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ABSTRACT

The bootstrap has become a very popular technique for assessing the variability of many different or unusual
estimators. Starting in JMP Pro 10 the bootstrap feature was added to a wide variety of output options; however,
there has not been much development as to the possible uses of this somewhat hidden feature. This paper will
discuss a handful of uses that can be added to routine analyses. Examples include confidence interval estimates of
the 5% trimmed mean, validation of covariates in regression analysis, comparing the differences in Spearman
correlation estimates across two groups, and eigenvalues in principal components analysis. The examples will show
the extra depth that can be easily added to routine analyses.

INTRODUCTION

The bootstrap has become a popular technique for statistical analysis for a wide variety of metrics. Bootstrapping is
the process of repeated sampling with replacement from a given dataset. The technique is powerful and becoming
increasingly popular in applied analytics. First, it does not rely on parametric assumptions or large sample
mathematics, which are traditionally the most common methods in variance and inferences of standard statistics
(such as the mean and standard deviation). The technique relies more on the observed data and computational
acumen rather than assumptions about the underlying structure or statistical model for the data.

The simple or naive bootstrap for the mean is a relatively simple procedure. Starting with an original set of
observations, denoted here as X, X,, ..., X,,, create a new sample of observations, denoted here as X;, X5, ..., X1,y
sampling the original dataset. Note that the naive bootstrap creates a resampled version of the data whose size is
the same as the original sample (n). To keep the samples from being exactly the same, the bootstrapped sample has
been created with replacement, which means that one X; in the original data may appear many times in the
bootstrapped sample. The general idea is that the behavior of the bootstrapped sample mimics features of the
original sample but is potentially different. The power and utility of bootstrap comes into play when one creates not
one resampled version of the data but many different resampled datasets, thereby creating a way to explore sample
to sample variation of different measures of interest. The reader is encouraged to look at Efron and Tibshirani (1993)
and Chernick (2007) as excellent sources of a complete overview of bootstrapping.

JMP introduced bootstrapping as a standard option in many different analyses in JMP Pro 10. The goal of this paper
is to explore the use of the bootstrap in non-standard settings to examine practical ways to utilize the bootstrap to
gain additional insights and analyses. There will be no deviation from the standard options that JMP uses to
bootstrap and examine the data. The goal here is to provide some examples and ideas to motivate the reader into
using this feature in their day—to-day work. The examples will be pulled from the JMP Sample Data archive found
under the Help menu in JMP. Visuals consist of screen captures of software options and output from JMP Pro 11.
Sections are organized based on metrics of interest and grouped by sample dataset. Individuals following this guide
should note that bootstrap resampling relies on random number generation so the values obtained by others may not
match exactly those printed in the visuals here but should be reasonably close.



THE MEAN AND TRIMMED MEAN

Starting with an examination of the mean and trimmed mean, the first dataset under consideration is the “Car
Physical Data” file in the sample data archive. The data was collected in 1990 and consist of 116 different car
models from manufacturer’s, which are grouped into three geographic regions (USA, Japan, Other). The data also
list vehicle type (Large, Medium, Compact, Small, Sport) and vehicle metrics for weight, turning circle displacement,
horsepower and gas tank size. Display 1 below illustrates standard JMP output for the distribution of Gas Tank Size.

4 =| Distributions

4(~|Gas Tank Size

4 Quantiles 4 = Summary Statistics
100.0% maximum 27 Mean 16.237931
99.5% 27 Std Dev 3.0755602
97.5% 25  Std Err Mean 0.2855586
90.0% 20 Upper 95% Mean 16.803568
“_'_‘ 750%  quartile 18 Lower 95% Mean 15.672294
500%  median 159 N 116
i e = = 250%  quartile 1405
10.0% 124
25% 10555
0.5% 9.2
0.0%  minimum 8.2

Display 1. Standard Distributions Output in JMP Pro 11

We see that the mean gas tank size is 16.23 with a 95% confidence interval (15.67, 16.80). That interval estimate is
usually based on either distributional assumptions about the mean and/or large sample mathematics. To explore the
use of the bootstrap, let’s first add the trimmed mean as a summary statistic. The trimmed mean is calculated by
removing a portion of the highest and lowest observations to provide an estimate of center less dependent on
potential outliers. See Display 2 below for details.
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Display 2. Left Click on Red Tab for Summary Statistics

Choosing only Mean and Trimmed Mean as options, the following output is obtained.

4~ Summary Statistics

Mean 16.237931
5% Trimmed Mean 16.096154



Display 3. Mean and Trimmed Mean Estimate

These are the two measures that we would like to perform bootstrapping on. To utilize the bootstrap in IMP Pro
simply right click on the table desired for bootstrapping. Select the Bootstrap option. (See Display 4 below.)
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Display 4. Bootstrap Option and Information Box in JMP

Note that there are multiple options in the Bootstrapping dialogue. To perform the naive bootstrap simply leave the
default options in place. One may be interested in increasing the number of samples if there is a need for more
precision in the intervals. 100 samples is the default option but some users perfer several hundred resamplings, if
not 1000 or more.

After selecting the appropriate options, a new dataset will emerge that contain the original metric values and the
recalculated metric for each bootstrap sample. JMP bootstraps the data behind the scenes and users are given the
recalculated metric for each resampling. See Display 5 as an example of an output dataset.

=] Untitled 4 - JMP Pro

i

File Edit
e

= |Untitled 4

*|Source

Tables

=

vy
ik BootlDe

A Wean

*|Columns (4/0)

A 5% Trimmed Mean
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— Y BootID+ 5% Trimmed Mean Mean

x @ 1 Gas Tank Size 0 16.096153846 16.237931034

2| Gas Tank Size 1 15.8125 15951724138

3| Gas Tank Size 2 16399038462 16.56637931

4| Gas Tank Size 3 16.819230769 16.982758621

5| Gas Tank Size 4 15.990384615 16.121551724

6| Gas Tank Size 3 16140384615 16.289655172

7| Gas Tank Size 6 15972115385 16.156896552

8 Gas Tank Size 7 16370192308 16.490517241

9 Gas Tank Size 8 16.276923077 16453448276

10 Gas Tank Size 9 15.861538462 16.068965517

Display 5. Example of Bootstrapped Output for 5% Trimmed Mean and Mean



Now users simply run the distribution option again, this time choosing the Trimmed Mean and the Mean as their
variables of choice. JMP recognizes that this is a bootstrapped sample and provides different output in support of the
bootstrapping. Recall the original output had a mean gas tank size of 16.23 with a 95% confidence interval (15.67,
16.80). Each resampled dataset contained its’ own mean gas tank size, the mean of which is listed in the output here
as 16.24. Naive bootstrapping generally relies on percentile based estimates for confidence limits, that is to say, the
lowest 2.5 percentile and the highest 97.5 percentile are used to form a 95% bootstrap interval estimate for the
population parameter of interest. Here we see the bootstrap intervals are a little more conservative with a wider
interval (15.63, 16.91) than the one that relied on distribution assumptions or large samples. However, the true utility
in bootstrapping comes into play when one examines the interval estimate for the trimmed mean. JMP does not
provide confidence intervals for the trimmed mean so users would need to find other options if they wanted such an
interval estimate. The output also provides the estimate from the original data so that users can compare the
bootstrap sample statistics to the original data. See Display 6 below.

4d(=Mean
4 Quantiles 4 Summary Statistics < Bootstrap Confidence Limits

100.0% maximum 169828 Mean 16.235319 Coverage PctLower PctUpper
99.5% 16.9828  Std Dev 0.2783723 0.95 15.6299 16.9134
97.5% 169134  Std Err Mean 0.0278372 0.90 157674 16.6591
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— 75.0% quartile 164455  Lower 95% Mean 16.180084 0.50 16.0563 16.4455
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4(*15% Trimmed Mean
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100.0% maximum 168192 Mean 16115029 Coverage PctLower PctUpper
99.5% 16,8192  Std Dev 0.2784228 0.95 15.5409 16.7818
97.5% 16.7818  Std Err Mean 0.0278423 0.90 15.6849 16.5722
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50.0% median 161144 N 100

152 154 156 158 16 162 164 166 168 17 N e 5o Origina! Estimate. 1609615
10.0% 157786
2.5% 155409
0.5% 153798

0.0% minimum  15.3798

Display 6. Mean and Trimmed Mean Summary Statistics and Confidence Limits

PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis (PCA) is a popular data reduction technique. The general idea is to reduce the
number of quantitative variables under consideration by taking a smaller set of weighted averages that retain a
certain amount of variation from the original data. The idea is that a smaller set of variables will be easier to work
with for follow-up analysis. The interested reader should see Jolliffe (2002) for a full discussion of PCA. Returning to
the “Car Physical Data,” there are five quantitative measurements for each car (Weight, Turning Circle, Displacement,
Horsepower, Gas Tank Size), many of which are obviously related. Larger cars must be heavier and use more fuel
and power to move. Therefore there is some redundancy in this data as different measures ‘explain’ similar facets of
the cars. PCA is a great technique to elucidate how much common variation is in data and how much reduction can
be performed. JMP performs PCA using the Multivariate option found in the Multivariate Methods section (under
Analyze; see Display 7).
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Display 7. Multivariate Menu
Performing PCA on the correlations in this dataset yielded the following output:

4 Principal Components: on Correlations
Number Eigenvalue Percent 20 40 60 3 Cum Percent

1 38656 77313 J 77313
2 05237 1047400 @ 0\ 87.786
3 03487 69751 ¢ . ) 94,761
4 01474 2948] o @ 0| 97.709
5 o4 2201 ¢ o o o 100.000

Display 8. Principle Components Analysis Output on Car Physical Data

PCA suggests that 77% of the total variation in all five measures can be summarized in one weighted sum measure.
Indeed this suggests that the five variables are separate measures but are mostly aspects of only one underlying trait
or quantity. Many individuals refer to such a quantity as a latent trait, because while unobserved directly in the data,
there are many surrogates of it in the things that have been quantified. Now suppose one wanted an interval
estimate of that percentage. What is a 95% interval estimate for the true proportion of variation that these variables
explain in one latent trait or quantity? For that one can simply right click on the table and perform a bootstrap
analysis in the exact same way as in the previous section. See Display 9 below for assistance.



4 Principal Components: on Correlations

Number Eigenvalue Percent 20 40 60 80 Cum Percent
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Display 9. Selecting Bootstrap Option from PCA Output Table

Here bootstrapping the data will give you interval estimates for all 5 principal components. In general it is advisable
to only examine the first couple of components because the percentages must sum to 100% and the interval
estimates for each are calculated separately. Note from the output below that we obtain an interval estimate of the
true proportion, which indicates that between 73.32% to 81.18% of the variation is explained. By relying on
percentiles in the confidence limits, we are guaranteed to have values that fall between 0% to 100% because the
interval relies on actual calculated values from resampled datasets.

4 [~ Distributions

dvl

4~ Summary Statistics < Bootstrap Confidence Limits

Mean 77.409054 Coverage Pct Lower Pct Upper
Std Dev 1.9372951 0.95 73.3199 81.1798
0.90 73.9923 80.5765
0.80 74.7899 79.8061
0.50 76.1809 78.7366

72 74 76 78 80 82 . .
Original Estimate 77.31255

Display 10. Output from Bootstrap of PCA Data

REGRESSION ANALYSIS

Continuing to utilize the current dataset, let's consider bootstrapping with another popular analysis, regression. While
there are many different types of regression analyses based on different outcomes, bootstrapping has become a
popular technique for both fitting regression models and validating particular choices of models. Simply put,
regression modeling allows individuals to create statistical models which fit several potential predictor variables to a
particular response of interest. The goal is to look at the simultaneous impact of all these different predictor variables
on the outcome. The interested reader is highly encouraged to read Harrell (1992) for a complete discussion of
regression modeling. Continuing with the current example, start by fitting a regression model for the outcome



(chosen here to be Displacement) using the other quantities as predictors (Weight, Turning Circle, Horsepower, Gas
Tank Size). Using JMP’s Fit Model dialogue we start with the model listed in Display 11 below.
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Display 11. Options for Regression Example Using Car Physical Data

This leads, in turn, to the output in Display 12 below. (Note that 95% interval estimates were added and are not part
of the original standard output; to duplicate, simply right click and add those columns to the output table).

4 Summary of Fit

RSquare 0.797586
RSquare Adj 0.790291
Root Mean Square Error 27.66359
Mean of Response 158.3103
Observations {or Sum Wgts) 116

4 Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 4 33471542 836789 109.3450

Error 111 8494541 7653 Prob > F
C. Total 115 419660.83 <.0001#

4 Parameter Estimates

Term Estimate Std Error tRatio Prob:=|t| Lower 95% Upper95%
Intercept -263.6616 3538467 -745 <0001* -333.7787  -193.5445
Weight 0.0364195 0.011554 315 1 0.0135237 0.0593152
Turning Circle 6.2736766  1.25664 4.99 3.7835608  8.7637925
Horsepower  0.5894934 (0.093497 6.30 04042233  0.7747635
Gas Tank Size -0.281546 1603658 -0.18 -3459301  2.8962081




Display 12. Regression Output for Car Physical Data on Displacement as Response Variable

There are a large number of different uses for the bootstrap here; for example, one could follow the ideas of the last
section and obtain a 95% bootstrap interval estimate of the R-Square value for this model. Or one could ignore the
large sample confidence intervals for the regression slope parameters and instead obtain 95% bootstrap intervals of
those same slope parameters. The latter may be preferred if the variables in the model come from unusual or
unstable distributions of data. However, as to not replicate techniques discussed in previous sections, this example
will look at something different. As a validation technique, consider taking bootstrap replications of the p-values from
the above model. The question of interest is, in what proportion of bootstrap resamplings do we see a statistically
significant p-value for each variable in the model? If one or a handful of unusual influential observations are driving
this model, then those variables may not stand up to such further scrutiny. Bootstrapping just the p-value column
(Prob > |t|) and looking at the distribution of p-values for Weight and Gas Tank Size, we see the following (output
adjusted using standard JMP options) in Display 13 below.

4> Weight

4 Bootstrap Confidence Limits

79%

Coverage PctLower PctUpper
0.95 142e-8 0.31301
090 4.66e-8 0.08428
030 3.8e-7 0.04476
0.30 5.48e-5 0.01172

13% Original Estimate 0.002085

0% 0% 2% 3% po. 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1%

-0.0500 0.0500 0.1500 0.2500 0.3500 04500 0.5500 0.6500 0.7500 0.8500 0.9500

4~ Gas Tank Size

4 Bootstrap Confidence Limits
Coverage PctLower PctUpper
095 0.00113 0.96424
0.80 0.00285 0.95115
0.80 0.02838 0.84258
050 0.14026 0.6972

<.0001 0.1000 0.2000 0.3000 0.4000 05000 0.6000 0.7000 0.8000 0.9000 1.0000

Original Estimate (0.860955

Display 13. Bootstrap Output for P-values of Weight and Gas Tank Size

Here the bootstrap intervals aren’t as interesting as the histograms themselves. Note that 92% of resampled
datasets give a p-value for Weight of less than 0.05 but only 14% of resamplings indicate Gas Tank as a significant
predictor. Here we see the impact of resampling. The original model suggested that Gas Tank Size is not a
significant predictor, but a small amount of resamplings do show significance. This is a simple and informative
diagnostic regarding the stability of different predictors in a statistical model. It is easy to employ and provides an
extra layer of analyses regarding whether the predictors in a given model have some evidence of stability. There is
no hard and fast rule as to how what proportion of resamplings should have a significant predictor, but it is easy to
speculate that it should be at least 0.50 (better than coin flips).

SPEARMAN CORRELATIONS

Turning to the last example, a different sample dataset is needed. The sample dataset “Children’s Popularity”
contains 480 observations from a study by Chase and Dummer (1992). JMP notes showing the following description:

“Subjects were students in grades 4-6 from three school districts in Ingham and Clinton Counties, Michigan.
Chase and Dummer stratified their sample, selecting students from urban, suburban, and rural school
districts with approximately 1/3 of their sample coming from each district. Students indicated whether good
grades, athletic ability, or popularity was most important to them. They also ranked four factors: grades,
sports, looks, and money, in order of their importance for popularity. The questionnaire also asked for
gender, grade level, and other demographic information.”

The ranked factors are the values of primary interest. Using the multivariate option (see visuals in PCA section) to
look at correlations between the variables Grades, Sports, Looks, and Money the following output is derived. (See
Display 14 below.)



4k Children's Popularity - Multivariate - JIMP Pl 0 &% -WEJ l:'|'|§hlg

4~/ Multivariate
> Correlations
” (=IScatterplot Matrix '
4 Nonparametric: Spearman’s p

Variable by Variable Spearmanp Prob=|p| -8-6-4-20 .2 4 6 .8

Sports Grades -0.1486  0.0011* N |:

Looks Grades -0.4963  <.0001* g

Looks  Sports 04651  <0001*

Money  Grades 04465  <.0001* - |
Money  Sports 03159 <0001 L '
Money  Looks -00584 02021 0l

28 O

Display 14. Correlation Output from Ranked Variables in Children’s Popularity Dataset

Spearman correlations illustrate that Looks and Money both seem to correlate weakly with Grades; however, Money
and Looks have virtually no correlation. Consider a stratified analysis that considers the Spearman correlation by
Gender. (See Display 15 below.)

4 = Multivariate Gender=boy

4 Nonparan‘&g‘tr'c: Spearman’s p

Variable by Variable Spearmanp Prob>|p| -8-6-4-20 .2 4 6 .8

Sports Grades -01594  0.0162% P :\:
Looks Grades -0.5424 <0001 :
Looks  Sports 03283  <.0001* -
Money  Grades -04103  <.0001*% .
Money  Sports 02448  0.0002* - [
Money  Looks -0.2198  0.0009* o [

4 = Multivariate Gender=girl

4 Nonparametric: Spearman's p

Variable by Variable Spearmanp Prob=|p| -2-6-4-20 .2 4 6 .8

Sports  Grades -0.1592  0.0115% P |:
Looks Grades -0.5612  <.0001* :

looks  Sports 03144  <0001* - [
Money  Grades -04770  <.0001% |:
Money  Sports -04642  <.0001%| . . O :
Money  Looks 00694 02734 | . @ . [

Display 15. Stratified Analysis of Spearman Correlation by Gender on Children’s Popularity Dataset



Here we see something of a different constellation of correlations between the genders. With the measured
association between Money and Looks to be -0.2198 for boys and 0.0694 for girls, the question that arises is whether
the correlation is significantly higher for boys than girls. We have an estimate of that difference to be -0.2892, but can
one find a 95% bootstrap confidence interval for that difference to determine if it contains zero? First note that the
analysis here is stratified by Gender and JMP will NOT take a bootstrap sample of any table that has used the “By”
option; therefore one must manually split the data into a subset for this analysis. Start by creating separate data
sheets for boys and girls. Here we will focus on just the Gender, Money, and Looks variables. (See Display 16 below
for visuals of this process.)

i
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0 Cancel
e 3 [ Cancel |
Aprge
hRace v Recall
Rows [ Help
@ All rows

) Selected Rows

(O Random - sampling rate : 0.5

) Random - sample size: 240
Stratify

Columns

) All columns @ Selected columns
Keep by columns

Output table name:

[] Link to original data table
Copy formula
Suppress formula evaluation

[Save Default Options

[] Keep dialog open

w-b-l‘-'-b-l—lu.lwm-b-.b-m.b-.b-l—hl—ll—hl—l.b-l—l.b-l—lmwwl—lmwwE

e T T o s T TR N T o T e S S S

Display 16. Creating Subsets of Money and Looks Variables By Gender

Then, for each subset, find the Spearman Correlation between Money and Looks and bootstrap that value.
Renaming the lead column as Girl Money Versus Looks, the output should look similar to Display 17below.
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File Edit Tables Rows Cols DOE Analyze Graph SAS Tools View Window Help

Hedd 48 B P pR=RBe % EBIE 5D

= |Untitled 19 D] < (=] Girl Money
[*]Source =) BootlD. Versus Looks
x

(] 0.0694
0.0153
-0.0016
0.1050
0.0736
0.0830
0.0574
0.2436
0.0920
0.1438
-0.0297

=]

[*|Columns (2/0)
k. BootlD-
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Display 17. Bootstrap Output of Spearman Correlations on Money Versus Looks for Girls

Now create a similar bootstrapped data for the Boys. (See Display 18 below.)

File Edit Tables Rows Cols DOE Analyze Graph SAS Tools View Window Help

HRagd 8 B PepRsfBe R EEIH R

(¥ Untitled 22 D] < (=) Boy Money
[*|Source (= BootID- Versus Looks
X

9 0 -0.2198
-0.1817
-0.1324
-0.1586
-0.3101
-0.2357
-0.3626
-0.2380
-0.1699
-0.2009
10 -0.3174

(=] Columns (2/0)
ik BootlD-
A Boy Money Versus L

LUw T o = B (N o LT ) Y O W R NI
[ T R R = T R T

[ -
[

Display 18. Bootstrap Output of Spearman Correlations on Money Versus Looks for Boys

Join those tables by BootID and create a new column for the difference in the correlations. Exclude BootID = 0 since
it is the original value. The output for this is given in Display 19 below.
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File Edit Tables Rows Cols DOE Analyze Graph SAS Tools View Window Help

HeEd ¥ |8 Be | Fe PR g B B, I BB 1F R

- |Untitled 22 Pl d L4 BootID. of Boy Money BootID. of Girl Money

|Source - Untitled 22 Versus Looks Untitled 19 Versus Looks H

o 1 0 -0.2198 0 00694 -0.289145973

2 1 -0.1817 1 00153 -0.196976911

3 2 -0.1324 2 -0.0016  -0.13082771

=|Columns (5/1) 4 3 -0.1586 3 01050 -0.263555292

ik BootlDs of Untitled 22 5 4 -0.3101 4 00736 -0.383650716

A Boy Money Versus Looks 6 5 -0.2357 5 0.0830 -0.318773821

ik BootIDs of Untitled 19 7 6 -0.3626 6 00574 -0.4."0.42939

A Girl Money Versus Looks 8 7 -0.2380 7 02436 -0.481645146

4 + 9 8 -0.1699 8 00920 -0.261871441

10 9 -0.2009 9 01438 -0.344619027

11 10 -0.3174 10 -0.0297 -0.287668367

Display 19. Merged Dataset, by BootID, Excluding Original Values, With Calculated Difference Between
Spearman Correlations

Fitting the distribution of the Difference column and manually and examining the 2.5% percentile to 97.5% percentile
yields a 95% bootstrap interval for the difference in Spearman correlation values of (-0.4947, -0.105), indicating that
the boys correlation between Money and Looks is stronger than the corresponding females. See the output in Display
20 below.

4~ Distributions

4~ Difference

4 Quantiles

100.0% maximum -0.0879
99.5% -0.0879
97.5% -0.105
90.0% -0.1617
R — 75.0% quartile  -0.231

50.0% median -0.2848

-0.5 -045 -04 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 25.0% quartile -0.3467

10.0% -0.4189
2.5% -0.473
0.5% -0.4947

0.0% minimum  -0.4947

Display 20. 95% Bootstrap Interval for the Difference in Spearman Correlation Values, Found by Examining
the 2.5% to 97.5% Quantiles

CONCLUSION

The goal of this paper is to illustrate several different accessible examples of how a standard user can add
bootstrapping to their routine analyses. Whether one wants interval estimates for non-standard measures, to further
explore some aspect of the data, provide some measure of reliability/validity to existing work, to compare subgroups
of the data, the examples here illustrate bootstrapping as an easy to use and flexible tool.

12



We do want to conclude with some simple cautions to the reader. There are some cases in which bootstrapping fails.
The idea of the bootstrap ‘failing’ usually revolves around the idea that interval estimates may not cover the true
parameter values. In some cases, the bootstrap is not conservative enough. See the text by Chernick (2007) for
more details. However, many of these examples entail situations where the measure of interest is not smooth (i.e.
may contain a lot of indicator functions). Do proceed with caution and always check the distribution of the values that
you are bootstrapping both in the original data and in the bootstrap metrics. Also note that it is possible that the
software will provide bootstrap estimates for metrics for which the bootstrap is not appropriate.

REFERENCES

Chase, Melissa A. and Dummer, Gail M. 1992. “The Role of Sports as a Social Determinant for Children” Research
Quarterly for Exercise and Sport. 418-424. Reston, Virginia. American Alliance for Health, Physical Education,
Recreation & Dance. Available from the Data and Story Library at
http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html.

Chernick, Michael R. 2007. Bootstrap Methods: A Guide for Practitioners and Researchers, 2" Edition. Hoboken,
New Jersey. John Wiley & Sons, Inc.

Efton, Bradley and Tibshirani, Robert J. 1993. An Introduction to the Bootstrap. New York, New York. Chapman and
Hall/CRC.

Harrell, Frank Jr. 2002. Regression Model Strategies: With Applications to Linear Models, Logistic Regression, and
Survival Analysis. Secaucus, New Jersey. Springer-Verlag.

Jolliffe, 1.T. 2002. Principal Component Analysis. New York, New York. Springer.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Jason Brinkley, Ph.D.

Enterprise: East Carolina University

Address: Mail Stop 668, 2435 Health Sciences Building
City, State ZIP: Greenville, NC 27834

E-mail: brinkleyj@ecu.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13


http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html
mailto:brinkleyj@ecu.edu

	Abstract
	The bootstrap has become a very popular technique for assessing the variability of many different or unusual estimators.  Starting in JMP Pro 10 the bootstrap feature was added to a wide variety of output options; however, there has not been much deve...
	Introduction
	The MEan and trimmed mean
	Principal components analysis
	Regression analysis
	Spearman correlations
	Conclusion
	References
	Contact Information

