SESUG 2013

Paper 89

Averaging Numerous Repeated Measures in SAS® Using DO LOOPS and
MACROS: A Demonstration Using Dietary Recall Data

Kendra Jones, St. Jude Children’s Research Hospital; Kyla Shelton, St. Jude Children’s
Research Hospital

ABSTRACT

Dietary recall data consist of numerous measures recorded across multiple days for a particular individual. The raw
measures must be collapsed and averaged before meaningful analysis can begin. Basic SAS programming can
calculate the averages, but cannot handle the nearly countless number of variables without knowledge of each
variable name and extensive syntax to process each one. The objective of this paper is to demonstrate a widely
applicable process for averaging these or similar types of measures. The process uses intermediate programming
techniques to eliminate specific variable name programming and reduce syntax. The complete process yields a single
dataset of numerous calculated values suitable for continued application in further analyses.

INTRODUCTION

Averaging a series of repeated measures in SAS requires relatively basic programming techniques such as PROC
MEANS with by group processing. However, such techniques require knowledge of each variable name, the number
of variables, and syntax to process each one. They are well-suited to handling a limited number of variables as in the
following example.

proc means data=dataset mean;
var a b c d;
by group;

run;

What if you have hundreds of variables? What if the variable names are complex or unfamiliar? What if you would like
to use the same technique with a different dataset? Basic syntax, like that above, could quickly become cumbersome
and difficult to adapt. The purpose of this paper is to describe an efficient, adaptable process for averaging numerous
repeated measures using variable processing techniques, SQL, %DO loops, and MACROS. We demonstrate these
techniques using data from dietary recall assessments.

In our experience, dietary recall data are comprised of numerous food and beverage consumption measures
collected by interview and representing multiple 24-hour periods. Prior to study, each period measurement must be
collapsed and averaged at an individual level in order to obtain typical dietary patterns. The collected and calculated
measures or variables are numerous and complex in hame.

PREPARING THE DATA

Naturally, raw data must first be imported, manipulated, and formatted before real processing or analysis can begin.
In our scenario, we download dietary recall data from a web-based server as numerous individual text files. We use a
MACRO program to simplify the import process, but you can do whatever is most logical for your data structure.

$SMACRO DIET (filename);

PROC IMPORT OUT= WORK.&filename.
DATAFILE="Path\&filename. .txt"
DBMS=TAB REPLACE;
GETNAMES=YES;

DATAROW=2;
RUN;
SMEND;
$DIET (fileO1);
$DIET (file02);
$DIET (file03);
$DIET (file04);
$DIET (file05);
$DIET (file06);
$DIET (£file07);

The DATA STEP with a SET statement concatenates each imported data set. PROC SORT then sorts the
concatenated data set by an individual identifier to allow for later by group processing at a person level.

1

data file;
set file0l file02 fileO03 file04 file05 fileO6 file07;
run;

proc sort data=file; by participant id; run;

CAPTURING THE VARIABLES

The next step, variable processing, begins with identifying each variable within our data set. Remember, we are not
interested in hard coding each and every variable of interest into an analysis program. Instead, we use the PROC
CONTENTS procedure with the OUT= option to prepare a new SAS data set containing only numeric variables i.e.
those suitable for averaging. The ultimate goal is to automatically prepare a variable list that can later be processed
through one by one.

The default LISTING output of a PROC CONTENTS procedure provides a description of a SAS data set, including
variable names. However, it does nothing to process or incorporate them into subsequent programmatic steps. The
addition of the OUT= option allows users to capture variable information from the default output as a new SAS data
set. For the purposes of this paper, additional syntax is included to suppress the LISTING output (noprint), select only
numeric variables (type=1), and keep just three columns: variable name (name), variable type (type), and variable
number (varnum). The complete syntax and a partial view of the new SAS data set are included below. Note: if your
data contain numeric variables not suitable for averaging (ex. 1=male, 2=female), you may wish to take additional
measures to drop them from the new variable list dataset.

proc contents data=file noprint
out=varlist (where=(type=1) keep=name type varnum);

run;
) . Variable

Variable Name Variable Type Nurber |
1 Acesulfame_Potassium__mg_ 1 185
2 Added_Sugars__by_Awvailable_Carbo 1 184
3 Added_Sugars__by_Total_Sugars___ 1 210
4 Alanine__g_ 1 106
5 Alcohal_a_ 1 28
& Alpha_Carotene__provitamin_A_car 1 146
7 Animal_Protein__g_ 1 26
g Arginine__g_ 1 104
) Ash_g_ 1 119
10 Aspartame__mg_ 1 112

Display 1. Partial Varlist Dataset View from the PROC CONTENTS Procedure with the OUT= Option

By default, the variable name (name) variable in the outputted data set is sorted in alphabetical order, see Display 1.
However, we want to keep the variables in their original order and so we add a PROC SORT procedure to sort by the
variable number (varnum) variable instead. This PROC SORT step is merely a preference for future processing order
and is not required for a successful program. The complete syntax and a partial view of the sorted SAS data set are
included below.

proc sort data=varlist; by varnum; run;

Variable
Number

21
22
23
24
25
26
27
28
23
30
k)

Variable Name Wariable Type

15 Total_Grams

16 Energy__kcal_

7 Total_Fat__a_

18 Total_Carbohydrate__g_

15 Total_Protein__g_

20 Animal_Protein__g_

21 egetable_Protein__a_

22 Alcohol_g_

23 Cholesterol__mg_

24 Total_Satursted_Fatty_Acids__SFA
25 Total_Monounsaturated _Fatty_Acid

Display 2. Partial Varlist Dataset View after the PROC SORT Procedure

As you can see in Displays 1 and 2, dietary recall assessment data contains hundreds of variables with complex
naming conventions. It was these data features that led us to compile the processing and analysis program described
in this paper. The steps covered thus far yield a new SAS data set that contains all of our analysis variables. The next
step is to create a macro variable that will serve as our variable list.

CREATING A VARIABLE LIST

We use the INTO: host-variable in PROC SQL to create a macro variable that is used to manipulate data within
subsequent %DO loop processing. Keep in mind that macro variables created with INTO: can be used in any DATA
or PROC step. The annotated syntax below creates our macro variable, vlist. The select statement (@) within PROC
SQL selects for the variable name variable (name) from the previously created varlist data set (®). The SEPERATED
BY qualifier (®) inserts a space between each selected variable name observation. The space delimiter is important
for later processing as it defines the boundaries of each individual variable within the larger macro variable. The
%PUT statement (®) writes the new vlist macro variable to the SAS log for the purpose of validation. The resulting
SAS log output is included in Display 3.

proc sgl noprint; Oselect name ®into: vlist @separated by ' ' @from varlist; quit;

®%put s&vlist.;

4730 Zput Zvlist.;

Total_Grams Energy__kcal_ Total_Fat_ g_ Total_Carbohwdrate_ g_ Total_Protein__g_ Animal_Protein__g_ Vegetable_Protein__g_
filcohol__g_ Cholesterol__mg_ Total_Saturated_Fatty_ncids_ SFA Total_Monounsaturated_Fatty_ficid Total_Polyunsaturated_Fatty_ficid
Fructose_ g_ Galactose_ _g_ Glucose_ g_ Lactose__g_ Maltose_ _g_ Sucrose_ _g_ Starch__g_ Total_Dietary_Fiber__o_
Soluble_Dietary_Fiber__g_ Insoluble_Dietary_Fiber__g_ Pectins__g_ Total _Vitamin_A_fictivity__Intern
Beta_Carotene_Equivalents_ deriv Retinol__mcg_ Vitamin_D__calciferol__ _mcg_ Total_flpha_Tocopherol_Equivalen

Vitamin_E_ Total_aAlpha_Tocophero Beta_Tocopherol__mg_ Gamma_Tocopherol_ _mg_ Delta_Tocopherol_ mg_
Vitamin_K__phylloguinone__ mcg_ Vitamin_C__ascorbic_acid___ _mg_ Thiamin__vitamin_B1__ _mg_ Riboflavin__vitamin_B2__ mg_
Hiacin__vitamin_B3__ mg_ Pantothenic_ficid__mg_ Vitamin_B_b_ pyridoxine_ pyrido Total_Folate_ _mco_

Vitamin_B_12_ cobalamin___mcg_ Calcium__mg_ Phosphorus__mg_ Magnesium__mg_ lron__mg_ Zinc__mg_ Copper__mg_ Selenium__mcg_
Sodiun__mg_ Potassium__mg_ SFA_4_0_ butyric_acid___g_ SFA_B_0_ _caproic_acid___g_ SFA_8_0_ caprvlic_acid__ g_
SFA_10_0__capric_acid___g_ SFA_12_0_ lauric_acid___g_ SFA_14_0_ myristic_acid___g_ SFA_16_0_ palmitic_acid__ g_
SFA_17_0__margaric_acid___g_ SFA_18_0__stearic_acid___g_ SFA_20_0_ arachidic_acid____g_ SFA_22_0_ behenic_acid__ g_
MUFA_14_1__mvristoleic_acid___g_ MUFA_16_1_ palmitoleic_acid___g_ MUFA_18_1__oleic_acid___g_ MUFA_20_1_ gadoleic_acid__ g
HUFA_22_1_ _erucic_acid___g_ PUFA_18_2_ linoleic_acid__ g PUFA_18_3_ linolenic_acid___g_ PUFA_18_4_ parinaric_acid__ g_
PUFA_20_4__ arachidonic_acid___g_ PUFA_?0_5_ eicosapentaenoic_acid PUFA_22_5_ docosapentaenoic_acid

PUFA_22_6__ docosahexaenoic_acid Tryptophan__g_ Threonine__g_ Isoleucine__g_ Leucine__g_ Lysine_ g_ Methionine__g_ Cystine_ _g_
Phenylalanine__g_ Tyro=zine__g_ VYaline__g_ fArginine__g_ Histidine__g_ filanine__g_ Aspartic_ficid__g_ Glutamic_fcid__g_

Glvcine_ g_ Proline__g_ Serine_ g_ Aspartame_ mg_ Saccharin_ mg_ Caffeine_ mg_ Phytic_fAcid__mg_ Oxalic_Acid_ mg_

_ Methylhistidine__mg_ Sucrose_Polyester__g_ fAsh__g_ Hater__g_ _ Calories_from_Fat _ Calories_from_Carbohydrate

_ Calories_from_Protein _ Calories_from_fAlcohol _ _Calories_from_SFA _ Calories_from_MUFA _ Calories_from_PUFA
Polyunsaturated_to_Satuwated_Fat Cholesterol_to_Saturated_Fatty_fi Total Vitamin_A_fictivity_ Retino

TRANS_18_1__ trans_octadecenoic_a TRANS_18_2_ trans_octadecadieno TRANS_16_1__ trans_hexadecenoic_a

Total_Trans_Fatty_ficids__ TRANS_ Beta_Carotene_ provitamin_fi_caro filpha_Carotene_ provitamin_fi_car
Beta_Cryptoxanthin__provitamin_f Lutein__ Zeaxanthin__mcg_ Lycopene_ mcg_ Dietary_Folate_Equivalents_ _mcg_

Hatural_Folate_ food_folate_ mc Synthetic_Folate_ folic_acid_ m Energy_ kj_ Niacin_Equivalents_ mg_ Total_Sugars_ g_
Omega_3_Fatty_fcids__g_ Manganese_ mg_ Vitamin_E__ International_Units_ Natural_fAilpha_Tocopherol__RRR_al
Svnthetic_Alpha_Tocopherol__all Daidzein__mg_ Genistein__mg_ Glycitein__mo_ Coumestrol__mg_ Biochanin_fi__mo_ Formononetin__mg_
fidded_Sugars__by_fivailable_Carbo ficesul fame_Potassium__mg_ Sucralose__mg_ fivailable_Carbohydrate_ g_
Glycenic_Index__glucoze_referenc Glycenic_lndex_ bread_reference_ Glycemic_Load_ glucose_reference

Glycenic_Load_ bread_reference_ Choline__mg_ Betaine__mg_ Erythritol__g_ Inositol__g_ Isomalt__g_ Lactitol__g_ Haltitol__g_
Hannitol__g_ Pinitol__g_ Sorbitol__g_ Xylitol__g_ MNitrogen_ g_ Total_Conjugated_Linoleic_ficid__ CLA_cis_9_ trans_11__g_
CLA_trans_10__cis_12__g_ Tagatose_ mg_ Vitamin_DZ_ _ergocalciferol__ _mcg Vitamin_D3__cholecalciferol___mc
fAidded_Sugars__by_Total_Sugars_

Display 3. SAS Log Output from the %PUT &VLIST Statement

DETERMINING THE NUMBER OF VARIABLES

The final preparation step determines the number of individual variable names stored within our vlist macro variable.
This value will inform the number of times an analysis step should be performed, ultimately once for each variable.
We use the CALL SYMPUT ROUTINE to create a macro variable that represents the number of records in our
variable name dataset as shown in the annotated syntax below. First, the _NULL_ argument of the DATA step (®)
specifies that SAS need not create a data set upon execution. We want data about the varlist data set i.e. the number
of observations, but we do not need any of the actual observations. The “if 0 then” portion (@) provides additional
efficiency as the number of observations can be obtained without performing the SET statement (Moore, 2001). The
NOBS= option (®) creates a temporary variable, “x”, whose value is equal to the total number of observations in the
input data set. The CALL SYMPUT routine (@) takes a value from a DATA step and assigns it to a macro variable
(Delwiche & Slaughter, 2008). In our case, the value taken is “x” or the number of observations and the macro
variable is created as reccount. Finally, the %PUT statement (®) writes the new reccount macro variable to the SAS
log for the purpose of validation. The resulting SAS log output is included in Display 4.

®data null ;
@if 0 then set varlist ®nobs=x;
@call symput (‘reccount’,x);
stop;

run;

%put &reccount;

9107 XPUT ERECCOUNT;
200

Display 4. SAS Log Output from the %PUT &RECCOUNT Statement

CALCULATING AND STORING THE AVERAGES

Upon completion of the data preparation steps, we can now utilize our global macro variables within a short SAS
program to calculate the numerous food and beverage consumption measures to obtain typical dietary patterns at an
individual level. This section details each segment of SAS code we use to accomplish this task.

First, we need a base data set to collect and manage each calculated value for each unique person. We chose to use
simple PROC SQL syntax with the UNIQUE statement. If preferred, you may also use PROC SORT with the
NODUPKEY and OUT= options. The complete SQL syntax is included below.

proc sql;
create table Averages as select unique participant id from file
order by participant id;

quit;

The remaining SAS code segments are encompassed within a single MACRO program. It is this program that brings
together each component of this process for meaningful, actionable output. The entire MACRO program and each
individual segment are discussed next.

THE MACRO PROGRAM

Macro-level programming is used to, among other things, generate code iteratively or repetitively. In this
demonstration, our iterations are centered on numerous dietary recall assessment measures. Our macro program
uses a %DO loop to iteratively process a multi-faceted program, a %LET statement and SCAN function to select
each analysis variable, the previously created macro variables vlist and reccount to guide iterations, PROC SQL with
a GROUP BY clause to calculate the mean, a %PUT statement to monitor progress, a DATA step program with a
MERGE statement to collect results, and a PROC DATASETS segment to keep things orderly. The annotated syntax
is included below.

®%macro loop;
@%do I=1 %to &RECCOUNT;
®%let varnow = %$scan(&vlist., &I., " ");

@proc sqgl;
create table tmp&I. as select participant id, mean(&varnow.) as &varnow.
format=6.1 from file group by participant id;

quit;

®%PUT I= &I. VARNOW=&VARNOW.;

®data Averages;
merge Averages tmp&I.;
by participant id;
run;

@proc datasets;
delete tmpé&lI.;
run;

®%end;
%mend loop;

®%1oop;

@ First, we define our macro program with the macro-name Loop. The %MACRO statement indicates the start of the
macro program. The %MEND statement concludes the program. All text in between is considered the macro-text.

@ Next, we implement dynamic programming with the iterative %DO loop. While a DO statement is confined to the
DATA step, the iterative %DO can be used anywhere within a macro. We use the %DO to define and increment the
index variable |. We start with the integer ‘1’ and stop with the macro expression &reccount which generates an
integer equal to the number of measures to be processed.

® The third component of the macro program serves to select a diet recall variable for processing. The %LET
statement creates the macro variable varnow and assigns it a value based on the results of a %SCAN function. The
%SCAN function processes our macro variable vlist as a text string and selects the appropriate variable name based

4

on its position in the string. The macro expression &l defines the position integer as equal to the iteration integer.
Therefore, variable one is processed during the first iteration, variable two during the second iteration, and so on.
More specifically, recall that &vlist resolves to the text string shown in Display 3. When &l resolves to 2’, &varnow
resolves to ‘Energy__kcal_’. Finally, we use the “ “ expression to inform the %SCAN function that words in the vlist
text string are separated by a space.

@ Next we calculate the mean of the selected diet recall variable for each participant. SAS provides various
procedures to calculate means. We chose the SQL procedure since it creates a dataset, calculates the mean, and
sorts the results all within one procedure. First, specify the name of the dataset that will store the mean values after
the CREATE TABLE statement. We suggest placing the &l extension at the end of the dataset so that a new dataset
is generated for each diet recall variable. The &l resolves to the integer of the current iteration of the %DO loop.
Second, select the variables for the dataset. In addition to selecting the variable participant_id, we tell SAS to create
a new variable containing averages of the current diet recall variable in use by stating MEAN(&VARNOW.) as
&VARNOW. The following FORMAT statement is optional. Finally, we specify the input dataset name, file, and utilize
the GROUP BY statement to average the diet recall measure across multiple records per participant. Using iteration
number two as an example, a dataset named tmp2 is created and contains two variables, participant ID and the
mean value for the 2™ diet recall variable ‘Energy__kcal_’. A partial view of the dataset is included in Display 5.

Participart_|ID | Energy__kcal_
1 IRTT 2
2 20582
5 23365

Display 5. Partial TMP2 Dataset View

® The %PUT statement writes the current value of macro variables | and varnow to the SAS log. This helps to verify
that the varnum variable was incremented as expected, see Display 6.

i= 2 VAaRNOW=Enerogy__kcal _

Display 6. SAS Log Output from the %PUT I= &l. VARNOW=&VARNOW. Statement

® Joining the diet recall averages together into one dataset is the last key step within the macro. The MERGE
statement joins the current diet recall variable averages to the previously created base dataset titled averages. Again
using iteration two as an example, prior to merging, the base dataset contains the participant_ID plus the averages
for the first diet recall variable. Dataset tmp2 is merged with the base dataset resulting in a dataset now containing
the averages for two diet recall variables. A partial view of the dataset after iteration two is included in Display 7.

Participart_ID | TntaI_Gmms| Energy__kecal_
1 R680.7 RT72
2 35685 20582
3 26002 23365

Display 7. Partial Averages Dataset View after the Second Iteration of the Loop Macro

@ In an effort to keep the working directory uncluttered, we deleted the temporary dataset using the DATASETS
procedure at the end of each iteration.

After SAS performs the various statements between the %DO and %END statements, the index variable | is
incremented by 1 at the bottom of the loop. The process is repeated until the index variable reaches the stop value. In
this case, the maximum number of diet recall measures as specified by the macro variable reccount.

® Finally, we call the macro with %LOOP which causes the macro to execute. Out of habit, we close with a
semicolon though it is not technically required.

CONCLUSION

This method successfully combines multiple intermediate SAS programming components to calculate the average of
numerous repeated measures. More importantly, the use of variable list and record count macro variables eliminates
the need to program in specific variable names and reduces syntax when the number of variables is large. Therefore,
it is a widely applicable process that can be customized to a variety of needs and datasets. In addition to efficiency
and flexibility gains, this process can also enhance accuracy by reducing the likelihood of typographical errors.
Regardless of the complexity of variables needing to be processed, this process has merit in numerous settings.

REFERENCES

e Delwiche, Lora D., and Slaughter, Susan J. 2008. The Little SAS® Book: A Primer, Fourth Edition. 220-221.
Cary, NC: SAS Institute Inc.

e Delwiche, Lora D., and Slaughter, Susan J. 2004. “SAS® Macro Programming for Beginners. Proceedings of
the Twenty-Ninth Annual SAS® Users Group International Conference. Cary, NC: SAS Institute Inc.
Available at http://www2.sas.com/proceedings/sugi29/243-29.pdf.

e Moore, Edward. 2001. “Performing Multiple Statements for Each Record in a SAS® Data Set”. Proceedings
of the Twenty-Sixth Annual SAS® Users Group International Conference. Cary, NC: SAS Institute Inc.
Available at http://www?2.sas.com/proceedings/sugi26/p093-26.pdf.

e Pass, Ray. (2003, March 21). PROC SQL UNIQUE vs. DISTINCT [listserve.uga.edu]. Retrieved from
http://listserv.uga.edu/cgi-bin/wa?A2=ind0303c&L =sas-1&P=42049

RECOMMENDED READING

e SAS. “%DO, lterative Statement”. SAS® 9.2 Documentation. 8/12/2013. Available at
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a000543755.htm

e SAS. “Set Statement”. SAS® 9.2 Documentation. 8/12/2013. Available at
http://support.sas.com/documentation/cdl/en/Irdict/64316/HTML/default/viewer.htm#a000173782.htm

e SAS. “Data Statement”. SAS® 9.2 Documentation. 8/12/2013. Available at
http://support.sas.com/documentation/cdl/en/Irdict/64316/HTML/default/viewer.htm#a000188132.htm

e SAS. “SQL Procedure”. SAS® 9.2 SQL Procedure User's Guide. 8/15/2013. Available at
http://support.sas.com/publishing/pubcat/chaps/59727.pdf

ACKNOWLEDGMENTS

The authors would like to thank the management team and staff for their support and review of this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Kendra Jones

St. Jude Children’s Research Hospital
262 Danny Thomas Place, MS 735
Memphis, TN 38105

(901) 595-5957
Kendra.Jones@stjude.org

Kyla Shelton

St. Jude Children’s Research Hospital
262 Danny Thomas Place, MS 735
Memphis, TN 38105

(901) 595-5502
Kyla.Shelton@stjude.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/sugi29/243-29.pdf
http://www2.sas.com/proceedings/sugi26/p093-26.pdf
http://listserv.uga.edu/cgi-bin/wa?A2=ind0303c&L=sas-l&P=42049
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a000543755.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000173782.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000188132.htm
http://support.sas.com/publishing/pubcat/chaps/59727.pdf
mailto:Kendra.Jones@stjude.org
mailto:Kyla.Shelton@stjude.org

