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ABSTRACT 
Data analysis begins with data clean up, calculation of descriptive statistics and the examination of variable 
distributions.  Before more rigorous statistical analysis begins, many statisticians perform basic inferential statistical 
tests such as chi-square and t-tests to assess unadjusted associations.  These tests help to guide the direction of the 
more rigorous analysis.  How to perform chi-square and t-tests will be presented. We will examine how to interpret 
the output, where to look for the association or difference based on the hypothesis being tested, and propose next 
steps for further analysis using example data. 
 
 
INTRODUCTION 
Millions of dollars each year are given to researchers to collect various types of data to aid in advancing science just 
a little more.  Data is collected, entered, cleaned, and a statistician is told it is ready for analysis.  When a statistician 
receives data, there are some basic statistical analyses that are performed first so that the statistician understands 
what the data look like.  Statisticians examine distributions of categorical and continuous data to look for small 
frequency of occurrence, amount of missing data, distributional shape, variability and potential relationships.  Not 
understanding what the data look like in their basic form can cause incorrect assumptions to be made and an 
incorrect statistical analysis could be performed later on. 
 
The first look at a data set includes plotting the data, determining appropriate descriptive statistics, and performing 
some basic inferential statistics like t-tests and chi-square tests.   Knowing what descriptive statistic or inferential 
statistical analysis is appropriate for the type of variable or variables in the data, how to get SAS® to calculate the 
appropriate statistics, and what is necessary to report from the output is essential.  SAS has a whole host of statistical 
analysis tools for both descriptive and inferential statistical analyses. 
 
 
DESCRIPTIVE STATISTICS 
Descriptive statistics are numbers that describe your data and the type of descriptive statistic that should be 
calculated depends on the type of variable being analyzed: categorical, ordinal, or continuous. 
 
Categorical Variables 
Categorical data is data that can take on a discrete number of values or categories with no inherent order to the 
categories.  Examples of categorical variables are sex (male or female), race (Black, White, Asian, Hispanic), disease 
or no disease, and yes or no variables.  The types of descriptive statistics that are calculated for categorical variables 
include frequencies and proportions or percentages in the various categories of the variable. 
 
Ordinal Variables 
Ordinal variables are another type of variable where there are a discrete number of values but the values have some 
inherent order to them.  For example, Likert scale variables (strongly disagree, disagree, agree, strongly agree) are 
ordinal variables.  There is an inherent knowledge that strongly disagree is “worse” than disagree.  Several types of 
descriptive statistics can be calculated for these types of variables including frequencies and proportions or 
percentages, medians, modes, inter-quartile range.  Depending on the number of values an ordinal variable can 
assume, a mean and standard deviation may also be calculated. 
 
Continuous Variables 
Continuous variables are those for which the values can take on an infinite number of values in a given range.  While 
we may not be able to actually measure the variable as precisely as we would wish, the potential number of values is 
infinite.  For example, think about measuring height.  We record height in inches or meters and we measure height 
with a ruler of some sort.  But we are limited in how precise height is measured due to our measuring device.  Is 
someone really 5 feet 7 inches or are they really 5 feet 6.55214328754 inches?  We know that height is measured in 
a given range and that there really are an infinite number of values that height can take on, but the precision of our 
measurement is at the mercy of our measuring device.  Descriptive statistics that are appropriate for a continuous 
measure to determine the middle of the distribution include means, medians, and modes and to examine the spread 
of the distribution we can use quartiles, variances, standard deviations, coefficients of variation, ranges, inter-quartile 
ranges, minimums and maximums. Statistics such as kurtosis and skewness can be used to describe the shape of 
the distribution.
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INFERENTIAL STATISTICS 
Inferential statistics are used to examine data for differences, associations, and relationships to answer research 
questions (or hypotheses).  The types of inferential statistics that should be used depend on the nature of the 
variables that will be used in the analysis.   The most basic inferential statistics tests that are used include chi-square 
tests and one- and two-sample t-tests. 
 
 
Chi-Square Tests 
A chi-square test is used to examine the association between categorical variables.  The levels of categories for each 
variable can be two or more.  The types of research questions that can be addressed are: 

• Are two (or more) proportions in a single categorical variable different from hypothesized population values? 
• Is there an association or dependence between two categorical variables? 
• Are two (or more) proportions different from each other? 
• Is there a difference of risk (or odds) of an event between two groups? 

 
 
One- and Two-Sample T-tests 
T-tests are used to examine differences between means.  The types of research questions that can be addressed 
are: 

• Is the sample mean of a single continuous variable in a single group of individuals different from a particular 
hypothesized population value? 

• Are the sample means of a single continuous variable different between two different groups of individuals?	
  
 
 
SAS PROCEDURES 
 
Inferential Statistics for Categorical Variables 
 
Chi-Square Test for Goodness of Fit (One Sample Test of Proportions) 
To examine whether two or more proportions for a single categorical variable fit a specified set of values, a chi-
square Goodness of Fit (GOF) test is performed.  Using PROC FREQ, the SAS code used is 
 

proc freq data=datasetname; 
  tables catvar / chisq testp=(p1 p2 p3…); 
run; 

 
In the TABLES statement we indicate that we want a one-way table by listing the categorical variable, catvar.  
Following the “/” the options to use chisq to perform the chi-square GOF test and testp=(p1 p2 p3….) where p1, p2, 
p3 and so on are the population percentages that are assumed for each level of the categorical variable.  The 
population percentages p1, p2, p3 and so on must add up to 100 percent. 
 
Chi-Square Tests for Equality of Two Proportions or Association of Two Categorical Variables 
To examine whether the equality of two proportions or the association between two categorical variables exists, we 
use a chi-square test.  Chi-square tests are performed using PROC FREQ and the basic SAS® code used is  
 

proc freq data=datasetname; 
  tables catvarrow*catvarcol / chisq measures 
         plots=(freqplot(twoway=groupvertical scale=percent)); 
run; 

	
  
In the TABLES statement, we indicate that we want a two-way table to be calculated with the variable that will 
determine the rows of the two-way table being listed first (catvarrow) followed by an asterisk (*) and then the variable 
that will determine the columns of the two-way table listed second (catvarcol).  The option to calculate a chi-square 
test, chisq, is listed in the TABLES statement following the “/”.  The test that is produced by the chisq option 
compares the row or column percentages in the two-way table.  The measures option produces the odds ratio or 
relative risk (column dependent) and corresponding 95% confidence intervals.  The option 
plots=(freqplot(twoway=groupvertical scale=percent)) is used to plot the overall percentages, and not the row 
percentages, across the column levels of the row variable.  If there are several row and column variables you want a 
chi-square test performed for, you can have multiple row variables listed within parentheses followed by an asterisk 
and multiple column variables listed within parentheses and PROC FREQ will perform a chi-square test on all 
possible combinations of the row and column variables listed. 
 



	
   2 

	
  

ods graphics on; 
proc freq data=datasetname; 
  tables (catvarrow1 catvarrow2)*(catvarcol1 catvarcol2) 
              / chisq plots=(freqplot(twoway=groupvertical 

           scale=percent)); 
run; 
ods graphics off; 

 
 
Example 1:  Data were collected on 287 swimmers (Hand et al., 1994).  The objective of the study was to determine, 
in particular, whether beach swimmers run a greater risk of contracting ear infections than non-beach swimmers.  The 
data set consists of five variables.  Three of these variables are categorical, frequent ocean swimmer status, location, 
and sex, and two are ordinal, age group and number of ear infections.  To illustrate a chi-square test of goodness of 
fit, we will use the age group variable.  We want to examine whether the sample frequency distribution fits a 
hypothesized population distribution of 50% in the youngest age group and 25% in the two older age groups.  The 
SAS® code is listed below and the output (Output 1) follows. 
 
 

proc freq data=earinfection; 
  tables agegroup / nocum chisq testp=(50 25 25); 
run; 

 
 
 

agegroup 

agegroup Frequency Percent 
Test 
Percent 

15-19 yrs 140 48.78 50.00 

20-24 yrs 79 27.53 25.00 

25-29 yrs 68 23.69 25.00 
 
 

Chi-Square Test 
for Specified Proportions 

Chi-Square 1.0139 

DF 2 

Pr > ChiSq 0.6023 
 
 
 
  Output 1:  Chi-square Test of Goodness of Fit on Age Group 
 
 
In the first table of Output 1, the sample frequency distribution is given.  For any frequency distribution table, the table 
lists the levels of the categorical variable in the first column, the second column contains the frequency or number of 
individuals in that specific category, and the third column contains the percent of individuals in that specific category.  
In the first table the sample percentages are highlighted in blue and then the population distribution we are testing 
against is highlighted in green.  The GOF test statistic and p-value are shown in the next table of Output 1 and are 
highlighted in yellow.  The p-value for the GOF test indicates that the sample distribution is not significantly different 
at an alpha level of 0.05, since p=0.6023, than the assumed population distribution of 50% in the youngest age group 
followed by 25% in the two older age groups. 
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Example 2:  Using the ear infection data, to test that the distribution of age groups is different in non-beach and 
beach swimmers, i.e. is there an association between swim location and age, the SAS® code below was used. 

 
proc freq data=earinfection; 

tables location*agegroup / chisq; 
run; 

 
 

Table of location by agegroup 

location(location) agegroup(agegroup) 

Frequency 
Percent 
Row Pct 
Col Pct 

15-19 
yrs 

20-24 
yrs 

25-29 
yrs Total 

Non-Beach 71 
24.74 
50.71 
50.71 

46 
16.03 
32.86 
58.23 

23 
8.01 

16.43 
33.82 

140 
48.78 

 
 

Beach 69 
24.04 
46.94 
49.29 

33 
11.50 
22.45 
41.77 

45 
15.68 
30.61 
66.18 

147 
51.22 

 
 

Total 140 
48.78 

79 
27.53 

68 
23.69 

287 
100.00 

 
Statistic DF Value Prob 

Chi-Square 2 9.1202 0.0105 

Likelihood Ratio Chi-Square 2 9.2542 0.0098 

Mantel-Haenszel Chi-Square 1 3.4825 0.0620 

Phi Coefficient  0.1783  

Contingency Coefficient  0.1755  

Cramer's V  0.1783  
 

Fisher's Exact Test 

Table Probability (P) 1.292E-04 

Pr <= P 0.0109 
 
 
 Output 2: Chi-square Test of Differences of Association Between Age Groups and Beach Versus Non-Beach 

Swimmers 
 
Each cell of the first table in the output (Output 2) lists four numbers, the frequency occurring in each cell, the overall 
percentage of number of observations in that cell over the total sample size, the row percentage of the number of 
observation in that cell over the total number in that particular row of the table, and the column percentage of the 
number of observations in that cell over the total number in that particular column of the table.  If we are interested in 
whether the distribution of age is different for beach and non-beach swimmers (i.e. is there an association between 
swim location and age), the correct percentage to examine in the two-way table is the row percentage, which is the 
third number listed in each cell of the table.  The row percentages are highlighted in yellow. The chi-square test 
statistic and p-value are given in the second table.  The chi-square test statistic is highlighted in green and is in the 
column labeled “Value”.  The p-value is highlighted in blue and is in the column labeled “Prob”.  The p-value=0.0105 
indicates that the association is statistically significant at the 0.05 alpha level.  To determine what the association is, 
we look at the row percentages.  Notice that the largest differences between percentages in non-beach and beach 



	
   4 

	
  

swimmers occurs in the 25-29 year age group.  Beach swimmers (30.6%) were more likely to be older than non-
beach swimmers (16.3%).  While we could have produced the plot, in this instance the plot that is produced by PROC 
FREQ is not helpful as it plots overall percentages and not row percentages.  The table with Fisher’s Exact test is not 
needed as a Warning message is not given right above the Fisher’s Exact table results. 
 
 
Example 3:  What if our question was whether the proportion of beach swimmers in each age group was different?  
The SAS code to use is exactly the same as what is used in Example 2.  As well, the output produced (Output 3) is 
exactly the same.  What is different is what you use from the output. 
 
 

Table of location by agegroup 

location(location) agegroup(agegroup) 

Frequency 
Percent 
Row Pct 
Col Pct 

15-19 
yrs 

20-24 
yrs 

25-29 
yrs Total 

Non-Beach 71 
24.74 
50.71 
50.71 

46 
16.03 
32.86 
58.23 

23 
8.01 

16.43 
33.82 

140 
48.78 

 
 

Beach 69 
24.04 
46.94 
49.29 

33 
11.50 
22.45 
41.77 

45 
15.68 
30.61 
66.18 

147 
51.22 

 
 

Total 140 
48.78 

79 
27.53 

68 
23.69 

287 
100.00 

 
Statistic DF Value Prob 

Chi-Square 2 9.1202 0.0105 

Likelihood Ratio Chi-Square 2 9.2542 0.0098 

Mantel-Haenszel Chi-Square 1 3.4825 0.0620 

Phi Coefficient  0.1783  

Contingency Coefficient  0.1755  

Cramer's V  0.1783  
 
 
  Output 3:  Chi-Square Test for Differences of Proportions in Age Groups between Beach 

Swimmers. 
 
Because we are now interested in showing that the age groups have different percentages of beach swimmers, we 
use the column percentages, which are highlighted in yellow in the two-way table.  The test statistic and p-value do 
not change, but the interpretation does.  Again, the test is statistically significant at the 0.05 alpha level indicating that 
at least one proportion is not equal to the others.  The expectation is that the percent of beach swimmers should be 
the same in each of the three age groups.  Looking at the column percentages, 49.2% were beach swimmers in the 
16-19 year age group, 41.8% were beach swimmers in the 21-24 year age group, and 66.2% were beach swimmers 
in the 25-29 year age group.  Once again we see that the oldest age group has more beach swimmers than the two 
younger age groups.  The result that you present, row percentages or column percentages, will depend on the 
research question. 
 
 
Example 4: A study is run in which 900 individuals are sampled and each is classified as to whether they had 
contracted the flu during the last year and whether they had been inoculated for the flu. The research question is 
whether inoculation status and contracting the flu are associated and what is the magnitude of the association. To 
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estimate independent sample risk ratios and odds ratios the data should be arranged with the “disease” status as the 
columns and the “exposed” status as the rows.  “Disease” is the event of interest and for this example it is flu status. 
 
Many times aggregated data are presented in a two-way table (Table 1).  Data can be entered in aggregate form 
similar to the DATA step below.  The number of individuals in each cell of the two-way table is the information that is 
entered (ifcount) and that number is used in the PROC FREQ with a WEIGHT statement. 
 
 

 Flu Status 

Inoculation Status Flu No Flu 

Inoculated 150 200 

Not Inoculated 300 250 
 

Table 1:  Innoculation and Flu Data 
 
 
 

data flu; 
  input inoculation $ 1-14 flu $ 17-22 ifcount 25-27; 
datalines; 
Inoculated  Flu   150 
Inoculated  No Flu   200 
Not Inoculated Flu   300 
Not Inoculated No Flu   250 
; 
run; 
 
 
proc freq data=flu; 
  tables inoculation*flu / chisq measures; 
  weight ifcount; 
title 'Chi-Square Test of Association of Innoculation and Flu'; 
run; 
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Table of inoculation by flu 

inoculation flu 

Frequency 
Percent 
Row Pct 
Col Pct Flu No Flu Total 

Inoculated 150 
16.67 
42.86 
33.33 

200 
22.22 
57.14 
44.44 

350 
38.89 

 
 

Not Inoculated 300 
33.33 
54.55 
66.67 

250 
27.78 
45.45 
55.56 

550 
61.11 

 
 

Total 450 
50.00 

450 
50.00 

900 
100.00 

 
Statistic DF Value Prob 

Chi-Square 1 11.6883 0.0006 

Likelihood Ratio Chi-Square 1 11.7191 0.0006 

Continuity Adj. Chi-Square 1 11.2255 0.0008 

Mantel-Haenszel Chi-Square 1 11.6753 0.0006 

Phi Coefficient  -0.1140  

Contingency Coefficient  0.1132  

Cramer's V  -0.1140  
 

Estimates of the Relative Risk (Row1/Row2) 

Type of Study Value 95% Confidence Limits 

Case-Control (Odds Ratio) 0.6250 0.4770 0.8189 

Cohort (Col1 Risk) 0.7857 0.6810 0.9065 

Cohort (Col2 Risk) 1.2571 1.1051 1.4301 
 
 
 Output 4:  Chi-Square Test of Association between Inoculation and Flu with Measures of Association 
 
In the Output 4 above, the chi-square test statistic (highlighted in green) and corresponding p-value (highlighted in 
blue) indicate that there is a statistically significant association between inoculation and contracting the flu.  The odds 
ratio (OR) and relative risk (RR) estimates and corresponding 95% confidence interval are given in the final table in 
the output “Estimates of the Relative Risk (Row1/Row2)”.  A 95% confidence interval for an estimate that does not 
contain 1 also indicates a significant association at the 0.05 alpha level.  
 
Whether you report an odds ratio or a relative risk depends on the nature of your study.  If you sampled on whether or 
not someone had the flu or did not have the flu and asked them to recall whether they had been inoculated or not, 
you would report the Case-Control (Odds Ratio) highlighted in yellow.  The interpretation of the odds ratio would be 
that the odds of contracting the flu are 0.625 times as likely for those who were inoculated than those who did not 
receive the inoculation.  An odds ratio less than one indicates that the inoculation was protective for the disease. 
 
If you sampled those who were inoculated or not inoculated and then followed them to determine whether they 
contracted the flu or not you would report the Cohort (Col1 Risk) or Cohort (Col2 Risk) relative risk estimates 
highlighted in purple and grey.  The relative risk you report is dependent on whether column 1 of the two-way table is 
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what you are at risk for or column 2 of the two-way table is what you are at risk for.  In this example, we are interested 
in the risk of contracting the flu, which is in column 1 of the two-way table so we would report the Cohort (Col1 Risk) 
relative risk.  The interpretation of the relative risk would be that those who were inoculated were 0.7856 times as 
likely to contract the flu than those who were not inoculated.  The effect is protective because exposure to the 
inoculation implies reduced risk of the flu. 
 
 
Future Steps for Categorical Variables 
Determining the magnitude of the association and which measure of association to present, the OR or RR, is 
dependent on the study design.  Odds ratios can also be calculated for cross-sectional (prevalence) studies or for 
prospective cohort studies.  The two-way table set up depends on the study design, i.e. whether the disease status is 
the row or column variable; the calculation of the odds ratio is the same, but the interpretation is different.  Risk ratios 
can be calculated directly only for cohort studies. Odds ratios, as already discussed, can be calculated not only for 
cohort studies but also for case control studies. There may be an assumption that the OR gives a close 
approximation of the RR in all situations. The potential problem is that in some situations the OR may exaggerate the 
measure of association that would be determined by a RR. 
 
In observational studies, certain factors associated with both the outcome and the exposure can distort the 
association between the exposure and the outcome. When investigators are aware of and measure these factors – 
called confounders – they can use certain analytic techniques to adjust for their effects to provide a better estimate of 
the effect of the exposure itself. Techniques (such as Cochran-Mantel-Haenszel chi-square test or logistic regression) 
that are commonly used to adjust for confounders yield odds ratios (rather than risk ratios) between each confounder 
variable and the outcome as well as between the exposure of interest and the outcome.  Logistic regression has an 
added benefit of allowing one to assess the association of multiple independent variables, either categorical or 
continuous, at the same time on a single, dichotomous outcome variable.  A Cochran-Mantel-Haenszel test can be 
run using the CMH option in the TABLES statement in PROC FREQ. 
 
Additionally, if you are interested in agreement of categorical variables measured at two different time points, a 
McNemar’s test of symmetry for dichotomous variables and Bowker’s test of symmetry for categorical variables with 3 
or more levels can be used.  The AGREE option can be used in the TABLES statement in PROC FREQ to obtain 
these tests. 
 
 
Inferential Statistics for Continuous Variables 
The most basic statistical test to examine differences in a continuous variable is a t-test.  The type of t-test that is 
performed depends on the number of groups of individuals, a single group or two groups, in the data set.  There is an 
assumption that the population or populations follow a normal distribution for the variables of interest. 
 
One Sample t-test 
If there is a single group (i.e. the entire sample) and you want to test whether the sample mean of a continuous 
variable, contvar, is different from a particular null value, h0=nullvalue, a one-sample t-test is performed in SAS using 
PROC TTEST as follows 
 

proc ttest data=datasetname h0=nullvalue plots=summary; 
  var contvar; 
run; 

	
  
The plots=summary produces a histogram and a box plot of the data using the built in SAS® ODS graphics that are 
available.  The default null value in SAS for h0=nullvalue is 0. 
 
Two Sample t-test 
If you are interested in testing whether the mean of the continuous variable, contvar, is different for a categorical 
variable having only two groups, catvar, then a two-sample t-test is performed 
 

proc ttest data=datasetname plots=summary; 
  class catvar; 
  var contvar1 contvar2 contvar3;  
run; 
 

Here we add a CLASS statement with the name of the categorical variable containing only two levels.  The 
plots=summary will produce the histogram and box plot of the continuous variable for each level of the categorical 
variable.  If you want the plots of the histogram and box plots to be produced in separate boxes, you can use 
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plots(unpack)=summary, where (unpack) is used to separate the plots.  Note that in PROC TTEST the CLASS 
statement can only contain one dichotomous, categorical variable.  If you want to run multiple two-sample t-tests on 
the same continuous variable for different categorical variables, you must specify multiple PROC TTEST statement 
sets.  Multiple continuous variables can be specified in the VAR statement and the result is a two-sample t-test 
between the two groups in the CLASS statement for each continuous variable in the VAR statement.  
 
 
Example 5:  Data from 200 births were collected to examine the differences in birth weight (in grams) between 
mothers who smoked and mothers who did not.  We first want to test whether the birth weight of babies born to non-
smokers in this sample was different from the population norm that defines low versus normal birth weight, 2500 
grams. A one-sample t-test using PROC TTEST is performed.  The null value, h0=2500, in the PROC TTEST 
statement indicates that we want to test whether the mean of the variable listed in the VAR statement is different from 
a null value of 2500.  
	
  

proc ttest data=babies h0=2500 plots=summary; 
  var bwt; 
run; 

 
The output (Output 5) which is produced from the above SAS® code is 
 
 

N Mean Std Dev Std Err Minimum Maximum 

121 3327.5 459.6 41.7837 1762.0 4463.0 
 

Mean 95% CL Mean Std Dev 
95% CL Std 

Dev 

3327.5 3244.7 3410.2 459.6 408.1 526.1 
 

DF t Value Pr > |t| 

120 19.80 <.0001 

	
  

 
 

 
 Output 5:  One-Sample T-test for the Mean Birth Weight of Babies of Non-Smoking Mothers Being Different 

from 2500g.  
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In Output 5 the descriptive statistics for birth weight in the 200 individuals in the sample including the mean 
(highlighted in yellow), standard deviation (highlighted in green), standard error, minimum and maximum are given in 
the first portion of the output (Output 5).  The next portion of the output contains the mean (in yellow) and a 95% 
confidence interval for the mean, followed by the standard deviation (in green) and a 95% confidence interval for the 
standard deviation.  Finally, the one-sample t-test is given in the final table portion of the output with the t-value (the 
test statistic highlighted in blue) as 19.80 and the associated p-value (Pr>|t| highlighted in pink) of <.0001.  If the 
alpha level is 0.05, since the p-value is less than the alpha level we would find that the mean birth weight of babies 
born to non-smoking mothers in the sample was significantly greater than 2500 grams.  We conclude that the mean is 
greater than the null value of 2500 because the mean of 3327.5 is greater than 2500 grams.  The plots that are 
produced by the plots option in the PROC TTEST statement are shown as well.  The plots of the data are fairly 
symmetric and seem to follow a normal distribution so a t-test is appropriate.  
 
 
Example 6:  As a final example using the babies data, we want to examine whether the mean birth weight is different 
between babies born to smoking mothers versus babies born to non-smoking mothers.   The SAS code to perform 
the two-sample t-test is 
 
 

proc ttest data=babies plots(unpack)=summary; 
  class momsmoker; 
  var bwt; 
run;	
  

 
 
The VAR statement contains the continuous variable name, and if there were other continuous variables that we 
wanted to examine for differences between smoking and non-smoking mothers we could have listed them in the VAR 
statement.  The output for differences between swim locations is given below (Output 6). 
 
Descriptive statistics within the levels of the categorical variable, momsmoker, listed in the CLASS statement as well 
as the difference between the momsoker (smokers minus non-smokers) are given in the first section of the output 
(Output 6).  Means are highlighted in yellow and standard deviations are highlighted in blue.  The next section gives 
the mean and 95% confidence interval for the mean and the standard deviation and 95% confidence interval for the 
standard deviation for each level of the CLASS variable and for the difference between the two levels (smoker minus 
non-smoker) assuming equal variances (Pooled row) or assuming unequal variances (Satterthwaite row).  The next 
section gives the results of the two-sample t-tests assuming equal variance (Pooled) or unequal variance 
(Satterthwaite) with the test statistic in the “t value” column and the p-value under the “Pr>|t|” column. The last 
numeric section is a test for the Equality of Variances to determine whether you can assume that the variances in the 
two levels of the categorical variable are equal and use the Pooled t-test or whether you should assume that the 
variances in the two levels of the categorical variable are unequal and use the Satterthwaite t-test.  The test statistic 
for the Equality of Variances test is given under the “F value” column and the corresponding p-value, highlighted in 
pink, is under the ”Pr>|F|” column.  If the p-value for the Equality of Variances test is less than the alpha level, we 
assume unequal variances and perform the Sattherthwaite t-test.  If the p-value for the Equality of Variances test is 
greater than or equal to the alpha level we assume equal variances and perform a Pooled t-test.  The last portion of 
the output is the histograms and box plots for each level of the categorical variable in the CLASS statement. 
 
The plots show that the data are fairly symmetric in each group (smoker and non-smoker) and appear to follow a 
normal distribution.  As well, the kernel density (the dotted line) is similar to the normal density (the solid line), which 
is another indication that the data follow a normal distribution.  So a two-sample t-test is appropriate to perform. 
 
To know which t-test is appropriate to report, either the Pooled or Satterthwaite t-test, we examine the results of the 
Equality of Variances test first.  In this instance the F test statistic is 1.05 and the corresponding p-value is 0.8078, 
highlighted in pink, indicating we should assume equal variances, since the p-value is greater than the alpha level of 
0.05.  There has been a lot of debate in the statistical community as to which two-sample t-test is the most 
appropriate to present given that we rarely know whether populations variances are equal.  At this date, many 
statisticians feel that it is always appropriate to report the unequal variance, Sattherthwaite, t-test.  While a little power 
is gained if variances are equal in the population and an equal variance, or pooled, t-test is performed, it is not a 
significant increase in the power and the conclusions for both the pooled and Satterthwaite tests are often the same.  
Very infrequently will the ultimate conclusion, that there is a difference or that a difference failed to be detected, using 
a Satterthwaite t-test be different than that of the pooled t-test.   
 
So we finally get to the results of the two-sample t-tests.  Since our Equality of Variance test indicated that we should 
perform the Pooled t-test, the t-value we would report is -3.50 with a corresponding p-value of 0.0006, highlighted in 
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green.  Since the p-value is less than the alpha level of 0.05, we conclude that the mean birth weight among babies 
born to smokers (3092.5g) is significantly lower than the mean birth weight among babies born to non-smokers 
(3327.5g).  
 
 
 

momsmoker N Mean Std Dev Std Err Minimum Maximum 

Smoker 79 3092.5 470.6 52.9429 2150.0 4270.0 

Non-Smoker 121 3327.5 459.6 41.7837 1762.0 4463.0 

Diff (1-2)  -234.9 464.0 67.1108   
 

momsmoker Method Mean 95% CL Mean Std Dev 
95% CL Std 

Dev 

Smoker  3092.5 2987.1 3197.9 470.6 406.9 558.0 

Non-Smoker  3327.5 3244.7 3410.2 459.6 408.1 526.1 

Diff (1-2) Pooled -234.9 -367.3 -102.6 464.0 422.4 514.6 

Diff (1-2) Satterthwaite -234.9 -368.1 -101.8    
 

Method Variances DF t Value Pr > |t| 

Pooled Equal 198 -3.50 0.0006 

Satterthwaite Unequal 164.06 -3.48 0.0006 
 

Equality of Variances 

Method Num DF Den DF F Value Pr > F 

Folded F 78 120 1.05 0.8078 
 

 
 
 
Output 6:  Two-Sample T-test for Differences in Birth Weight of Babies Born to Smoking and Non-Smoking Mothers. 
 
 
 



	
   11 

Future Steps for Continuous Variables 
One- and two-sample t-tests are certainly not an exhaustive list of the statistical techniques that can be used for 
continuous variables.  The type of study design including the number of groups, number of measurement times and 
question being asked all guide the type of statistical analysis to be performed.  For example if a single continuous 
variable was measured at two different time points and we were interested in whether the mean changed from time 
point 1 to time point 2, a paired t-test can be used using the PAIRED statement in PROC TTEST.   
 
If your categorical variable has three or more levels (e.g. the age group variable in the ear infection data set) and it is 
of interest to test that one or more means is different a one-way analysis of variance (ANOVA) is the appropriate 
statistical technique to use.  PROC GLM can be used to examine whether differences between the groups exist. 
 
If the data violate any assumptions for a t-test (e.g. non-normal distribution of the continuous data, not bell shaped) or 
the study design contains several categorical factors of interest or measurements taken at several different time 
points, we would suggest that you consult with an experienced statistician on the most appropriate analysis to use for 
your study design.  The analysis can become very complex very quickly and applying the most appropriate statistical 
technique will allow you to make the most appropriate conclusions of your data. 
 
 
CONCLUSIONS 
Calculation of the descriptive statistics and inferential statistics presented for categorical variables and continuous 
variables are just the first steps in any statistical analysis.  As well, knowing what the data look like using graphical 
methods can aid in determining whether and what additional and more rigorous statistical analyses should be 
performed.   The SAS System provides many different procedures to produce descriptive statistics, chi-square tests, 
and t-tests as the first steps in a statistical analysis of the data set.  Additionally, with the addition of ODS Graphics 
and the Statistical Graphics with version 9.3 SAS has made it easier to have a graphical representation of the 
variables in your data set.   
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