
SESUG 2013

1

Paper 89

Averaging Numerous Repeated Measures in SAS® Using DO LOOPS and
MACROS: A Demonstration Using Dietary Recall Data

Kendra Jones, St. Jude Children’s Research Hospital; Kyla Shelton, St. Jude Children’s
Research Hospital

ABSTRACT

Dietary recall data consist of numerous measures recorded across multiple days for a particular individual. The raw
measures must be collapsed and averaged before meaningful analysis can begin. Basic SAS programming can
calculate the averages, but cannot handle the nearly countless number of variables without knowledge of each
variable name and extensive syntax to process each one. The objective of this paper is to demonstrate a widely
applicable process for averaging these or similar types of measures. The process uses intermediate programming
techniques to eliminate specific variable name programming and reduce syntax. The complete process yields a single
dataset of numerous calculated values suitable for continued application in further analyses.

INTRODUCTION

Averaging a series of repeated measures in SAS requires relatively basic programming techniques such as PROC
MEANS with by group processing. However, such techniques require knowledge of each variable name, the number
of variables, and syntax to process each one. They are well-suited to handling a limited number of variables as in the
following example.

proc means data=dataset mean;

var a b c d;

by group;

run;

What if you have hundreds of variables? What if the variable names are complex or unfamiliar? What if you would like
to use the same technique with a different dataset? Basic syntax, like that above, could quickly become cumbersome
and difficult to adapt. The purpose of this paper is to describe an efficient, adaptable process for averaging numerous
repeated measures using variable processing techniques, SQL, %DO loops, and MACROS. We demonstrate these
techniques using data from dietary recall assessments.

In our experience, dietary recall data are comprised of numerous food and beverage consumption measures
collected by interview and representing multiple 24-hour periods. Prior to study, each period measurement must be
collapsed and averaged at an individual level in order to obtain typical dietary patterns. The collected and calculated
measures or variables are numerous and complex in name.

PREPARING THE DATA

Naturally, raw data must first be imported, manipulated, and formatted before real processing or analysis can begin.
In our scenario, we download dietary recall data from a web-based server as numerous individual text files. We use a
MACRO program to simplify the import process, but you can do whatever is most logical for your data structure.

%MACRO DIET (filename);

PROC IMPORT OUT= WORK.&filename.

 DATAFILE=”Path\&filename..txt"

 DBMS=TAB REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

%MEND;

%DIET (file01);

%DIET (file02);

%DIET (file03);

%DIET (file04);

%DIET (file05);

%DIET (file06);

%DIET (file07);

The DATA STEP with a SET statement concatenates each imported data set. PROC SORT then sorts the
concatenated data set by an individual identifier to allow for later by group processing at a person level.

2

data file;

set file01 file02 file03 file04 file05 file06 file07;

run;

proc sort data=file; by participant_id; run;

CAPTURING THE VARIABLES

The next step, variable processing, begins with identifying each variable within our data set. Remember, we are not
interested in hard coding each and every variable of interest into an analysis program. Instead, we use the PROC
CONTENTS procedure with the OUT= option to prepare a new SAS data set containing only numeric variables i.e.
those suitable for averaging. The ultimate goal is to automatically prepare a variable list that can later be processed
through one by one.

The default LISTING output of a PROC CONTENTS procedure provides a description of a SAS data set, including
variable names. However, it does nothing to process or incorporate them into subsequent programmatic steps. The
addition of the OUT= option allows users to capture variable information from the default output as a new SAS data
set. For the purposes of this paper, additional syntax is included to suppress the LISTING output (noprint), select only
numeric variables (type=1), and keep just three columns: variable name (name), variable type (type), and variable
number (varnum). The complete syntax and a partial view of the new SAS data set are included below. Note: if your
data contain numeric variables not suitable for averaging (ex. 1=male, 2=female), you may wish to take additional
measures to drop them from the new variable list dataset.

proc contents data=file noprint

out=varlist (where=(type=1) keep=name type varnum);

run;

Display 1. Partial Varlist Dataset View from the PROC CONTENTS Procedure with the OUT= Option

By default, the variable name (name) variable in the outputted data set is sorted in alphabetical order, see Display 1.
However, we want to keep the variables in their original order and so we add a PROC SORT procedure to sort by the
variable number (varnum) variable instead. This PROC SORT step is merely a preference for future processing order
and is not required for a successful program. The complete syntax and a partial view of the sorted SAS data set are
included below.

proc sort data=varlist; by varnum; run;

Display 2. Partial Varlist Dataset View after the PROC SORT Procedure

As you can see in Displays 1 and 2, dietary recall assessment data contains hundreds of variables with complex
naming conventions. It was these data features that led us to compile the processing and analysis program described
in this paper. The steps covered thus far yield a new SAS data set that contains all of our analysis variables. The next
step is to create a macro variable that will serve as our variable list.

3

CREATING A VARIABLE LIST

We use the INTO: host-variable in PROC SQL to create a macro variable that is used to manipulate data within
subsequent %DO loop processing. Keep in mind that macro variables created with INTO: can be used in any DATA
or PROC step. The annotated syntax below creates our macro variable, vlist. The select statement () within PROC
SQL selects for the variable name variable (name) from the previously created varlist data set (). The SEPERATED
BY qualifier () inserts a space between each selected variable name observation. The space delimiter is important
for later processing as it defines the boundaries of each individual variable within the larger macro variable. The
%PUT statement () writes the new vlist macro variable to the SAS log for the purpose of validation. The resulting
SAS log output is included in Display 3.

proc sql noprint; select name into: vlist separated by ' ' from varlist; quit;

%put &vlist.;

Display 3. SAS Log Output from the %PUT &VLIST Statement

DETERMINING THE NUMBER OF VARIABLES

The final preparation step determines the number of individual variable names stored within our vlist macro variable.
This value will inform the number of times an analysis step should be performed, ultimately once for each variable.
We use the CALL SYMPUT ROUTINE to create a macro variable that represents the number of records in our
variable name dataset as shown in the annotated syntax below. First, the _NULL_ argument of the DATA step ()
specifies that SAS need not create a data set upon execution. We want data about the varlist data set i.e. the number

of observations, but we do not need any of the actual observations. The “if 0 then” portion () provides additional
efficiency as the number of observations can be obtained without performing the SET statement (Moore, 2001). The
NOBS= option () creates a temporary variable, “x”, whose value is equal to the total number of observations in the
input data set. The CALL SYMPUT routine () takes a value from a DATA step and assigns it to a macro variable
(Delwiche & Slaughter, 2008). In our case, the value taken is “x” or the number of observations and the macro
variable is created as reccount. Finally, the %PUT statement () writes the new reccount macro variable to the SAS
log for the purpose of validation. The resulting SAS log output is included in Display 4.

data _null_;

if 0 then set varlist nobs=x;

call symput(‘reccount’,x);

stop;

run;

%put &reccount;

Display 4. SAS Log Output from the %PUT &RECCOUNT Statement

4

CALCULATING AND STORING THE AVERAGES

Upon completion of the data preparation steps, we can now utilize our global macro variables within a short SAS
program to calculate the numerous food and beverage consumption measures to obtain typical dietary patterns at an
individual level. This section details each segment of SAS code we use to accomplish this task.

First, we need a base data set to collect and manage each calculated value for each unique person. We chose to use
simple PROC SQL syntax with the UNIQUE statement. If preferred, you may also use PROC SORT with the
NODUPKEY and OUT= options. The complete SQL syntax is included below.

proc sql;

create table Averages as select unique participant_id from file

order by participant_id;

quit;

The remaining SAS code segments are encompassed within a single MACRO program. It is this program that brings
together each component of this process for meaningful, actionable output. The entire MACRO program and each
individual segment are discussed next.

THE MACRO PROGRAM

Macro-level programming is used to, among other things, generate code iteratively or repetitively. In this
demonstration, our iterations are centered on numerous dietary recall assessment measures. Our macro program
uses a %DO loop to iteratively process a multi-faceted program, a %LET statement and SCAN function to select
each analysis variable, the previously created macro variables vlist and reccount to guide iterations, PROC SQL with
a GROUP BY clause to calculate the mean, a %PUT statement to monitor progress, a DATA step program with a
MERGE statement to collect results, and a PROC DATASETS segment to keep things orderly. The annotated syntax
is included below.

%macro loop;

%do I=1 %to &RECCOUNT;

%let varnow = %scan(&vlist., &I., " ");

proc sql;

create table tmp&I. as select participant_id, mean(&varnow.) as &varnow.

format=6.1 from file group by participant_id;

 quit;

%PUT I= &I. VARNOW=&VARNOW.;

data Averages;

merge Averages tmp&I.;

by participant_id;

 run;

proc datasets;

delete tmp&I.;

 run;

%end;

 %mend loop;

%loop;

 First, we define our macro program with the macro-name Loop. The %MACRO statement indicates the start of the
macro program. The %MEND statement concludes the program. All text in between is considered the macro-text.

 Next, we implement dynamic programming with the iterative %DO loop. While a DO statement is confined to the
DATA step, the iterative %DO can be used anywhere within a macro. We use the %DO to define and increment the
index variable I. We start with the integer ‘1’ and stop with the macro expression &reccount which generates an
integer equal to the number of measures to be processed.

 The third component of the macro program serves to select a diet recall variable for processing. The %LET
statement creates the macro variable varnow and assigns it a value based on the results of a %SCAN function. The
%SCAN function processes our macro variable vlist as a text string and selects the appropriate variable name based

5

on its position in the string. The macro expression &I defines the position integer as equal to the iteration integer.
Therefore, variable one is processed during the first iteration, variable two during the second iteration, and so on.
More specifically, recall that &vlist resolves to the text string shown in Display 3. When &I resolves to ‘2’, &varnow
resolves to ‘Energy__kcal_’. Finally, we use the “ “ expression to inform the %SCAN function that words in the vlist
text string are separated by a space.

 Next we calculate the mean of the selected diet recall variable for each participant. SAS provides various
procedures to calculate means. We chose the SQL procedure since it creates a dataset, calculates the mean, and
sorts the results all within one procedure. First, specify the name of the dataset that will store the mean values after
the CREATE TABLE statement. We suggest placing the &I extension at the end of the dataset so that a new dataset
is generated for each diet recall variable. The &I resolves to the integer of the current iteration of the %DO loop.
Second, select the variables for the dataset. In addition to selecting the variable participant_id, we tell SAS to create

a new variable containing averages of the current diet recall variable in use by stating MEAN(&VARNOW.) as
&VARNOW. The following FORMAT statement is optional. Finally, we specify the input dataset name, file, and utilize
the GROUP BY statement to average the diet recall measure across multiple records per participant. Using iteration
number two as an example, a dataset named tmp2 is created and contains two variables, participant ID and the

mean value for the 2
nd

 diet recall variable ‘Energy__kcal_’. A partial view of the dataset is included in Display 5.

Display 5. Partial TMP2 Dataset View

 The %PUT statement writes the current value of macro variables I and varnow to the SAS log. This helps to verify
that the varnum variable was incremented as expected, see Display 6.

Display 6. SAS Log Output from the %PUT I= &I. VARNOW=&VARNOW. Statement

 Joining the diet recall averages together into one dataset is the last key step within the macro. The MERGE
statement joins the current diet recall variable averages to the previously created base dataset titled averages. Again
using iteration two as an example, prior to merging, the base dataset contains the participant_ID plus the averages
for the first diet recall variable. Dataset tmp2 is merged with the base dataset resulting in a dataset now containing

the averages for two diet recall variables. A partial view of the dataset after iteration two is included in Display 7.

Display 7. Partial Averages Dataset View after the Second Iteration of the Loop Macro

 In an effort to keep the working directory uncluttered, we deleted the temporary dataset using the DATASETS
procedure at the end of each iteration.

 After SAS performs the various statements between the %DO and %END statements, the index variable I is

incremented by 1 at the bottom of the loop. The process is repeated until the index variable reaches the stop value. In
this case, the maximum number of diet recall measures as specified by the macro variable reccount.

 Finally, we call the macro with %LOOP which causes the macro to execute. Out of habit, we close with a
semicolon though it is not technically required.

CONCLUSION

This method successfully combines multiple intermediate SAS programming components to calculate the average of
numerous repeated measures. More importantly, the use of variable list and record count macro variables eliminates
the need to program in specific variable names and reduces syntax when the number of variables is large. Therefore,
it is a widely applicable process that can be customized to a variety of needs and datasets. In addition to efficiency
and flexibility gains, this process can also enhance accuracy by reducing the likelihood of typographical errors.
Regardless of the complexity of variables needing to be processed, this process has merit in numerous settings.

6

REFERENCES

 Delwiche, Lora D., and Slaughter, Susan J. 2008. The Little SAS® Book: A Primer, Fourth Edition. 220-221.

Cary, NC: SAS Institute Inc.

 Delwiche, Lora D., and Slaughter, Susan J. 2004. “SAS
®
 Macro Programming for Beginners. Proceedings of

the Twenty-Ninth Annual SAS
®
 Users Group International Conference. Cary, NC: SAS Institute Inc.

Available at http://www2.sas.com/proceedings/sugi29/243-29.pdf.

 Moore, Edward. 2001. “Performing Multiple Statements for Each Record in a SAS
®
 Data Set”. Proceedings

of the Twenty-Sixth Annual SAS
®
 Users Group International Conference. Cary, NC: SAS Institute Inc.

Available at http://www2.sas.com/proceedings/sugi26/p093-26.pdf.

 Pass, Ray. (2003, March 21). PROC SQL UNIQUE vs. DISTINCT [listserve.uga.edu]. Retrieved from
http://listserv.uga.edu/cgi-bin/wa?A2=ind0303c&L=sas-l&P=42049

RECOMMENDED READING

 SAS. “%DO, Iterative Statement”. SAS
®
 9.2 Documentation. 8/12/2013. Available at

http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a000543755.htm

 SAS. “Set Statement”. SAS
®
 9.2 Documentation. 8/12/2013. Available at

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000173782.htm

 SAS. “Data Statement”. SAS
®
 9.2 Documentation. 8/12/2013. Available at

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000188132.htm

 SAS. “SQL Procedure”. SAS
®

9.2 SQL Procedure User’s Guide. 8/15/2013. Available at
http://support.sas.com/publishing/pubcat/chaps/59727.pdf

ACKNOWLEDGMENTS

The authors would like to thank the management team and staff for their support and review of this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Kendra Jones
St. Jude Children’s Research Hospital
262 Danny Thomas Place, MS 735
Memphis, TN 38105
(901) 595-5957
Kendra.Jones@stjude.org

Kyla Shelton
St. Jude Children’s Research Hospital
262 Danny Thomas Place, MS 735
Memphis, TN 38105
(901) 595-5502
Kyla.Shelton@stjude.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/sugi29/243-29.pdf
http://www2.sas.com/proceedings/sugi26/p093-26.pdf
http://listserv.uga.edu/cgi-bin/wa?A2=ind0303c&L=sas-l&P=42049
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a000543755.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000173782.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000188132.htm
http://support.sas.com/publishing/pubcat/chaps/59727.pdf
mailto:Kendra.Jones@stjude.org
mailto:Kyla.Shelton@stjude.org

