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ABSTRACT  

PROC FORMAT and data step mathematics can be used to bypass computational limitations to calculate probability 
estimates of exceedingly rare events.  A client needed to assess the likelihood of finding a defect, given that one 
hadn’t yet been found in thousands of tests. Standard binomial tables extend only to 500 trials. The formula cannot 
be calculated directly and even the numeric approximation was intractable given the available hardware. The num-
bers even exceeded the capacity of SAS®’s combination and factorial functions. A review of publications extending 
back through 1964, the application of mathematical methods to simplify calculations, and a custom-written PROC 
FORMAT and SAS data step led to an answer for the client … vanishingly small.    

INTRODUCTION 

The client was interested in examining the reliability of a process.  The desired answer was the likelihood of finding a 
defect, given that one hadn’t yet been found, and if one was ever found, the likelihood of finding another.  The formu-
las and iterative solution algorithm are detailed in the later in this paper.  Essentially, for each combination of r and n 
(successes and trials), successive “guesses” at p are made and the answer is the p for which the stopping criteria is 
“small enough.”  For small values of r and n, an iterative algorithm was accomplished in a DATA STEP using a DO 

loop and the COMB function.  An initial guess at p was used to calculate p which is added to p to form the next 

guess.   

THE CALCULATION CHALLENGE 

To replicate the original table, the iterative procedure was accomplished in a DATA STEP using a DO loop and the 
COMB function to calculate nCr and PC SAS 9.1.3.  Scaling the calculations from the n=500 maximum of the original 
paper to the n=5000 required by the client was not straightforward.  The calculations require a computed value of nCr 
for n=4 to n=5,000.  PC SAS 9.1.3 couldn’t do the calculation. Using these n and r with the factorial function 
nCr=FACT (n) / (FACT(n-r)FACT(r)) also exceeded the capability. 

 

Borrowing inspiration from the original paper, logarithms can be used and
znCr 10  where 
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Using this arithmetic relationship, a DATA STEP was used to build a 
table of logarithms from 4 to 5000.  
 

This data set was used as the input control data set for the FOR-
MAT procedure to create the format SUMlog.    The SUMlog format 
was applied to n, r, and n-r using the DATA STEP expressions be-
low to calculate nCr for n=1 to 5,000 and from r=n/2 when n is even 
or r=(n-1)/2 for odd n to r.   

 

lognF=input(put(n,SUMlog.),best32.);  

lognrF=input(put(nminusr,SUMlog.),best32.); 

logrF=input(put(r,SUMlog.),best32.); 

lognCr=lognF-(lognrF+logrF); 

nCr=10**lognCr; 

 

A data set of these n, r, and lognCr was the starting point for the iterative process used to produce each entry of the 
expanded binomial reliability table.  Because that iterative process used the lognCr in additional calculations, this was 
sufficient.  SAS 9.1.3 and Windows XP run into the same numeric limitations when doing the nCr = 10**lognCr calcu-
lation.  To obtain human-readable nCr numbers in scientific notation for lognCr as high as 1503.2, additional data 
step lines are needed. 
integer=int(lognCr); 

remainder=lognCr-integer; 

nCr_rem=10**remainder; 

nCr_text=put(nCr_rem,best5.)||"E"||left(integer); 

data ctrl; 

   format label best32.; 

   retain fmtname 'SUMlog'  

          type 'n' 

          SUMlogn 0; 

   do n=1 to 5000; 

      logn=log10(n); 

      SUMlogn=SUMlogn+logn; 

   start=n; 

   label=SUMlogn; 

      output; 

   end; 

run; 



 

2 

FORMULAS AND ITERATIVE ALGORITHM 

Essentially, the client wanted a table similar to the binomial reliability table presented in Cooke, Lee, and 
Vanderbeck’s 1964 publication (Cooke et al., 1964, p.vi) which states: 

Example:  A sample of size 50 is randomly selected from a population whose reliability we wish to 

predict.  Forty-eight of the items tested are successful.  Using the table, find a lower confidence lim-
it so that the true population p will be equal to or greater than this value 90% of the time, i.e. if 

many samples are drawn and a lower confidence limit is computed from each sample, 90% of the 
time we would be correct in stating that the true population p is equal to or greater than this lower 
limit. 

Looking in the table for n = 50, r = 48;  =.90 … we find that the lower limit is .89704. 

Hence, we are 90% confident that the true population reliability is at least .89 

     

 
Figure 1.  Binomial Reliability Table (Cooke 1964, p.7) (“Best Available Copy” enlarged) 

MATHEMATICAL ALGORITHM 

The binomial distribution is useful when analyzing attribute data (e.g., favorable or unfavorable, reliable or unreliable, 
etc.).  The binomial distribution is defined as 
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Equation (1) gives the probability of obtaining exactly x favorable items from a sample of size n when the true popula-
tion proportion of reliable (favorable) items is p.  This assumes the probability of a favorable event, p, remains con-
stant from sample to sample, and every item in the population is equally likely to be chosen. 

We are interested in determining the worst that can be expected from an as-yet-to-be-taken sample.  From our cur-

rent sample we obtained r favorable events.  An estimate p̂ of the true population p is given by r/n.  We can con-

struct a limit which will be lower than p most of the time by finding the lower confidence limit.  In calculating this confi-
dence limit, the cumulative form of the binomial distribution, F(x), is used (Mood et al. 1974, p. 220). 
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Equation (2) gives the probability of obtaining r or more favorable items from a sample of size n when the true percent 
of favorable items in the population is p.  The lower one-sided confidence limit is obtained by solving the following 
equation for pl: 
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For known r, n, and , pl can be determined and we can state with confidence  that the true population p will not be 
less than pl.  Thus, when we assign gamma to be .95, if we test many samples of size n and compute the lower con-

fidence limit each time, p will be less than or equal to pl about 95 times out of 100.   We are 100% confident that the 
true population proportion of reliable items p is equal to or greater than our lower one-sided confidence limit pl. 



 

3 

Given n, r, and  we solve the following equation for pl: 
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 An iterative procedure was used to determine pl for =1-.  For each value of r, the pl corresponding to each 

 level was computed.  When r = n, the expression p_hat=10**log10(alpha/n)) was used to solve pl directly from the 

equation 
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When r < n, the first estimate lp̂  of pl was obtained from previously computed values. 

The iterative procedure (modeled after Cooke et al.) consisted of finding the value of lp̂ , such that the following 

would hold: 
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Having the first estimate of lp̂  and using a second order Taylor series expansion (Wikipedia, 2010), the following 

equation was solved for p: 
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Rearranging, grouping like terms, applying the quadratic equation, and solving for p, yields two roots. 
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The value of p, which minimized  rnpB l ,|ˆ , was chosen to correct the estimate.  The next estimate lp̂  was 

lp̂ + p .  The process was repeated until the difference  rnpB l ,|ˆ was less than 0.000001.  The estimate was 

rounded to 5 decimal places and printed in the body of the table. 

Since the values of lp̂  were rounded, there is error in the final tabular value.  There are also unexamined errors due 

limits of precision and rounding in the computations.  However, this degree of accuracy was acceptable to the client. 

 
The calculations require a computed value of nCr for n=4 to n=5,000 and from r=n/2 when n is even or r=(n-1)/2 for 
odd n to r.  This area is shaded in Figure 1.  The black shaded area indicates that area where the combination func-
tion computes a result using PC SAS 9.1.3.  The largest result returned was COMB(1658,1402)=1.794987E308.  
Using the factorial function nCr=FACT(n)/(FACT(n-r)FACT(r)) doesn’t work either; the largest value returned by the 
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factorial function is FACT(170)=7.2574E306. 

 
Figure 2.  Region for which nCr (the number of combinations of n items 
chosen r at a time) is needed.  The COMB(n,r) function returns values only 
for the black region.  Another calculation method is used for the red region. 

 
As stated above, logarithms can be used.  Recall, the logarithm of the product of several numbers is equal to the sum 
of the logarithms of each.  Also, recall that for all integer n >0, n factorial is the product of all positive integers be-
tween 1 and n inclusive (Connelly et al., 1980). 
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1  and taking the logarithm gives 
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CONCLUSIONS 

PROC FORMAT was successfully used in DATA STEP mathematics to answer the client’s needs.  Although the level 
of numeric inaccuracy is uncharacterized, the inaccuracy is larger when nCr is very large and relatively small for r 
near n.  The client’s primary interest was assessing in the likelihood of success in new trials, given that a failure 
hadn’t yet been found in more than four thousand trials.  In short, “What is the process reliability?”  The table calcu-
lated with these methods answers these questions.  For example:  for n=4000, r=4000, and alpha=.05, we are 95% 
confident that at least 99.92% of trials will be successes; and for n=4000, r=3999 and alpha=.05, we are 95% confi-
dent that at least 99.88% of trials will be successes. 
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