Paper JMP-xx

Web Scraping with JMP for Fun and Profit
Michael Hecht, SAS Institute Inc., Cary, NC

Abstract

JMP includes powerful tools for importing data from web pages, sometimes referred to as web
scrapingt. This paper presents a case study that retrieves Macintosh OS X? usage share data
from the web, and transforms it into a JMP graph showing usage changes over time. When
combined with JMP’s built-in formulas, value labels, and summarization methods, the end result
is a tool that can be used to quickly evaluate and make decisions based on OS usage trends.

Introduction

In the course of developing JMP, we need to make decisions on what operating system versions
we will support. We wish we could support every version of an operating system, but in reality
that is not feasible. When it is time to release a new version of JMP, we must decide if we will
continue to support an older OS version, or if we will raise the minimum requirement3.

The decision to drop support for an OS version is not made lightly — we don’t want to
inconvenience our customers. But we cannot support older systems forever because this
prevents us from adopting new technologies. Therefore, we want our decision to be informed,
and that requires data. The data we want is an estimate of the percentages of OS versions in use
by our customers. Moreover, we would like to see the historical usage of OS versions so we can
predict how they will have changed when our next version of JIMP is scheduled for release. Our
respect for our customer’s privacy prevents us from intrusively gathering OS version data while
our customers use JMP. So we instead resort to a survey.

But we don’t want to conduct the survey ourselves. Instead, we will access data from one of the
various network monitoring companies. These companies monitor network traffic to a number
of major internet web sites, and record the OS versions reported by the visitors’ web browsers.
So right away, we are assuming some things: that the OS versions used by our JMP customers is
analogous to those used by the population as a whole; and that our customers will access the
web with the same machines they use to run JMP.

NetMarketShare*"

We collect our usage share* data from NetMarketShare>. This network monitoring company
collects data from over 40,000 websites around the globe, ensuring that the visitor data they
collect is unique and not fraudulent. Although they can provide detailed usage share statistics
for a fee, the information we seek is freely available on their web pages.

If we go to their website and drill down to their Desktop Operating System by Version report, we
see something like this:

Desktop Operating System Market Share July, 2014 5
Show Share of All Users Using Any Combination of:
Browser Al :)
Operating System Group [[All ¢)
Search Engine Al D]
Device Type Desktop + |
(%) hic Filter
v{ﬂ » TIMEFRAME vEXPORT TO vDISPLAY v EMBED COLUMNS HELP
Other: 2.65 %

Linux: 1.68 % —
Windows Vista: 3.05 % ~—

Mac OS X 10.9:4.12 % -~
Windows 8: 5.92 %
Windows 8.1: 6.56 % —\k

/

— Windows 7: 51.22 %

Windows XP: 24.82% =

| OPERATING SYSTEM TOTAL MARKET SHARE

| Windows 7 51.22% |
- Windows XP 24.82%
- Windows 8.1 6.56%
2 Windows 8 5.92%
~ Mac OS X 10.9 412%
7 Windows Vista 3.05%
| Linux 1.68%
- Mac OS X 10.6 0.84%

This is a good chart, because it breaks down the usage share by operating system and version.
But it doesn’t show us trends over time. We can drill down to a specific version, like Mac OS X
10.9:

Mac OS X 10.9 Market Share on Desktop September, 2013 to July, 2014 (4
Country Fiter: ([All] D)
|@1») TIMEFRAME vEXPORT TO +DISPLAY + [‘omeeo || cowwmns [e |
6%
4%
2%
0%

o8 C & d & 9 X § $
|MONTH MAC OS X 109
September, 2013 0.06%
October, 2013 0.84%
November, 2013 2.42%
December, 2013 2.79%
January, 2014 3.19%
February, 2014 3.48%
March, 2014 3.75%
April, 2014 4.07%
May, 2014 4.15%
June, 2014 3.95%
July, 2014 4.12%

Here we see the trend for this OS version over the past 11 months. But we don’t see how it
relates to the other versions of OS X that are in current use.

Goal

We want to import the data for all Mac OS X versions from this website into JMP; then use
JMP’s graphing capabilities to produce the graph we want. Furthermore, we would like to view
more than just 11 months of data. We would like to collect more data from NetMarketShare
over time and accumulate it all into a JMP data table.

Step 1: Importing

The first step is to import the raw data from the NetMarketShare web pages into JMP.
Fortunately, JMP has a built-in tool for doing just that®.

The Mac OS X 10.9 page has a specific URL that we can access from JMP. It is:

http://www.netmarketshare.com/report.aspx?qprid=11&gpcustom=Mac+0OS+X+10.9

The URL may not be pretty, but it lets us access the data. In JMP, use the Internet Open
command on the File menu, paste the URL into the dialog and click “OK”.

Internet Open

URL: }mp://www,nemme(sham.conwepon.aspx?qpfld=1 1&qpcustom=N
OpenAs: pata $

? Cancel OK

JMP accesses the web page at netmarketshare.com and analyzes it, looking for <TABLE>
elements within the page. It presents its findings in this dialog.

Import Tables

The following tables were found on the web page “report.aspx*. Some tables might not contain
usable data. Select those you would like to import.

Tables that appear to contain data are selected initially.

Tables available

[Mobile / TabletBro

{*"{ newir

Select All

\("http://www.r \are.com/i /hdrLink.d

Partners {**{r ge(open(“http://www.netmark .com/im)|
Partner Program Partner Program Site Signup Partner Resources Frequd
Consulting Services Overview Areas of Expertise Web Analytics Consult{
Company Information About Net Applications Management Team Comp
Sales (1-888-802-8390) Sales Inquiries Partners Submit a ‘Call Me' Req

Country Filter: [All JAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraA
{"*,{ newimage(open(*http://www.netmarketshare.com/shared/imag

{**.{ newimage(open("http://www.r \are.com/shared/images/Id

Cancel OK

http://netmarketshare.com

Of the 14 tables found, most of them are used to format page elements and do not contain
useful data. The one we’re interested in is Table 13, which shows “Feb” in the dialog list. If we
select only that one and click “OK”, JIMP imports the data into this table, which is precisely what
we want.

® OO0 report.aspx 13
~/report.aspx 13 > | < x
~/Source - Month Mac OS X 10.9
1 September, 2013 0.0005
2 October, 2013 0.0073
~/Columns (2/0) 3 November, 2013 0.0208
il Month 4 December, 2013 0.024
4 Mac 0S X 10.9 5 January, 2014 0.0268
6 February, 2014 0.0287
7 March, 2014 0.0315
~/Rows 8 April, 2014 0.0338
All rows b 9 May, 2014 0.0339
Selected 0 10 June, 2014 0.0325
ﬁ?j!,‘;‘ﬂ,ed g 11 July, 2014 0.0335
Labelled 0

Import One Table
We can perform the same operation with JSL. If we examine the “Source” table property, we see
code like this.

// Import a table from NetMarketShare

dt = Open(
"http://www.netmarketshare.com/report.aspx?gprid=11&gpcustom=Mac+0S+X+10.9",
HTML Table(13)

)i

The Internet Open command just uses the JSL Open() function with a URL instead of a path. The
HTML Table() option lets us specify that we want table #13 from the web page.

Once we’ve scraped this data, let’s clean it up with a bit more code. We’'ll convert the Month
column from character data into a standard numeric JMP date, and we’ll use the Percent format
for the Mac OS X 10.9 column, which contains the market usage share (the usage share of this
OS X version across the entire OS market).

// Map month names to numbers

monthmap = [
"January" => "01",
"February" => "02",
IIMarchll => II03II'
IIApri'LII => II04II'
IIMayII :> II05II,
IIJuneII = II06II'
IIJu'LyII => II07II’
IIAugustll => II08II'
"September" => "@9",
"October" => "10",
"November" => "11",
"December" => "12"

I

// Change the Date column to a date format that JMP will recognize: MM/YYYY
For(r =1, r <= N Rows(dt), r++,

val = Column(dt, 1)[r 1;

If(val == "", Continue());

w = Words(val, ", ");

Column(dt, 1)[r 1 = Eval Insert("“monthmap[w[1]]1~/*w[2]™");
);
// Convert the Date column to a numeric value with the "M/Y" date format
Column(dt, 1) << Data Type(Numeric) << Format("M/Y", 7) << Set Modeling
Type(Continuous);

// Use the "Percent" format for the usage share column
Column(dt, 2) << Format("Percent", 12, 2);

Now our data table looks like this.

806 WP 1 £ 1L £ S I e —
(vreport.aspx 13 > | < h
B &) Month Mac OS X 10.9
1 09/2013 0.05%
2 10/2013 0.73%
~/Columns (2/0) 3 11/2013 2.08%
A Month 4 12/2013 2.40%
4 Mac 0SX10.9 5 01/2014 2.68%
6 02/2014 2.87%
7 03/2014 3.15%
~ Rows 8 04/2014 3.38%
All rows 11 9 05/2014 3.39%
:::3;2 g 10 06/2014 3.25%
e 0 11 07/2014 3.35%
0

Import All Tables
From this starting point, we can import the NetMarketShare data for all OS X versions using a
loop. (Note that NetMarketShare uses “Mac OS X 10.1” for Apple’s most recent version: OS X
10.10 Yosemite.)

// Configuration

// The base URL for accessing 0S X data from NetMarketShare
base url = "http://www.netmarketshare.com/report.aspx?qprid=11&gpcustom=Mac+0S+X+";

// Append one of these variants to the base URL to get the full URL
variant list = {

II10.1II' II10.9II, II10.8II’ II10.7II,

"10.6", "10.5", "10.4", "(no+version+reported)" };

// Data is in this HTML table
html table i = 13;

// Map month names to numbers...

// Import all variants of Mac 0S X from NetMarketShare
For(v =1, v <= N Items(variant list), v++,
Write(Eval Insert("\!NImporting data for “~variant list[vI™"));
dt = Open(
Eval Insert("~base url™*variant list[v]™"),
HTML Table(html table i)
);

// Change the Date column...
);

We create a JSL list named variant list, which holds the part of the URL that is different for each
page we want to import. Next, we simply loop through the items of this list. For each variant,
we write a message to the log and use Open() to import that variant. Both of these operations
use the handy Eval Insert() function. This function returns its input string, after it evaluates each
expression delimited by the caret symbols (*) and replaces that text with the result. So *base
url” is replaced by the value of base url, and “variant list[v]* becomes the variant for this loop
iteration. We follow the JMP convention of writing each line to the log starting with a newline
sequence (“\!N”).

This does the job — sort of. When we run it, we get eight data table windows, one for each
variant we’re importing. We really need to join all these data files into a single data table; and
we don’t need to see all the intermediate data tables in the process!

The first web page we import should become the beginning of our final data table. All others
imported after that should be joined to it, adding their OS variant’s usage data as an additional
column. So we need a way to distinguish the first table from the rest. Here’s how.

// Configuration...

// Import all variants of Mac 0S X from NetMarketShare
dt = Empty();

For(v =1, v <= N Items(variant list), v++,
Write(Eval Insert("\!NImporting data for “~variant list[v]™"));
adt = Open(
Eval Insert("~base url™variant list[v]™"),
HTML Table(html table i),
Invisible

);
// Change the Date column...
// Join this table to dt join

If(Is Empty(dt),
// First import
dt = adt;

// All subsequent imports

jdt = dt << Join(With(adt), Merge Same Name Columns,
By Matching Columns(:Month = :Month),
Drop multiples(@, @), Name("Include non-matches")(0, 0),
Invisible

);

// Done with dt, adt
Close(dt, No Save); Close(adt, No Save);

// jdt is the new dt; get rid of the Match Flag column
dt = jdt; dt << Delete Column(Match Flag);
);
);

dt << New Data View; // For debugging only

Each import places the reference to the scraped data table in the variable adt. Note the addition
of the Invisible option on the Open(). That option tells JMP to not go to the effort to create a
window for this data table. It imports the data and creates all the usual data table structures in
memory, it just doesn’t actually show us the table in a window. This actually speeds up the
script’s execution quite a bit!

The next If() determines whether this is the first import or a subsequent import. It doesn’t work
to use If(dt == Empty(), ...). Instead, we must use the Is Empty() function to test for that. If
true, this is the first import so we just move adt to dt.

The second half of the If() is used for all imports after the first one, because now dt is no longer
empty. For these imports, we use the << Join message to create a new data table jdt, with the
columns from dt and adt joined together. Join is complex and has lots of options that control
how the rows from its input tables are combined’. We won’t go into those here. But after the
join all our data is now in jdt. We don’t need dt or adt anymore, so we close them. Now, jdt
becomes the new dt. We delete the Match Flag column which the join added, and repeat for
the next OS variant.

Once outside the loop, dt holds a reference to the data table that has all of our joined data in it.
But it’s still invisible. So we send it the << New Data View message to tell JMP that it’s time to
make a window. This is just a temporary step for debugging, so we can see our progress along
the way. This is what the final result looks like.

Hidden
Labelled

@00 untitled 16
| = untitied 16 >«) Mac OS X (no
100008 = Month Mac OSX10.1 Mac OSX 109 Mac OSX 108 Mac OSX10.7 Mac OSX 106 Mac OSX 105 Mac OSX10.4 version
{ ~ Columns (9/0) 1 0972013 0.00% 0.05% 3.25% 1.46% 1.48% 0.31% 0.08% 0.01%
A Month 2 102013 0.00% 0.73% 2.88% 1.35% 1.40% 0.29% 007% 0.01%
4 Mac 0S X 10.1 3 112013 0.00% 2.08% 1.59% 1.15% 132% 027% 0.07% 0.01%
4 Mac 0S X109 4 122013 0.00% 2.40% 1.42% 1.06% 1.26% 0.25% 0.07% 0.01%
A Mac0SX108 5 0172014 0.00% 2.68% 1.24% 1.00% 1.20% 0.24% 0.06% 0.01%
4 Mac 0S8 X 107 6 02/2014 0.00% 287% 1.09% 0.94% 1.15% 0.23% 0.06% 0.01%
| 4 MacOS X108 7 03014 0.00% 3.15% 0.99% 088% 1.08% 020% 0.05% 001%
|~ Rows 8 0412014 0.00% 3.38% 0.88% 0.79% 1.02% 0.20% 0.05% 0.01%
All rows 1 9 052014 0.00% 339% 0.79% 071% 091% 0.18% 0.04% 0.01%
Selected 0 10 06/2014 0.05% 3.25% 0.66% 0.61% 0.78% 0.14% 0.04% 0.01%
Sxcluded g 1 0722014 0.10% 335% 057% 0.53% 0.68% 0.13% 0.03% 0.01%
0

Step 2: Stacking

We have now scraped all the web data from NetMarketShare into a single data table. But this
data table needs to be reshaped so we can use it for graphing and analysis. We need a single
column of all the market usage share percentages. For each month we will have multiple rows,
one for each OS X version. We can do this reshaping with the << Stack message.

// Build a list of all the market usage share columns
col list = {};
For(¢ = 2, ¢ <= N Cols(dt), c++,
Insert Into(col list, Column(dt, c));
);

// Stack these columns into a single column, along with a source label
// to identify the 0S X version
dt stack = dt << Stack(
Columns(col list),
Source Label Column("Version"),
Stacked Data Column("Market Usage Share"),
Invisible
);
Close(dt, No Save);

dt stack << New Data View; // For debugging only

The << Stack message requires a list of columns. But we don’t want to specify all the market
usage share columns explicitly. That would make our script more difficult to maintain when a
new OS variant is introduced. Instead, we build a list of the columns dynamically in col list,
starting at column 2. Then we can stack the data into a new data table referenced by dt stack. At
this point, we’re done with dt so we close it. We continue to use invisible data tables for
efficiency; so as before the << New Data View is used temporarily to show us the result of this
intermediate step.

® 00 untitled 17

| ~ untitled 17 »| < A4 Market Usage
~ Source - Month Version Share
1 09/2013 Mac OS X 10.1 0.00%
2 09/2013 Mac OS X 10.9 0.05%
3 09/2013 Mac OS X 10.8 3.25%
4 09/2013 Mac OS X 10.7 1.46%
l ~ Columns (3/0) 5 09/2013 Mac OS X 10.6 1.48%
A Month 6 09/2013 Mac OS X 10.5 0.31%
ik Version 7 09/2013 Mac OS X 10.4 0.08%
A Market Usage Share 8 09/2013 Mac OS X (no version reported) 0.01%
9 10/2013 Mac OS X 10.1 0.00%
10 10/2013 Mac OS X 10.9 0.73%
11 10/2013 Mac OS X 10.8 2.88%
12 10/2013 Mac OS X 10.7 1.35%
| 13 10/2013 Mac OS X 10.6 1.40%
~ Rows 14 10/2013 Mac OS X 10.5 0.29%
All rows 88 15 10/2013 Mac OS X 10.4 0.07%
Selected 8 16 10/2013 Mac OS X (no version reported) 0.01%
E’i‘gggfd g 17 11/2013 Mac OS X 10.1 0.00%
Labelled 0 18 11/2013 Mac OS X 10.9 2.08%
19 11/2013 Mac OS X 10.8 1.59%

Each month is now represented by eight rows, one for every OS X version.

Step 3: Combining with Historical Data

We now have eleven months worth of market usage share data. But we want to see trends in
OS X usage share over a longer period of time. This requires us to run our script again at the
beginning of each month, to scrape the newly-posted data for the previous month. But now we
need a way to combine the new month’s data with the historical data we’ve already collected.

There are a few methods we could use to do this, each with their own benefits and drawbacks.
The method | use is to filter out all but the new data, then concatenate that to the historical
data. My definition of “new data” is data that | haven’t already collected. | use this JSL to do the
filtering.

dt historical << Select All Rows;

dt historical:Month << Set Selected(1);
dt historical << Select All Matching Cells;
dt historical << Invert Row Selection;

dt historical:Month << Set Selected(0);
dt stack << Delete Rows;

Let’s break this down.

First, assume that dt historical is a reference to our data table of historical data. It has the same
columns as the dt stack data table we just scraped from the web and combined, but it has more

rows that go back farther in time. The first thing we do is << Select All Rows of dt historical. This
is pretty self-explanatory.

Next, we select the Month column of dt historical, by sending << Set Selected(1) to that
specific column. This operation, combined with the previous one, has the effect of selecting all
the cells of Month. This is different from only selecting the column or only selecting the rows.
And it is a very important distinction, because the next operation works specifically on selected
cells.

That next operation is << Select All Matching Cells, and it is kind of magical! We send this
message to dt historical, but the message doesn’t really affect that data table. Instead, JMP
looks at all other open data tables and selects any rows in them where any cell matches a cell
that is selected in dt historical. So if dt historical has rows selected for Month = 09/2013 and
Month = 10/2013, then << Select All Matching Cells will cause the rows in dt stacked to also be
selected, where Month has those same values. But the other rows of dt stacked, say where
Month is 11/2013, will not be selected because dt historical doesn’t have any row with that
value. Magic!

The next two operations simply undo the selection in dt historical. << Invert Row Selection is an
easy way to say “select no rows”. And << Set Selected(0) just turns off the selected Month
column.

At this point, dt stacked has all the rows selected that are already in dt historical. The next
message << Delete Rows deletes them. Now dt stacked contains only the new data.

The final step couldn’t be easier.

dt historical << Concatenate(dt stack, Append to first table(1));
Close(dt stack, No Save);

The Historical Data Table

We can do a few things to improve the reporting in our historical data table. First, the Version
column needs a Value Label property. We label the raw OS X version numbers reported by
NetMarketShare with their short code names. Some of these are the “big cat” names used in
the first nine versions of OS X. The rest, starting with OS X 10.9, are “California” names. For the
“(no version reported)” variant we use the label “Other”. We also add a Value Ordering property
to get these all in the correct order. Finally, we make the column a Label column.

We also want to balance the numbers so that we are focused on just the usage share of each OS
X version within the realm of Macintosh users, rather than for the whole desktop PC market. To
do this, we create a new column named Usage Share, which has this formula.

Market Usage Share

Col Sum[Market Usage Share , MonthA]

10

The Col Sum() function computes the sum of all the Market Usage Share values for a given
Month; then the formula divides that into each individual Market Usage Share. For example, in
September of 2013, Mountain Lion had 3.25% of the total desktop PC market usage share. But
Mac users only accounted for 6.64% of all desktop PC usage that month. That means Mountain
Lion had a usage share of 48.9% among Mac users (3.25/6.64 = 0.489).

Our collection script can now be added to our historical data table as a table script. When a
table script is run, Current Data Table() is initially set to the data table that hosts the script. So
we start our script with this.

dt historical = Current Data Table();

Graph and Analysis

| have collected data on OS X usage share going back to 2009. Let’s graph that data and look at
the trends. Here’s a Graph Builder overlaid area plot.

Version

I Other

I Tiger

I Leopard

I Snow Leopard
[Lion

I Mountain Lion
I Mavericks

I Yosemite

Usage Share

0%
01/2010 05/2010 09/2010 01/2011 05/2011 09/2011 01/2012 05/2012 09/2012 01/2013 05/2013 09/2013 01/2014 05/2014
Month

The usage shares look like a mountain range, with each version peaking when the subsequent
version is released. All the OS versions show a slow attrition rate, which probably reflects the
replacement of old hardware with newer equipment that comes with the latest OS pre-
installed.

The large purple mountain is Snow Leopard, and it had a very good run; especially when

compared to its successor, Lion (the orange peak). In fact, Snow Leopard is still hanging on fairly
well today, with more usage than both Lion and Lion’s successor, Mountain Lion (teal). This is

11

most likely because Snow Leopard was the last OS version to support PowerPC applications.
Snow Leopard proved so popular that in November of 2012, it caused Apple a real problem:
their usage share was almost equally divided between three competing OS versions — Snow
Leopard, Lion, and Mountain Lion.

Up until about December of 2013, it would not have been wise for us to drop support for Snow
Leopard, because of its large continued usage. But then it dropped below 20% when Mavericks,
which had been released in September of 2013, started to gain ground. Mavericks was the first
OS X version that Apple distributed free of charge, which likely accounts for its quick uptake.

As of this writing, OS X 10.10 Yosemite is not yet released. Some usage statistics appear
however, because Apple has conducted a public beta test prior to releasing it. It will be
interesting to see if Yosemite finally puts Snow Leopard to rest.

Contact information

Your comments and questions are valued and encouraged. Contact the author at:
Michael Hecht
michael.hecht@jmp.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

References

1 Wikipedia defines web scraping as "a computer software technique of extracting data from websites".
This is done by "[simulating] human exploration of the World Wide Web by [...] implementing low-level
Hypertext Transfer Protocol (HTTP)". http://en.wikipedia.org/wiki/Web scraping

2 Wikipedia: OS X. http://en.wikipedia.org/wiki/Os x

3 JMP: System Requirements. http://www.jmp.com/support/system requirements jmp.shtml

4 Wikipedia: Usage Share of Operating Systems. http://en.wikipedia.org/wiki/
Usage share of operating systems

5 NetMarketShare®". http://www.netmarketshare.com

6 JMP Online Documentation. Using JMP: Import Remote Files and Web Pages. http://www.jmp.com/
support/help/Import Remote Files and Web Pages.shtml#319726

7 JMP Online Documentation. Discovering JMP: Joining Data Tables. http://www.jmp.com/support/help/
Managing Data.shtml#167540

12

http://www.jmp.com/support/help/Import_Remote_Files_and_Web_Pages.shtml#319726
mailto:michael.hecht@jmp.com
http://www.netmarketshare.com
http://www.jmp.com/support/system_requirements_jmp.shtml
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://en.wikipedia.org/wiki/Os_x
http://en.wikipedia.org/wiki/Web_scraping
http://www.jmp.com/support/help/Managing_Data.shtml#167540

