

1

Paper PA06

A Practical Approach to Process Improvement Using Parallel Processing

Viraj Kumbhakarna, JPMorgan Chase & Co., Columbus, OH, 43240

ABSTRACT

In applications which process huge volumes of data for analysis purposes, it is often essential to minimize
processing time to increase efficiency. Large data volumes (in the author’s experience, row counts of 1.5 million
and up to 2500 columns) result in very long processing times of about 4 to 5 days. It is often required to reduce the
execution time for such processes. This paper discusses the following generic steps for improving any process.
(1) Identify areas for improvement (understand the process thoroughly; analyze logs to identify steps which take
the longest amount of time). (2) Look for certain processes that can be executed in parallel (actual parallelization
of independent processes executed one after another; automated virtual multithreading; executing multiple
instances of jobs in UNIX). (3) Adopt alternative methods for performing tasks faster (sorting datasets using
threads; use of SET statement and KEY= option; use of SYNCSORT® for merging in SAS; intelligent use of
indexes for merging; use of user-defined formats). (4) Modularize complex steps and creating macros for
performing repeated tasks. (5) Reduce code redundancy (removing unwanted code; use of functions and macros
for performing repeated tasks). (6) Syntactic optimization and deletion of large intermediate data sets. The above
techniques optimize the process to allow faster data delivery by reducing the execution time.

INTRODUCTION

This paper focuses on generic process improvement techniques that can be applied to any existing SAS process.
It begins right from analyzing an existing process goes on to describe the techniques gathering information about
various steps executing in a process, obtaining details such as longest executing steps in a process and
differentiating between steps which require more time to execute and those which require lesser time,
differentiating between steps which are more efficient and those which are less efficient. The paper further
discusses how to break out the process into various sub-processes and how to work on the sub-processes which
require more time to execute. It further discusses various techniques that can be applied to analyze the data and
break larger data sets into smaller pieces to allow faster processing. It also discusses parallelization techniques to
execute the smaller data sets in parallel and later combine them together. The paper goes on to discuss how a job
can be broken out into multiple instances based on the source data to perform same task better and faster.
Further, we compare and discuss alternate ways for performing same tasks for improving processing time.

IDENTIFYING AREAS OF IMPROVEMENT

For performing any kind of process improvement, it is very important to understand the current process very well.
In order to be able to understand the process thoroughly it is required to break out the process into DATA steps
and PROC steps. We use the FULLSTIMER option while executing the SAS codes to check the execution time for
each step from the SAS log. FULLSTIMER option in SAS provides step by step statistics for every step in a
program. This option can help pinpoint performance problems down due to a specific step. Consider the following
example of a very simple SAS program. The following program creates two data sets – Employee and Salary,
sorts them and merges them together to obtain the salary information of the employees.

/* PROGRAM TO ANALYSE TIME OF EXECUTION OF EACH PROCESS */

OPTIONS FULLSTIMER; /* FULLSTIMER option provides statistics in log*/

DATA Employee;

 Input Id $ Name $;

 datalines;

 101 Tim

 102 John

 103 Jane

 ;

RUN;

PROC SORT; by Id; RUN;

2

DATA Salary;

 Input Id $ Salary;

 datalines;

 101 60000

 102 60000

 103 80000

 ;

RUN;

PROC SORT; by Id; RUN;

DATA Employee_Salary;

 Merge Employee

 Salary;

 By Id;

RUN;

From the log file of the above program, the time required for execution of each step can be identified. We identify
the steps which take longest amount of time to execute.

163 /*LOG TIME */

164 OPTIONS FULLSTIMER;

165 DATA Employee;

166 input Id $ Name $;

167 datalines;

NOTE: The data set WORK.EMPLOYEE has 3 observations and 2 variables.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 user cpu time 0.00 seconds

 system cpu time 0.00 seconds

 Memory 193k

 OS Memory 16752k

 Timestamp 8/9/2010 12:37:58 AM

171 ;

172 RUN;

173 PROC SORT; by Id; RUN;

NOTE: There were 3 observations read from the data set WORK.EMPLOYEE.

NOTE: The data set WORK.EMPLOYEE has 3 observations and 2 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 user cpu time 0.01 seconds

 system cpu time 0.00 seconds

 Memory 94k

 OS Memory 16752k

 Timestamp 8/9/2010 12:37:58 AM

174 DATA Salary;

175 input Id $ Salary;

176 datalines;

NOTE: The data set WORK.SALARY has 3 observations and 2 variables.

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 user cpu time 0.00 seconds

 system cpu time 0.00 seconds

 Memory 193k

 OS Memory 16752k

 Timestamp 8/9/2010 12:37:58 AM

3

180 ;

181 RUN;

182 PROC SORT; by Id; RUN;

NOTE: There were 3 observations read from the data set WORK.SALARY.

NOTE: The data set WORK.SALARY has 3 observations and 2 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 user cpu time 0.00 seconds

 system cpu time 0.01 seconds

 Memory 89k

 OS Memory 16752k

 Timestamp 8/9/2010 12:37:58 AM

183 DATA Employee_Salary;

184 merge Employee

185 Salary;

186 by Id;

187 RUN;

NOTE: There were 3 observations read from the data set WORK.EMPLOYEE.

NOTE: There were 3 observations read from the data set WORK.SALARY.

NOTE: The data set WORK.EMPLOYEE_SALARY has 3 observations and 3 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 user cpu time 0.00 seconds

 system cpu time 0.01 seconds

 Memory 238k

 OS Memory 16752k

 Timestamp 8/9/2010 12:37:58 AM

Fig1.

Time required for executing each step in a process from Log file

For more complex programs, it is suggested to list the time required for execution of all the steps. By comparing
the Real time and User CPU times for each step, the user will be able to identify steps that require process
improvement. Real Time represents the elapsed time or "wall clock" time. This is the time spent to execute a job
or step. This is the time the user experiences in wait for the job/step to complete. Please refer the SAS support
web site for more information on the Real Time and USER CPU times. As host system resources are heavily
utilized the Real Time can go up significantly - representing a wait for various system resources to become
available for the SAS job/step's usage. The User CPU Time is the time spent by the processor to execute user-
written code. This is user-written from the perspective of the operating system and not the customer's language
statements. It is recommended to identify steps with high User CPU times and work on them, by using alternative
methods to reduce overall time of the process.

* * * * * * * * * * * * * * *

4

PARALLEL EXECUTION

In the following section, we will consider the three different parallelization techniques that can be applied for
processing the data in parallel.

ACTUAL PARALLELIZATION

For being able to implement actual parallelization in the process, it is suggested to identify the serially executing
independent steps in a SAS program. If there are any such steps, it is recommended to modify the SAS program
by creating separate programs for each step and executing them in parallel. This will reduce the wait time of the
independent processes thereby allowing execution of independent steps in parallel.

Consider the same example as stated above. Creation and sorting of the Employee data set and creation and
sorting of the Salary data set are two independent processes. Currently the Time required for executing the above
SAS program is equal to the sum of time required for executing each step. From the above example the Real time
of execution of the above SAS program would be 0.01 + 0.01 + 0.01 = 0.03 sec.

Fig 2.

Process executing serially

Consider an approach when the two independent steps for creating and sorting employee data set and creating
and sorting salary data set are broken out into two separate SAS programs. These programs would be executed in
parallel and the output would be combined in a third program. Therefore, the time required to execute the jobs in
parallel would now be reduced to the time taken by the longest job executing in parallel in addition to any serial
jobs thereafter. Therefore the total time of execution of the above SAS program would now be reduced to 0.01 +
0.01 = 0.02 sec.

Fig 3.

Process executing in parallel

In the above scenario, 33.33% savings in processing time was obtained; since time of execution was reduced
from 0.03 sec to 0.02 sec. Depending on the process a substantial saving in processing time can be obtained
using the above technique of executing mutually independent steps in parallel.

5

VIRTUAL MULTITHREADING

Virtual multithreading is a method that is introduced in the SAS SUGI 2007 paper, 036-2007 A Generic Method of
Parallel Processing in Base SAS® 8 and 9. With the use of multithreading, a task which otherwise would have
been executed serially can be executed in parallel. Multi-threading is faster as compared to serial processing since
a task is split into number of partitions thereby executing each partition in parallel.

The technique suggested in Skosian’s paper was applied to a hypothetical process for the sake of enumerating an
example of virtual multi-threading technique. Consider two data sets from the database of an internet shopping
website. The Larger data set is the Transaction dataset and the smaller data set is the Product Hierarchy data set.
Transaction data set contains the monthly sales information by a customer for different products. Transaction
dataset contains 15668100 observations and 8 variables. In the example considered, the product hierarchy
dataset contains Department, Sub-department, Genre and Product details of a product for only two departments.
Product hierarchy contains The requirement is to merge the transaction and the product hierarchy data sets on the
PRD key variable and obtain the entire product hierarchy at the output data set for reporting semester sales.
Please find the layout of the transaction data set, product hierarchy data set and the output data sets as below:

Fig 4.

Transaction data set

Fig. 5

Product hierarchy data set

6

Fig. 6

Output dataset obtained by merging Transaction and product hierarchy dataset

Virtual multi-threading technique was applied for the above datasets for creating the output dataset by merging the
two input dataset together. Multi-threading was applied in the following three steps: a. splitting the input dataset
into threads b. merge broken out datasets during multiple instances and c. combine broken out datasets to create
output data set. Please find the code for the same as below:

%let dsn = transaction; ** Input dataset **;

libname in_lib "/analysis/NESUG/input"; ** Input library **;

libname out_lib "/analysis/NESUG/output"; ** Output library **;

%LET JOBNAME = MYJOB ;

*** Job name must be a unique name and should NOT have extensions **;

%LET NUM_PARTITIONS = 30; * Number of threads;

********* Randomly split the input dataset into equal subsets ****;

%MACRO RANDOM_SPLIT(INLIB=,OUTLIB=,DSN=,NUM_PIECES=);

DATA

%DO K=1 %TO &NUM_PIECES;

&OUTLIB..&DSN._&K

%END;;

SET &INLIB..&DSN;

RANDOM_NUMBER=RANUNI(0);

%DO K=1 %TO &NUM_PIECES;

%IF &K NE 1 %THEN ELSE; IF (&K-1)/&NUM_PIECES <= RANDOM_NUMBER <

&K/&NUM_PIECES THEN OUTPUT &OUTLIB..&DSN._&K;

%END;

;

DROP RANDOM_NUMBER;

RUN;

%MEND RANDOM_SPLIT;

%RAN-

DOM_SPLIT(INLIB=IN_LIB,OUTLIB=OUT_LIB,DSN=&DSN,NUM_PIECES=&NUM_PARTITIONS);

OPTIONS OBS=0 NOSYNTAXCHECK FULLSTIMER SOURCE2;

*** Direct unnecessary portions of the log out of the main log file ***;

PROC PRINTTO LOG="./GARBAGE.LOG" NEW; RUN;

7

%MACRO PARTITION;

%DO PART_NUM=1 %TO &NUM_PARTITIONS;

FILENAME MPRINT "./&JOBNAME._PART&PART_NUM..sas" LRECL=170;

OPTIONS MPRINT MFILE;

%MACRO CODE;

OPTIONS FULLSTIMER SOURCE2;

LIBNAME IN_LIB "/analysis/NESUG/input/";

LIBNAME OUT_LIB "/analysis/NESUG/output/";

DATA OUT_LIB.OUTPUT_&JOBNAME._PART&PART_NUM (KEEP = CUSTOMER_ID DEPARTMENT

SUB_DEPARTMENT GENRE PRODUCT JAN2010 FEB2010 MAR2010 APR2010 MAY2010 JUN2010

JUL2010);

 RETAIN CUSTOMER_ID DEPARTMENT SUB_DEPARTMENT GENRE PRODUCT ;

 SET OUT_LIB.&DSN._&PART_NUM;

 SET IN_LIB.PRODHIER KEY = PRD / UNIQUE;

 RUN;

%MEND CODE;

%CODE

%END; ** num_partitions;

*** Redirect the log stream back to the main log file ***;

PROC PRINTTO LOG=LOG;RUN;

OPTIONS NOMFILE;

*** Create a shell script ***;

DATA _NULL_;

FILE "RUN_&JOBNAME..SH";

%DO PART_NUM = 1 %TO &NUM_PARTITIONS;

PUT "sas &JOBNAME._PART&PART_NUM..sas &";

%END;

PUT "wait";

RUN;

%MEND PARTITION;

%PARTITION

*** Execute the shell script ***;

X "chmod 755 RUN_&JOBNAME..SH";

X "RUN_&JOBNAME..SH";

*** Aggregate partitioned output datasets into one ***;

OPTIONS OBS=MAX PS=MAX NOCENTER;

%MACRO AGGREGATE;

DATA OUT_LIB.OUTPUT;

SET %DO PART_NUM = 1 %TO &NUM_PARTITIONS;

OUT_LIB.OUTPUT_&JOBNAME._PART&PART_NUM

%END;;

RUN;

%MEND AGGREGATE;

%AGGREGATE

Process was executed for splitting and merging a large transaction dataset with the smaller product hierarchy
dataset to obtain the entire product hierarchy at the output. The transaction dataset was split into 40 smaller
datasets and each dataset was processed separately to perform the merge step. Processing times and other
statistics obtained from the log file for the overall job as shown below.

8

NOTE: The SAS System used:

 real time 2:26.51

 user cpu time 1:27.26

 system cpu time 23.92 seconds

 Memory 10592k

 OS Memory 14372k

 Timestamp 8/12/2010 2:53:41 AM

 Page Faults 7338

 Page Reclaims 10246

 Page Swaps 0

 Voluntary Context Switches 231

 Involuntary Context Switches 14265

 Block Input Operations 0

 Block Output Operations 0

For comparison sake, let’s consider the example where the merge step was carried out by just using the set and
key= option for creating the output. The log file below shows that Real time required was 2:57.60 sec. and the
CPU time was 1:49.43 sec.

NOTE: The SAS System used:

 real time 2:57.60

 user cpu time 1:49.43

 system cpu time 14.01 seconds

 Memory 3786k

 OS Memory 4644k

 Timestamp 8/11/2010 1:25:07 AM

 Page Faults 14331

 Page Reclaims 3368

 Page Swaps 0

 Voluntary Context Switches 36

 Involuntary Context Switches 7541

 Block Input Operations 0

 Block Output Operations 0

Therefore there has been a time savings of approx 18% with the use of virtual multithreading. Both the codes were
executed one after another on the same AIX 64 UNIX server to ensure testing under similar memory, disk and
CPU usage. During testing, it was observed that the time savings using the virtual multi-threading is a function of:
a) amount of threads executed in parallel, b) current CPU available c) current memory available. Other concurrent
processes may adversely affect the performance of the multi-threading technique.

EXECUTING MULTIPLE INSTANCE OF JOBS IN UNIX

Due to size limitations, we often come across a scenario, where the data is broken out by a recurrent parameter
and certain processing is required to be done on the reoccurring files. Consider the following example which
enumerates such a case. The transactions of purchases made by customers over the internet during a month are
being obtained in Transaction data set. Transaction data set contains fields such as Customer ID, Product and
Purchase date. Transaction data sets are broken out by departments for example; separate data sets for each
product are listed. The transactions are at a product level, therefore there is product code. It is required to merge
each of the market level transaction file with the Product Hierarchy to obtain the entire Hierarchy at the output. The
Product Hierarchy data set contains information such as the Department code, Department name, Sub-
Department code, Sub-Department name, Genre Code, Genre name, Product code and the Product name.
Product code will be used to merge the Transaction data set and the about the product codes and product names.
Please find the details of a transaction record from the Transaction data set and the details of the product
hierarchy from the Product dataset below:

9

Fig 7.

Transactions from Transaction_MOV.sas7bdat

Fig 8.

Transactions from Transaction_BOK.sas7bdat

Fig 9.

Sample records from the Product Hierarchy data set

In the above example, it is required to merge the different department level transaction data sets with the product
hierarchy data sets to obtain the entire product hierarchy for specified products at the output.

Instead of processing the job for merging and creating outputs by each Department, it is suggested to create a
common job to perform the same process. A common code can be written to identify the various files at a
department level and create a parameter file with the details of all the Departments for which the process is
required to be executed. A common shell script can be created to execute the parameterized SAS program by
concurrently executing the SAS program multiple times by passing the parameter value of Department one by one
from the parameter file. Therefore, each department level file can be processed concurrently thereby reducing
processing time. A shell script can be written to concurrently execute multiple instances of the same job in parallel.

10

ALTERNATIVE METHODS OF PERFORMING TASKS

In the following section, we will consider alternative ways which can be used to process the data and perform
various tasks in a process. A simple case study was performed to assess the performance of merging two
datasets using various techniques. Considering our previous example of merging the Transaction and Product
Hierarchy dataset alternate methods of merging was utilized and their performance was analyzed. The same has
been presented in the section below.

USE OF SET STATMENT AND KEY= OPTION

This method utilizes an index to join the two datasets together. It is required to create the indexes on the SAS data
sets on the by variables, which would be used to merge two datasets. If the dataset is not already indexed by the
variable on which one is sorting, one must create the index. An index can be created as follows: a. index in a data
step, b. using PROC SQL or c. using PROC DATASETS index create option. One cannot explicitly tell the SAS
System to use an index that has been created in processing. The SAS System will determine the most efficient
way to process the merge step. Following code was utilized to merge the two datasets using set statement and
key=option using index.

OPTIONS FULLSTIMER SOURCE2;

LIBNAME IN_LIB "/Info-One/adhoc/kumbhvi1/analysis/NESUG/input/";

LIBNAME OUT_LIB "/Info-One/adhoc/kumbhvi1/analysis/NESUG/output/";

DATA OUT_LIB.output (KEEP=CUSTOMER_ID DEPARTMENT SUB_DEPARTMENT GENRE PRODUCT

JAN2010 FEB2010 MAR2010 APR2010 MAY2010 JUN2010 JUL2010);

RETAIN CUSTOMER_ID DEPARTMENT SUB_DEPARTMENT GENRE PRODUCT;

SET IN_LIB.transaction;

SET IN_LIB.PRODHIER KEY = PRD / UNIQUE;

RUN;

Performance statistics obtained from the log are as follows:

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 2:57.60

 user cpu time 1:49.43

 system cpu time 14.01 seconds

 Memory 3786k

 OS Memory 4644k

 Timestamp 8/11/2010 1:25:07 AM

 Page Faults 14331

 Page Reclaims 3368

 Page Swaps 0

 Voluntary Context Switches 36

 Involuntary Context Switches 7541

 Block Input Operations 0

 Block Output Operations 0

Performance statistics obtained from the logs state that the merge step by using index and key = option required a
Real time of 2:57.60 sec and User CPU time of 1:49.43 sec for merging the two datasets.

 USE OF SYNCSORT® FOR SORTING IN SAS

SYNCSORT® is a sort routine that can be purchased from Syncsort, Inc. One can use SYNCSORT® as an
alternative sorting algorithm to that provided by the SAS System. To use SYNCSORT® with the SAS System, one
is required to have the SYNCSORT® installed on the machine. Following test was carried out on an AIX 64 UNIX
server, where SYNCSORT® was used for merging two flat files. In order to be able to use SYNCSORT®, it is
required to have the source data in the form of flat files. In order to be able to process data using SYNCSORT®,
the source datasets were first converted into flat files. Following technique can be used to create a SYNCSORT®
program using SAS and execute it on the UNIX environment. In the technique described below, one can use the
DATA _NULL_ step and file statement to create a SYNCSORT® file. All the commands and Please find the code
for execution the merge step as follows:

11

/*TEST MERGING USING SYNCSORT */

OPTIONS COMPRESS=YES SORTPGM=HOST SORTANOM=BV;

FILENAME INSSY "/NESUG/SYN/SYNCMRG.SYN";

DATA _NULL_;

FILE INSSY NEW LRECL=50000;

 PUT

"/INFILE /NESUG/INPUT/TRANSACTION.TXT 45000 ""~"" " /

 "/JOINKEYS PRD" /

 "/INFILE /NESUG/INPUT/PRODUCTHIERARCHY.TXT 45000 ""~"" " /

 "/WORKSPACE /PROJ/SASTMP1" /

 "/WORKSPACE /PROJ/SASTMP2" /

 "/WORKSPACE /PROJ/SASTMP3" /

 "/WORKSPACE /PROJ/SASTMP4" /

 "/STATISTICS " /

 "/FIELDS CUSTOMER_ID 1: -1:, " /

 " PRD 2: -2:, " /

 " JAN2010 3: -3:, " /

 " FEB2010 4: -4:, " /

 " MAR2010 5: -5:, " /

 " APR2010 6: -6:, " /

 " MAY2010 7: -7:, " /

 " JUN2010 8: -8:, " /

 " DPT 1: -1:, " /

 " DEPARTMENT 2: -2:, " /

 " SDP 3: -3:, " /

 " SUB_DEPARTMENT 4: -4:, " /

 " GEN 5: -5:, " /

 " GENRE 6: -6:, " /

 " PRD_0 7: -7:, " /

 " PRODUCT 8: -8: " /

 "/JOINKEYS PRD_0 " /

"/OUTFILE /NESUG/OUTPUT/OUTPUT_SYN.TXT 45000 OVERWRITE " /

"/REFORMAT LEFTSIDE: CUSTOMER_ID, "

 "RIGHTSIDE: "

 "DEPARTMENT , SUB_DEPARTMENT, GENRE, PRODUCT, " /

 "LEFTSIDE: "

 "JAN2010, FEB2010, MAR2010, APR2010, MAY2010, JUN2010"

 ;

 RUN;

 X "ECHO %NRSTR ('\012%%%%%%%%%%%%%%%%%%%%') BEGINNING OF MERGE ROUTINE

 %NRSTR ('%%%%%%%%%%%%%%%%%%%%\012') >> /NESUG/SYN/SYNCMRG_SYN.LOG";

X "KSH /NESUG/SYN/TEMP1.SYN /NESUG/SYN/SYNCMRG.SYN

 2>> /NESUG/SYN/SYNCMRG_SYN.LOG";

Temp1.syn is used for invoking SYNCSORT®. It gives a call to the SYNCSORT® application and passes the
source code to the script as a parameter for execution.

#!/bin/ksh

PATH=$PATH:/appl/syncsort/3.11/syncsort/bin

export PATH

Start syncsort

syncsort << endofsort

/INSERT $1

/END

endofsort

Actual time taken for execution of the SYNCSORT® routine can be obtained from the log file of the SYNCSORT®
program. From the log it is evident that a total of 1:26.98 seconds were required for sorting.

12

 SyncSort statistics

Records read (left): 15,668,101 Data read (bytes) (left): 1,431,158,463

Records read (right): 136 Data read (bytes) (right): 8,006

Records paired (left): 15,668,101 Data paired (bytes) (left): 1,431,158,463

Records paired (right): 101 Data paired (bytes) (right): 5,616

Records unpaired (left): 0 Data unpaired (bytes) (left): 0

Records unpaired (right): 35 Data unpaired (bytes) (right): 2,390

Records output: 15,668,101 Data output (bytes): 2,003,103,999

Input record length (left): 92 Output record length: 137

Input record length (right): 72

Work space used (bytes): 173,829,632

Elapsed time: 0:01:26.98 CPU time: 0:02:01.29

Statistics obtained from the log file of the driver SAS program show that the Real time required to execute the
entire process right from outputting the SYNCSORT® program using put statement in SAS® to executing the
SYNCSORT® code, required a total time of 1:28:74 sec.

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 1:28.74

 user cpu time 0.02 seconds

 system cpu time 0.01 seconds

 Memory 3238k

 OS Memory 4132k

 Timestamp 8/11/2010 4:12:55 AM

 Page Faults 0

 Page Reclaims 2841

 Page Swaps 0

 Voluntary Context Switches 46

 Involuntary Context Switches 19

 Block Input Operations 0

 Block Output Operations 0

It is required to explicitly state use of SYNCSORT® for sorting by specifying it in the SAS® system options. This
can be achieved by inserting the following lines of code into one’s program:

OPTIONS sortpgm=host sortanom = bv;

Setting the sortpgm option to host specifies the use of host sort for sorting. Setting the SORTANOM option tells
syncsort to run in multi-call mode instead of single-call mode. From the above example it can be observed that
host sorts are generally faster than PROC SORT. Host sorts can be used with the propriety third party tool such as
SYNCSORT® licensed. SYNCSORT® is uniformly faster than the native SAS® sort, and should always be used
when available

USE OF USER-DEFINED FORMATS

Format procedure is generally used for creating one’s own formats by redefining what value one wants to use for a
given variable. Generally Format is used to assign certain values meaningful names. For example, in the data, one
may refer the GENDER of a patient as M or F, but by using format it can be given a meaningful name of “MALE”
or “FEMALE”. But, alternatively it can also be used for merging two datasets. Alternatively, Format procedure can
also be used to merge two data sets. In order to use format for merging, it is suggested to use a data step, and
read in one of the datasets and set the value, variable type (character/numeric), and format name for the key
variable. The CNTLIN option then builds the format using the specified dataset. In another data step, the second
dataset is then set where the format is equal to the value assigned, returning only those records that meet
specified selection criteria, thereby performing a merge. START is the value of the variable used to match, in this
case PRD. LABEL represents the value START which will be assigned in the instance of a match, in this case,
entire Product hierarchy. Please find the code used for merging the Transaction data set and the product hierarchy
datasets for creation the output as follows:

13

LIBNAME INPUT "/INFO-ONE/ADHOC/KUMBHVI1/ANALYSIS/NESUG/INPUT";

LIBNAME OUTPUT "/INFO-ONE/ADHOC/KUMBHVI1/ANALYSIS/NESUG/OUTPUT";

DATA PRODUCTHIERARCHY;

SET INPUT.PRODUCTHIERARCHY(RENAME=(PRD=START));

LABEL='*';

FMTNAME='$CALL';

RUN;

PROC FORMAT CNTLIN=PRODUCTHIERARCHY;

DATA OUTPUT.OUTPUT_FMTMRG;

SET INPUT.TRANSACTION;

IF PUT(PRD,$CALL.) EQ '*';

RUN;

Please find the times of execution from the log file as below. From the log files, it can be seen that the merge step
required a Real time of 1:01.54 sec and User CPU time of 48.02 sec. it is apparent that PROC FORMAT, is by far
the fastest method used for merging, but it comes with its own set of limitations which are described below.

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 1:01.54

 user cpu time 48.02 seconds

 system cpu time 9.15 seconds

 Memory 4182k

 OS Memory 4948k

 Timestamp 8/11/2010 2:22:53 AM

 Page Faults 2948

 Page Reclaims 3868

 Page Swaps 0

 Voluntary Context Switches 28

 Involuntary Context Switches 3007

 Block Input Operations 0

 Block Output Operations 0

Though, it appears to be the fastest method amongst the ones compared above, there are a few limitations of the
above method. First, the key variable used for merging has to be unique. Second, only matching records will be
returned at the output. Third, only one variable from the format (smaller) dataset will be merged and obtained at
the output. For example, only the PRD variable from the Product Hierarchy will appear at the output. This method
is best used when one only need to merge on one variable from another data set. In our case, where product
hierarchy data set contains four different attributes to be added to a master file, it would be required to create four
CNTLIN data sets and four PROC FORMATS before executing four PUT functions.

THREADED SORT

Use of threaded sort for sorting data allows much faster processing and can significantly decrease the processing
time. Specifying TAGSORT option can yield significant improvements in clock time, while typically increasing the
CPU time. It causes the sort routine to store only the sort-keys and observation numbers in the SAS® temporary
files. These keys and record numbers are the 'tags' of TAGSORT. Then, at the end of the sort, the tags are used
to retrieve entire records from the original data set in sorted order. This has potential gains whenever the total
length of the sort keys is small compared to the record length. Temporary disk usage is significantly decreased.

INTELLIGENT USE OF INDEXES

Large SAS indexes, especially those with small index page sizes, tend to have more index levels. The greater the
number of levels an index has, the more I/Os are consumed during an index search and the longer it takes to
complete the search. Conversely, indexes with fewer levels require fewer I/Os to traverse the index during an
index search. Therefore while merging two datasets one big and small, it is always suggested to index smaller
dataset while merging. This can improve processing time significantly.

14

Also, an index is most effective when it is used to access a small subset of observations from a large SAS data
set. When this happens, the overhead of processing index pages and data set pages is lower than the overhead
of reading the entire data set. As the size of the subset increases, the efficiency of using the index to read the data
decreases.

Fig 11.

Indexing guidelines

Using abovementioned guidelines for indexing, significant improvement in processing time was seen in the steps
which used indexes for merging.

MODULARIZING COMPLEX STEPS

It is required to separate the independent steps and avoid writing huge lines of code for performing similar tasks.
Creating macros for performing repeated tasks simplifies the process and makes the code easy to read.
Moreover, it also reduces code redundancy and in case of a change to process, allows users to update code in
only one location instead of many.

REDUCING CODE REDUNDANCY

Removing unwanted code; use of functions and macros for performing repetitive tasks makes the code much
simpler and easier to read. Also any processes, differing in only a certain parameter or a set of parameters but
having all the other processing logic similar, need to be converted to a macro. This would make the coded simpler
and more readable.

SYNTACTIC OPTIMIZATION

Various forms of syntactic optimizations can be made to the code which can result in faster processing. Consider
some of the examples for the same as follows:

USE WHERE INSTEAD OF IF

Use of where statement instead of an IF statement is more efficient while sub setting the data, since a sub setting
IF statement requires all the observations to read from the dataset first, whereas the WHERE statement only
preselects observations which qualify sub setting condition. Moreover WHERE statement can be used in the
DATA as well as PROC step, whereas an IF statement can only be used in a data step.

USE OF COMPRESS OPTION

System data step compress option or system compress option can be used to reduce the size of a dataset.
Depending upon whether the dataset contains variables of numeric data type or character data type, appropriate
compressing method needs to be selected. The compression should be changed to BINARY for efficiently
compressing data sets having numeric variables data type. Compressing datasets typically save two times the
amount of space that a data set might normally occupy

OPTIONS COMPRESS=YES

DELETION OF LARGE INTERMEDIATE DATA SETS

Deleting large volume intermediate datasets after processing is complete, frees up disk space for other SAS
processes executing in parallel thereby allowing faster processing of parallel jobs. Also, it is suggested to delete
an existing dataset first, before overwriting the same. Whenever a SAS data set is updated or replaced with
another SAS data set, SAS creates a temporary SAS data set to hold the new data until the DATA step or
procedure successfully completes, thereby utilizing more disk space in the process.

15

CONCLUSIONS

In this section, I have summarized the findings from all the aforementioned techniques for process improvement.

Identifying areas of improvement gives the developer a precise idea of steps that are required to be worked upon.
It is recommended to identify steps with high User CPU times and work on them, by using alternative methods to
reduce overall time of the process. The developer can then focus on only analyzing and applying alternative
strategies to further improve processing times of only such processes.

Actual parallelization technique can be applied to only certain processes which have serially independent steps
being executed one after the other. Careful planning and implementation would be required to indentify such steps
and implement a solution around this to execute the same in parallel

Virtual Multithreading is beneficial only in those situations where CPU time and the real time of a process are not
far apart. It has been observed that for a system-intensive process, the CPU time and the Real time are not far
apart, the ratio of CPU time and real time would be 1. Multi-threading is effective only for such system-intensive
processes. In a production environment, current CPU available, current available memory, other heavy duty
applications executing on the server, are some of the factors that govern the processing time of a multi-threaded
process. It is suggested to execute the process multiple times during peak and off-peak hours to determine the
average execution time of the process. Also, the number of threads in which the jobs should be broken out is an
important factor which can be determined by executing the jobs multiple times and determining for among all the
runs, one run for which run the difference between real time and CPU time was least during execution of the
process.

For, execution of multiple instances of jobs in UNIX, it is required that the nature of the data being processed
should be such that one should be able to split it in order to process in parallel.

Results of the case study of the use of alternative methods for merging two datasets, one large and one small are
listed in the table below, along with the advantages and the disadvantages of each method:

Fig 12.

Comparison of various methods of merging

Use of where statement instead of an IF statement is more efficient while sub setting the data

For use of indexes while merging two datasets one big and small, it is always suggested to index smaller data set

Deletion of large intermediate datasets: It is suggested to delete an existing data set first, before overwriting the
same in order to free up any occupied disk space.

Using the above mentioned process improvement techniques; the time of a practical production process was
reduced from 105 hours to 22 hours, thereby resulting in up to 74% process improvement. Above mentioned
generic techniques can be applied to any system intensive processes.

16

REFERENCES:

Kosian, Sassoon. A Generic Method of Parallel Processing in Base SAS @ 8 and 9. SUGI 2007.

Ghent, Ian J. Faster results by multi-threading data steps. SUGI 2010.

Schuster, Kristie and Sipe, Lori. 50 WAYS TO MERGE YOUR DATA – INSTALLMENT 1… SUGI 26

Cassell, David L. A sort of a Mess - Sorting Large Datasets on Multiple Keys. SUGI 26

Raithel, Michael A. The Complete Guide to SAS® Indexes (Pg. 18,19,20,36 and 38 from Chapter 2 and table 2.1)
Copyright 2006, SAS Institute Inc., Cary, NC, USA. All Rights Reserved. Reproduced with permission of SAS
Institute Inc., Cary, NC

https://support.sas.com for details on the FULLSTIMER SAS option details. Same can be referenced at the
following link http://support.sas.com/rnd/scalability/tools/fullstim/index.html

ACKNOWLEDGMENTS

I, Viraj Kumbhakarna would like to profusely thank my managers Sam Zheng and Luke Castellanos for being a
wonderful guides and mentors during my work at JPMorgan Chase & Co. I would also thank my employers at
JPMorgan Chase & Co. for providing me with an opportunity for attending the conference. I would also like to men-
tion the following authors: Sassoon Kosian, Ian J. Ghent, Lori Sipe, David L.Cassell and Michael A. Raithel who
granted me their kind permissions to reference their work in my paper. Finally, I would also like to thank
Christianna Williams, Howard Schreier and Neeraj Kumbhakarna for their invaluable review comments and tre-
mendous patience with my work.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

SYNCSORT® is a registered trademark of Syncsort, Inc.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Viraj Kumbhakarna

 JP Morgan Chase, Columbus, OH

 1111 Polaris Parkway,

 Columbus, OH, 43240

 973 220 2246

 vkumbhakarna@gmail.com

DISCLAIMER
The contents of the paper herein are solely the author’s thoughts and opinions, which do not represent those of JPMorgan
Chase & Co. JPMorgan Chase & Co. does not endorse, recommend, or promote any of the computing architectures,
platforms, software, programming techniques or styles referenced in this paper.

*

https://support.sas.com/
http://support.sas.com/rnd/scalability/tools/fullstim/index.html
mailto:vkumbhakarna@gmail.com

