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ABSTRACT  

There are numerous SAS
®

 modeling approaches that can be used to model an outcome of a standardized ratio 

measure (observed/expected counts), such as the frequently encountered Standardized Mortality Ratio (SMR). The 
purpose of this paper is to examine facility-level predictors associated with another standardized ratio measure---the 
Standardized Transplant Ratio (STR)---by comparing mixed- and fixed-effects modeling approaches in an analysis of 
dialysis facilities nested within 18 geographical regions of the US.  

In a cross-sectional, multi-level ecologic study using the publicly available Dialysis Facility Report (2007-2010) data, 
we examined 4,098 dialysis facilities across the US. STRs were defined as the number of observed kidney 
transplants within a dialysis facility divided by the number of expected transplants, which is determined for each 
facility by Dialysis Facility Report, based on modeling of patient age and year. We considered the outcome both as 
linear (STR and log-transformed STR) and as a count (with expected counts or person-years as offsets). We utilized 
random effects and generalized estimating equation modeling to account for correlation of facilities within regions. We 
considered SAS PROC MIXED to examine fixed and random effects and PROC GLIMMIX to further examine random 
effects with the linear outcomes STR and log-STR. We used SAS PROC GENMOD (fixed effects) and PROC 
GLIMMIX (mixed effects) to examine count outcomes, using a log link and the negative binomial distribution to 
account for overdispersion.  

The various modeling strategies in SAS gave similar answers about the magnitude and significance of facility-level 
predictors. Linear mixed effects models allow for random effects at the network level, but the model assumes 
normality of the outcome and residual errors (which are violated), and interpretation of log-transformed STR is not 
intuitive. SAS PROC GENMOD with a negative binomial distribution using transplant counts as the outcome and 
person-years as the offset does not allow for random effects but has the advantage of expected counts not previously 
being modeled. Results modeling the count outcome and expected counts as the offset were similar to those 
modeling observed counts and person-years only, and exponentiated beta estimates are easily interpretable as 
change in STR associated with unit change in predictor. 
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Figure 1. The 18 ESRD Network Regions for which the care of ESRD 
patients within dialysis facilities is overseen. 

INTRODUCTION  

In epidemiology, the Standardized Mortality Ratio (SMR) is a useful measure that compares the level of mortality in 
one population to the mortality in another population

1
. The SMR is typically defined as the ratio of the number of 

deaths in a specific population to the expected number of deaths in this same population. An SMR of 1.0 indicates 
that the number of observed deaths is equivalent to the number of expected deaths. SMRs are calculated using 
indirect standardization methods, where the expected number of deaths is calculated by multiplying the total number 
of subjects in a population (such as the U.S. population) by that populations' mortality rate. SMRs are particularly 
useful when adjusted rates -- such as age-specific rates -- are unstable 
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. In addition, SMRs are often preferred to 

standardized rate ratios in public health because of ease of interpretation of estimates.  

There are numerous SAS
®

 modeling approaches that can be used to model an outcome of a standardized ratio 

measure (observed/expected counts), such as the frequently encountered SMR. This work is motivated by an 
analysis that aims to examine associations between dialysis facility characteristics and access to kidney 
transplantation within 18 regions across the United States. The goal of the analysis was to examine facility-level 
predictors associated with the 
Standardized Transplant Ratio (STR) - 
defined as the total number of observed 
first kidney transplants divided by the 
total number of expected first 
transplants within a dialysis facility. 
For our analyses, the expected 
number of transplants within a facility 
was provided in the data and was 
defined by a Cox model that adjusted 
for age and calendar year.  

The purpose of this paper is to 
compare mixed- and fixed-effects 
modeling approaches in an analysis of 
dialysis facilities nested within 18 
geographical regions, or End Stage 
Renal Disease (ESRD) Networks of 
the United States (Figure 1). The 

examples utilize Dialysis Facility Report (DFR) data, which are publicly available and reported annually by the 
University of Michigan Kidney Epidemiology and Cost Center under a contract with the Centers for Medicare and 
Medicaid Services (CMS). 

METHODS AND DATA SOURCES 

Dialysis Facility Report (DFR) data are publicly available and reported annually by the University of Michigan Kidney 
Epidemiology and Cost Center under a contract with the Centers for Medicare & Medicaid Services (CMS). 

In a cross-sectional, multi-level ecologic study using the publicly available Dialysis Facility Report (2007-2010) data, 
we examined 4,098 U.S. dialysis facilities. We considered the outcome (STR) both as linear (STR and log-
transformed STR) and as a count (observed counts as outcome with expected counts or person-years as offsets). In 
the DFR dataset, 'strz_f' is the facility-level STR and there are a number of facility-level variables that represent 
aggregate demographic and clinical covariate information of patients within the facility. DFR reports facility 
information yearly. For simplicity, we will use year 1 (2007) data for this analysis. Example aggregate patient 
variables include age (agemy1_f), black race (blackmy1_f), and diabetes (diabmy1_f), and facility-level factors such 
as staffing (staffy1_f) and profit/non-profit status (owner_f). In addition, we may want to also consider covariates that 
are measured at the ESRD Network region level, such as the total number of transplant centers within a region 
(txctr_n). If our goal is to examine facility-level factors associated with STR, we have to first decide how to consider 
modeling this outcome.  
 
How might we want to model the outcome of STR? We consider that dialysis facilities that are located within ESRD 
Network regions of the country may be correlated with one another, since ESRD Network regions are responsible for 
overseeing the quality of care among dialysis facilities within their respective regions. Thus, we utilized random 
effects and generalized estimating equation modeling to account for correlation of facilities within regions. We 
considered SAS PROC MIXED to examine fixed and random effects and PROC GLIMMIX to further examine random 
effects with the linear outcomes STR and log-transformed STR. We used SAS PROC GENMOD (fixed effects) and 
PROC GLIMMIX (mixed effects) to examine count outcomes, using a log link and the negative binomial distribution to 
account for overdispersion.   
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Table 1 summarizes several modeling strategies for STR. 

 Type SAS Procedure Outcome Interpretation of β 

Model 1 Linear mixed effects PROC MIXED STR (obtrz_f/extxz_f) Change in STR 

Model 2 Linear mixed effects PROC MIXED log(STR+1) Change in log(STR+1) 

Model 3 Linear mixed effects PROC GLIMMIX STR Change in STR 

Model 4 Linear mixed effects PROC GLIMMIX log(STR+1) Change in log(STR+1) 

Model 5 Poisson or Negative 
Binomial fixed effects 

PROC GENMOD Transplant count (offset: expected 
count) 

log(change in STR) 

Model 6 Poisson or Negative 
Binomial fixed effects 

PROC GENMOD Transplant count (offset: person time) log(IRR) 

Model 7 Poisson or Negative 
Binomial mixed effects 

PROC GLIMMIX Transplant count (offset: expected 
count) 

log(change in STR) 

Model 8 Poisson or Negative 
Binomial mixed effects 

PROC GLIMMIX Transplant count (offset: person time) log(IRR) 

Table 1. Alternate Fixed and Mixed Modeling Strategies for STR outcome 

IRR, incidence rate ratio. 

RESULTS 

We first consider the most simple model, which considers STR (strz_f from the DFR dataset) as a continuous 
outcome. We first examine the distribution of the data to determine whether a linear regression model is a good fit.  

In addition to examining plots of the data by the various predictors to examine trends, we will also test linearity 
modeling assumptions including whether observations are: 1) independent and identically distributed observations, 2) 
normality of the error distribution, and 3) homoscedasticity, or constant variance of errors.  

 

 proc univariate data= dfr1 normal plot; 

 var strz_f; 

 qqplot ; 

 histogram; 

run; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 1 shows the distribution of the outcome variable STR ('strz_f') 

 

proc reg data= dfr1; 

  model strz_f = / dw spec; 

 output out=resids r=res ; 

run; 
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From Output 1 and Output 2, we can see that the distribution of strz_f is left-skewed because there are a number of 

facilities that have an STR of zero. The Q-Q plot suggests that the error terms of the STR are not normally 
distributed. 

 

Output 2 shows the fit diagnostics for the outcome variable 'strz_f'. 

There are a number of potential approaches to model the STR outcome, which are summarized in Table 1. These 
include considering STR as a continuous outcome or as a count outcome with a Poisson or Negative Binomial 
Distribution. In SAS, linear mixed models estimation methods can be used, such as PROC MIXED, PROC GENMOD, 
or PROC GLIMMIX. 

In order to account for the potential correlation of facilities within ESRD Networks, we could use the mixed linear 
model procedure PROC MIXED, which uses maximum likelihood estimation (MLE) methods to estimate the model 
coefficients and variances (Model 1).  

proc mixed data=dfr1 covtest; 

 class network; 

 model strz_f = / solution; 

 random intercept / sub=network; 

run; 

We may want to allow the intercept to vary by considering a random intercept. The SUB=option specifies the cluster 
level at the Network region. We consider in the model statement covariates that are on the facility level (level 1) and 
the ESRD Network level (level 2; e.g., txctr_n), using the random statement with the SUB=network_n to account for 
potential clustering of facilities within ESRD Network regions. We consider a random intercept for ESRD Network 
region so that we can make inference on facilities within regions. 

proc mixed data=dfr1 covtest; 

 class network; 

 model strz_f = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n / solution cl;  

 random intercept / sub=network_n; 

run; 
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This model converges. However, Figure 2 suggests the normality assumptions and some linearity assumptions are 
not met. One strategy to address the skewed distribution is to transform the STR, such as with a log transformation 
(Model 2). Because zero is a meaningful value of the outcome STR, we considered the outcome as ln(STR+1). We 

run the same model as above, but with the transformed outcome.  

proc mixed data=work.dfr1 covtest; 

 class network; 

 model logstr = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n / solution cl;  

 random intercept / sub=network_n; 

run; 

The model statement specifies the fixed effects and the random statement specifies the random effects. We specify 
that the subject, or cluster, is the ESRD Network region (network_n). A repeated statement could also be used here 
to specify the variance-covariance structure of the errors. This model gives estimates that are somewhat difficult to 
interpret (change in the ln(STR+1)).  

We may also want to consider modeling continuous STR or ln(STR + 1) using PROC GLIMMIX, since PROC 
GLIMMIX allows a non-normal response distribution of the outcome whereas PROC MIXED requires normality of the 
response variable. PROC GLIMMIX has very similar syntax to PROC MIXED. Model 3 uses a non-transformed STR. 

proc glimmix data=work.dfr1 covtest; 

 model logstr = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n / solution; 

 random intercept / sub=network; 

run; 

In Model 4, we consider using the log-transformed STR to improve on model fit. 

proc glimmix data=work.dfr1; 

 model logstr = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n /  solution; 

  random intercept / subject=network_n;  

run; 

 

Models 3 and 4 use generalized linear modeling through PROC GLIMMIX. This approach allows for both fixed and 

random effects modeling, while also accounting for the potential correlation of facilities within ESRD Network regions. 
Because our outcome of STR has already been modeled, this implies that there is unknown error in our outcome that 
we may not have accounted for in this modeling approach. There are several additional modeling strategies that we 
can use that may provide an easier interpretation or one with more public health significance. Instead of considering 
the STR as the modeled outcome, we could consider the components of the STR, such as the transplant count as the 
outcome and the offset the expected transplant count. Poisson regression may be appropriate for these rate data. 
Here the rate could be defined several ways, depending on the interpretation of the model coefficients that we want. 
The numerator of the rate is the observed transplant count (obtrz_f), and the denominator could either be the 
expected first transplant count (extxz_f), such that the exponentiated coefficient represents change in STR; or the 
denominator could be person-years at risk for first transplant (txyz_f), such that the exponentiated coefficient 
represents change in the incidence rate ratio (IRR) of transplant. 

data count; 

 set dfr1; 

 log_cnt = log(extxz_f); *Expected first transplant count; 

 log_pt = log(txyz_f); *Person years; 

run; 

 

In SAS, one approach to model a Poisson distribution is to use a generalized linear modeling approach, such as 
PROC GENMOD, which allows for fixed effects, but not random effects. The link function is necessary to ensure that 
the model is linear. Note that the default link function for the Poisson distribution is the log function.  

proc genmod data= count; 

 model obtrz_f = / dist=poisson offset=log_cnt 

run;  
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There is some evidence for overdispersion of the STR 
residuals, meaning that the observed variance is larger than 
the assumed variance of the STR. In these data, the 
overdispersion is due to 2.4% of facilities with an STR of 
zero. One way to examine whether the data are over- or 
under-dispersed is to look at the scale factor; e.g., 
Pearson/DF, in the model diagnostics, where a value of 1.0 
suggests no dispersion, <1 suggests underdispersion, and > 
1 suggests overdispersion.  Here, the deviance value of 
2.9966 suggests that the data are overdispersed (Output 3). 

We could try to adjust for overdispersion in the above model by adding the scale parameter. We would do this by 
adding the option SCALE=PEARSON, and examining fit statistics (scaled deviance and scaled pearson chi-square 
statistics) in the SAS output. For these data, when we adjust for the overdispersion, the scaled deviance is now 
0.7635, which is an improvement.  

If we find the overdispersion is still a problem, another alternative approach is to consider a negative binomial 
distribution model (Model 5). Here the new deviance (Value/DF) is 1.0593, which is a much better fit to the data. 

proc genmod data= count; 

 model obtrz_f = / dist=nb link=log offset=log_cnt 

run; 

We consider model covariates using the observed transplant count as the outcome, and the log of the expected 
transplant count as an offset in the model. This will allow us to interpret the beta coefficients as the log(change in 
STR). 

proc genmod data=work.count; 

 class network_n (ref="1"); 

 model obtrz_f = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n /dist=poisson link=log offset=log_cnt diagnostics  

    obstats; 

 repeated subject=network_n/ ;  

 output out=data p=pred; 

run; 

We can further assess model fit by outputting the data and plotting the residuals, or by examining diagnostics. Note 
that the repeated statement specifies the covariance structure of the clustered responses for GEE model fitting, and 
the subject=network_n line will give robust standard errors for the model coefficients.  

Additionally, we could also model the transplant count using the offset of person-time to change the interpretation of 
the beta coefficients to the log(IRR) (Model 6). 

 

proc genmod data=work.count; 

 class network_n (ref="1"); 

 model obtrz_f = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n/dist=poisson link=log offset=log_pt diagnostics  

    obstats; 

 repeated subject=network_n/ ;  

 output out=data p=pred; 

run; 

Additionally, if we would like the flexibility of incorporating both fixed and random effects into our model, an approach 
such as PROC GLIMMIX, is ideal. Random effects are important to incorporate if the levels represent a sample of a 
population (e.g., if we were examining a subsample of dialysis facilities rather than all U.S. dialysis facilities), and if 

we wanted to make inference on all dialysis facilities. 

The GLIMMIX and MIXED procedures are similar. Note the default link function for both Poisson and Negative 
binomial models is the log. As before, the offset specifies the exposure time, which in these data could potentially be 
the expected value of the transplant count or the person-time associated with the outcome, depending on the 
preferred interpretation of the model coefficients and tolerance for unknown error in expected counts. Model 7 

considers a Poisson distribution with the observed transplant count as the outcome and the log of the expected first 
transplant count as the offset. 
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proc glimmix data= count; 

 model obtrz_f = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n / dist=poisson link=log offset=log_cnt solution; 

  random intercept / subject=network_n;  

run; 

 

Here, the model statement specifies the dependent variable and the fixed effects of the model, and the random 
statement defines the random effects. We may also want to consider using a RANDOM _RESIDUAL_ statement in 
PROC GLIMMMIX if we would also like to specify R-side random effects.  

We could also consider modeling the offset as the log of the person-time at risk for a first transplant (log_pt), as 
above (Model 8) 

proc glimmix data= count; 

 model obtrz_f = blackmy1_f diabmy1_f staffy1_f owner_f  

  txctr_n/ dist=nb link=log offset=log_pt solution; 

  random intercept / subject=network_n;  

run; 

 

We still may want to consider a modeling strategy that examines count variables, but with these data we do not have 
the option of using GEE since our models did not converge. Table 4 reports the associations of several facility-level 
variables with the facility-level STR using the various modeling approaches. Of note, most of the model coefficients 
and p-values are similar across models, with the exception of profit status (a dichotomous variable). Additionally, the 
linear modeled STR (Model 1), which we reported a poor fit of the data to the linear STR outcome, and log-
transformed STR (Model 2) have different p-values that could result in different conclusions if we consider p<0.05 as 
statistically significant. In Models 1-2, we would conclude that the number of transplant centers within an ESRD 
Network was not a significant predictor of facility-level STR, but Models 3-8 would support a positive association 

between the number of transplant centers and a higher STR.  

Table 4 summarizes beta coefficients for the various modeling approaches (Models 1-8). Note these models only 

include a few select covariates in the models for simplicity. 

Table 4. Summary of model coefficients for Models 1-8 

 Model 1 Model 2 Model 3 Model 4 

β p-value β p-value β p-value β p-value 

Blackmy1_f -0.008 <0.01 -0.004 <0.01 -0.008 <0.01 -0.004 <0.01 

Diabmy1_f -0.006 <0.01 -0.003 <0.01 -0.006 <0.01 -0.003 <0.01 

Staffy1_f 0.002 0.04 0.002 <0.01 0.002 0.03 0.002 <0.01 

Owner_f -0.071 0.01 -0.026 0.04 -0.057 0.03 -0.020 0.10 

Txctr_n 0.051 0.09 0.022 0.10 0.066 <0.01 0.027 <0.01 

 

 Model 5 Model 6 Model 7 Model 8 

β p-value β p-value β p-value β p-value 

Blackmy1_f -0.01 <0.01 -0.012 <0.01 -0.013 <0.01 -0.013 <0.01 

Diabmy1_f -0.01 <0.01 -0.011 <0.01 -0.012 <0.01 -0.012 <0.01 

Staffy1_f -0.04 <0.01 -0.040 <0.01 -0.039 <0.01 -0.039 <0.01 

Owner_f -0.36 <0.01 -0.400 <0.01 -0.310 <0.01 -0.310 <0.01 

Txctr_n 0.07 <0.01 0.070 <0.01 0.085 <0.01 0.085 <0.01 
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CONCLUSION  

There are various modeling strategies to use when modeling standardized ratios, such as the standardized mortality 
ratio or the standardized transplant ratio. The various modeling approaches in SAS gave similar answers about the 
magnitude and significance of facility-level predictors in our example. 

 

Table 5 summarizes the strengths and limitations of the modeling strategies for STR. 

Model Advantages Disadvantages 

Model 1 Can be used for models with random effects and for 
data with correlated errors 

Outcome is previously modeled; assumptions of normality 
of outcome and residual errors violated 

Model 2 Can be used for models with random effects and for 
data with correlated errors 

Outcome is previously modeled; beta coefficient estimates 
not easily interpretable 

Model 3 Can be used for models with random effects and for 
data with correlated errors, no need for normality 
assumption of outcome 

Outcome is previously modeled; assumptions of normality 
of residual errors violated 

Model 4 Can be used for models with random effects and for 
data with correlated errors, no need for normality 
assumption of outcome 

Outcome is previously modeled; beta coefficient estimates 
not easily interpretable 

Model 5 Can be used for data with correlated errors No random effects in GEE models 

Model 6 Can be used for data with correlated errors No random effects in GEE models 

Model 7 Can be used for models with random effects and for 
data with correlated errors 

Offset is previously modeled 

Model 8 Can be used for models with random effects and for 
data with correlated errors 

Loss of standardized ratio interpretability 

 

Linear mixed effects models allow for random effects at the network level, but the model assumes normality of the 
outcome and residual errors (which are violated), and interpretation of log-transformed STR is not intuitive. SAS 
PROC GENMOD with a negative binomial distribution using transplant counts as the outcome and person-years as 
the offset does not allow for random effects, but has the advantage of expected counts not previously being modeled. 
Modeling results using the count outcome and expected counts as the offset were similar to those using observed 
counts and person-years only and exponentiated beta estimates are easily interpretable as change in STR 
associated with unit change in predictor. Various modeling options should be considered and compared when the 
outcome of interest a standardized ratios. 
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