;

/*Looks ahead to be able to determine if it is the end of

11

a page or there is another row of player data.*/
input
@1 Lookahead $20. @@;

/*If the end of a page, skip down to the next row of data
and grab Playername.*/
if Lookahead = '' then

input
//////// @1 PlayerName $20. @@; /*If not at the end of a

page, then the lookahead variable
is equal to the next players name.*/

else
PlayerName = Lookahead;

end;

run;

SAS affords the flexibility to do things many diff erent ways, and there is any number of solutions to importing the sample
file. The code provided is one possible way that is very straight forward and does not have a lot of code repetition. One
of the major design decisions is to decide if the iteration of the DATA step should end on the next valid line of data or if
the DATA step should determine the correct place to import at the beginning of the iteration. That choice has the most
impact on the structure of the end result; neither is right or wrong. In this example we choose the former and ensured we
were ending the iteration of the DATA step at the start of a valid observation.

CONCLUSION

The example provided was a good demonstration of the power of using @ and @@. The football statistics file was a
straightforward example, but hopefully it can be seen how the process used can be extrapolated and expanded
upon to fit a variety of business cases. A high-level real world example is provided below to compare and contrast.
The following credit reporting file is
generated: **Page starts with Header row.
**First line of record is primary mortgagor relevant information.
**Record continues with additional mortgagor relevant
information. **Record finishes with general account information.
The primary mortgagor information is included on every account. If any additional mortgagors are present they are
included one line at a time following the primary mortgagor. Immediately following the last additional mortgagor or
immediately following the primary mortgagor if no additional mortgagors are present, is the general account
information. This is a very realistic general format for a flat file to take and is not unlike our football statistic example.
The rules for this import spec would most likely look something like this:
1. Identify the start of the page and drop down the correct number of lines to the data.

2. Import the primary account information

3. Check next line for additional mortgagor. If additional mortgagor present import data and repeat this step.

4. All additional mortgagors imported so this line must be general account information. Import.

5. Advance to next observation or start of a new page so DATA step can process the next import.

From a high-level these solutions are identical. The code to solve both of these problems is included in this paper
and would only require minor changes to solve either problem. This general structure established here should be
able to be modified for the vast majority of business cases involving any complex text file. If the complex file can be
broken down into the small pieces that are easy to validate and the criteria that must be followed the process
becomes virtually effortless to implement.

12

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Russell Woods
Enterprise: Wells Fargo Home Mortgage
City, State ZIP: Fort Mill, South Carolina
E-mail: rjwood02@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12

