
1

Paper B2B01

Ten Things You Should Know About PROC FORMAT
Jack Shoemaker, d-Wise Technologies, Inc., Morrisville, NC

ABSTRACT
The SAS™ system shares many features with other programming languages and reporting packages. The
programming logic found in the ubiquitous data step provides the mechanisms for assignment, iteration, and logical
branching which rest at the core of any procedural language. Analytic data displays, like the humble frequency cross-
tabulation produced by the FREQUENCY procedure, may be replicated with varying degrees of success using any
number of other products. The FORMAT procedure is another matter. Somewhat like an enumerated data type;
somewhat like a normalized and indexed reference table; it really has no exact analog in these other products and
packages. There’s a lot you can do with PROC FORMAT. And, there’s a lot to know about PROC FORMAT. The aim
of this paper is to provide insight on at least ten of those things which you should know.

1. IT’S JUST A SAS™ CATALOG
Broadly speaking, the SAS™ system divides the world into five types of data objects: the data set, the view, the
index, the item store, and the catalog. The data step creates data sets and data-step views. The SQL procedure
creates SQL views and indexes. The ODS procedure uses item stores to store template definitions. Many procedures
have OUT= directives which create data sets. Virtually everything else ends up in a catalog, for example, stored SCL
code, and saved graphics output. The user-defined formats created by PROC FORMAT are no exception.

You refer to data sets with what is called a two-level name. For example, SASAVE.SESUG refers to a data set called
SESUG in a library called SASAVE. Library names refer to aggregate storage locations in the file systems for your
particular operating system. The association of library name to aggregate storage location is done through the
LIBNAME statement. For example, the following statement would create a library called SASAVE.

libname sasave ‘/usr/data/sasave’;

For modern operating systems like Unix, VMS, and Windows which support tree-structure directories, the aggregate
storage locations are just directories or folders. Under older operating systems, like MVS, the aggregate storage
locations refer to (confusingly) OS data sets which have been pre-allocated through magical incantations known as
JCL. If you have never heard of the terms MVS, JCL, or DD, consider yourself fortunate to be so young.

Unlike data sets which contain only one object – the data set, catalogs may contain many items known as members.
To refer to a catalog member, you use a four-level name. For example, SASAVE.SESUG.EXAMPLE.FORMATC
refers to a catalog member called EXAMPLE in the catalog called SESUG in the library called SASAVE. The final
node of this four-level name, FORMATC, means that EXAMPLE is a user-define character format.

If you are using one of the operating systems listed above which support tree-structured directories, you can browse
the directory contents and see the actual file names which correspond to the data set and catalog listed above. For
example, if you are running version 8 of the SAS™ system under Windows NT, then the data set would have this
name:

SESUG.sas7bdat

While the catalog would appear as:

SESUG.sas7bcat

The default format catalog is LIBRARY.FORMATS. That is, a catalog called FORMATS in the library called
LIBRARY. The library called LIBRARY should be created by the person, or group, who administers SAS™ at your
site. The installation process does not create this library. However, somewhat paradoxically, SAS™ searches for a
library called LIBRARY for many of its default operations, like locating user-defined formats. The definition for the
library called LIBRARY usually occurs in your AUTOEXEC.SAS file which you should find in the SAS™ root directory
which contains the SAS™ executable file, sas.exe.

You can use PROC CATALOG to list the contents of a format catalog or any other SAS™ catalog for that matter. For
example, the following code fragment will display a list of all the members of the default catalog,
LIBRARY.FORMATS:

2

proc catalog c = library.formats;
 contents stat;
 run;

The output will look something like this:

Name Type Description

1 AGE FORMAT
2 PHONE FORMAT
3 AGE FORMATC

Output from PROC CATALOG statement

The actual display will be wider than what’s shown here which has been truncated to fit within the margins of this
paper. Note that there are three different member types: FORMAT, FORMATC, and INFMT. The FORMAT member
type specifies a numeric or picture format. The FORMATC format specifies a character format. And the INFMT
member type specifies an informat which is used to read rather than display data.

2. USE THE DESCRIPTION
In version 8, the description attribute is left blank. In earlier versions, the description attribute contains some details
about the format. In any event, you should use the description attribute to provide short documentation about the
user-defined format. The name-space for user-defined formats still remained just eight characters through version 8.
You can now control the size of the format name through the VALIDFMTNAME= system option. The description
attribute provides another method to describe user-defined formats.

The following code fragment uses the CATALOG procedure to modify the description attribute of two members of the
temporary catalog WORK.FORMATS.

proc catalog c = work.formats;
 modify
 age.format(description = 'Age Map');
 modify
 age.formatc(description = 'Age Decoder');
 run;

If your SAS™ system administrators have acted in a responsible fashion, you will not be allowed to modify the
common LIBRARY.FORMATS catalog. So, the example above uses the temporary format catalog called
WORK.FORMATS which is created in the temporary WORK library. Just as data sets created in the WORK library
disappear at the end of your SAS™ session, a format catalog created in the WORK library will also disappear.
Notwithstanding, for the purposes of illustration and discussion the remainder of this paper will use the temporary
WORK library.

The resulting contents display would look like this:

Name Type Description

1 AGE FORMAT Age Map
2 PHONE FORMAT
3 AGE FORMATC Age Decoder
4 MYDATE INFMT

Output from PROC CATALOG after updating the DESCRIPTION attribute

3. EXAMINE THE CONTENTS
The preceding example shows how to list the members of a format catalog. You can also look at the contents of a
particular user-defined format. One technique is to use the FMTLIB= option of PROC FORMAT. For example, the
following code fragment will display the contents of the user-defined format called AGE.

3

proc format
 library = work.formats fmtlib;
 select age.;
 run;

A truncated version of the output of this code might look like this:

| FORMAT NAME: AGE LENGTH:
MIN LENGTH: 1 MAX LENGTH: 40 D
START
----------------+----------------+----
0
20< 30
30<HIGH

Output from PROC FORMAT using the FMTLIB option

The FMTLIB display shows the start and end values of the format range as well as the resulting label. In this
example, the label is a single digit – 1, 2, or 3 – which presumably needs to be de-coded with a subsequent format
definition. The less-than symbols (<) after 20 and 30 in the start column indicate that those values are not in the
specified range. This matters for variables which take on continuous values. The label 1 is associated will all values
between 0 and 20 including the end-point values 0 and 20. The label 2 is associated with all values between 20 and
30 not including the exact value of 20 which is in the first range. Similarly, the label 3 does not include the exact
value 30, but does all other values above 30. This may represent more control over your data than you need.
Notwithstanding, it’s nice to know that you have this control should you need it.

4. UNLOAD THE CONTENTS
The FMTLIB= option on PROC FORMAT provides a mechanism for displaying the contents of a user-defined format
as regular SAS™ output. You can also unload the contents of a user-defined format into a SAS™ data set using the
CNTLOUT= option on PROC FORMAT. For example, the following code fragment will create a data set called
CNTLOUT from the all the user-defined formats stored in the catalog called WORK.FORMATS.

proc format library = work.formats
 cntlout = cntlout;
 run;

The resulting SAS™ data set will contain the following twenty columns.

4

Variable Type Label

DATATYPE Char Date/time/datetime?
DECSEP Char Decimal separator
DEFAULT Num Default length
DIG3SEP Char Three-digit separator
EEXCL Char End exclusion
END Char Ending value for format
FILL Char Fill character
FMTNAME Char Format name
FUZZ Num Fuzz value
HLO Char Additional information
LABEL Char Format value label
LANGUAGE Char Language for date strings
LENGTH Num Format length
MAX Num Maximum length
MIN Num Minimum length
MULT Num Multiplier
NOEDIT Num Is picture string noedit?
PREFIX Char Prefix characters
SEXCL Char Start exclusion
START Char Starting value for format
TYPE Char Type of format

Table of contents for the CNTLOUT= data set produced by PROC FORMAT

5. THE REQUIRED COLUMNS
If that seems like a lot of columns, it is. Most are there to provide the extra levels of control which are needed in
specific circumstances. In fact there are only three required columns: FMTNAME, START, and LABEL. In addition to
these required columns it is good habit to include the TYPE column which explicitly tells PROC FORMAT that you are
building a numeric or character format. Of course if your format is to include ranges, you will need to include an END
column as well as the START column. Finally, the HIGH, LOW, and OTHER keywords are coded in the HLO column.
In summary, the six commonly useful columns are listed below:

Variable Type Label

FMTNAME Char Format name
TYPE Char Type of format
START Char Starting value for format
END Char Ending value for format
LABEL Char Format value label
HLO Char Additional information

Minimum set of columns for CNTLIN= data set

Here’s what the CNTLOUT data set for the AGE format looks like:

FMTNAME TYPE START END LABEL HLO

 AGE N 0 20 1
 AGE N 20 30 2
 AGE N 30 HIGH 3 H

CNTLOUT= data set for AGE format

6. THE PUT() FUNCTION
You can use user-defined formats to display or write-out coded values in raw data. For example, the values of ‘M’
and ‘F’ could become ‘Male’ and ‘Female’ if displayed using a user-defined format called $SEX. In a sense, the user-
defined format called $SEX. is just a two-column lookup table with ‘M’ and ‘F’ as the key values and ‘Male’ and
‘Female’ as the looked-up return values. You can use user-defined formats in just this fashion in a data step by using
the PUT() function. Following along our example, if you wish to create a new data-step variable called ‘description’
from an existing data-step variable called ‘sex’ using a user-defined format called $SEX., you could use a piece of
code like this:

5

description = put(sex, $sex.);

This technique allows you to re-write if-then-else trees and replace those trees with a single line of code. For
example, assume that you have a set of discount factors stored in a user-defined format called $DISC.

proc format;
 value $disc
 ‘ABC’ = 0.20
 ‘DEF’ = 0.25
 ‘XYZ’ = 0.00
 other = 0.00;

You could replace code that looks like this:

if vendor = ‘ABC’ then discount = 0.20;
else if vendor = ‘DEF’ then discount = 0.25;
else if vendor = ‘XYZ’ then discount = 0.00;

With a single statement that looks like this:

discount = put(vendor, $disc.);

This technique also has the added advantage of separating the data – the table of discount factors – from the code.
If you need to add or change the discount values for your vendors, you simply change that data outside of the data
step and leave your existing data-step code alone.

One word of caution: the PUT() function always returns a character string. So, if you mean to use the return value as
a number you must take some action to cause SAS™ to convert the character string to a number. For example:

length discount 8;
discount = put(vendor, $disc.);

or

net = gross * (1 - put(vendor, $disc.));

That is, either explicitly declare the return variable as a number. Or, perform some sort of arithmetic on the result
inside the assignment statement.

A simpler example still is to create a user-defined informat instead of a format and use the input() function instead of
the put() function. For example:

proc format;
 invalue disc
 ‘ABC’ = 0.20
 ‘DEF’ = 0.25
 ‘XYZ’ = 0.00
 other = 0.00;

discount = input(vendor, disc.);

This final technique has the added advantage of not producing and conversion messages in the SAS log. You may
consider these messages harmless when you expect to see them. On the other hand, if you consider any conversion
message in the SAS log to be a sign of sloppy or suspect programming, you should use a user-defined informat in
conjunction with the input() function.

7. LOAD FORMAT FROM DATA SET OR TABLE
You may also create a user-defined format from an existing data set or data-base table. Imagine your vendor
discount table have hundreds or thousands of entries. Manually coding this many entries would be both error-prone
and time-consuming. Fortunately PROC FORMAT provides an analog to the CNTLOUT= option called CNTLIN=
which loads a user-defined format from a data set. The only requirement is that the field names on the data set
specified by the CNTLIN= option must conform to the list of field names listed in part 4 above.

6

For example, consider an existing data set called DISCOUNT with two columns called VENDOR and DISCOUNT.
You could build a suitable CNTLIN= data set from the DISCOUNT data set as follows:

data cntlin(
 keep = fmtname type hlo start label);
 retain fmtname ‘disc’ type ‘C’;
 set discount end = lastrec;
 start = vendor;
 label = put(discount, 6.2);
 output;
 if lastrec then do;
 hlo = ‘O’; label = ‘0.00’;
 output;
 end;
 run;

Note that the CNTLIN data set has only five columns. Actually, only three are required – FMTNAME, START, and
LABEL. As a matter of good habit, including the TYPE column with values of ‘C’ for character and ‘N’ for numeric is
strongly advised. Also, since our example includes the use of the HIGH keyword, we must include the HLO column
as well.

The following code fragment will create the user-defined format called $DISC. In the temporary format catalog in the
WORK library.

proc format cntlin = cntlin; run;

If you wish to store this format to a permanent library, like LIBRARY, you need to include the LIBRARY= option as
well. For example,

proc format
 cntlin = cntlin library = library;
 run;

Building user-defined formats using CNTLIN data sets also allows you to build self-modifying formats. For example,
consider the need to build a format with values of ‘This Month’ for the current month, ‘Last Month’ for the previous
month, and ‘Really Old’ for dates prior to that. Obviously as time marches on, you need to update the dates
associated with these ranges. Here’s how you could accomplish this feat using a CNTLIN data set with three
observations.

data cntlin(
 keep = fmtname type hlo start end label);
 retain fmtname ‘MyDate’ type ‘N’;
 length label $ 10;
 rundate = today();
 start = intnx(‘month’, rundate, 0);
 end = intnx(‘month’, rundate, 0, ‘E’);
 label = ‘This Month’;
 output;
 start = intnx(‘month’, rundate, -1);
 end = intnx(‘month’, rundate, -1, ‘E’);
 label = ‘Last Month’;
 output;
 hlo = ‘O’;
 label = ‘Really Old’;
 output;
 stop;
 run;

8. PICTURE CLAUSES
PROC FORMAT provides a special type of numeric format to place punctuation inside quasi-numeric data like phone
numbers and social security numbers. It works by defining a mask into which the digits of a number are written.
Picture clauses only work on numeric values. The following code fragment creates a user-define picture format

7

called PHONE which displays phone numbers with a set of parenthesis around the area code and a dash between
the exchange and number.

proc format;
 picture phone
 low - high = '(999)999-9999‘
 (prefix = '(');

Now consider the following set of phone numbers

data phones;
 infile cards; input phone;
 cards;
3363153714
8009595605
3153820
;
run;

Using the PRINT procedure to display these values using the PHONE picture format yields the following results.

PHONE

(336)315-3714
(800)959-5605
(000)315-3820

Use of the PICTURE format on a phone number stored as a numeric

9. HYBRID FORMATS
You can also define user-defined formats which combine, or use, other user-defined formats or SAS™-supplied
formats. A common situation when this need arises occurs when handling date values which contain missing values.
Suppose you have a column which contains a SAS™ serial date most of the time. At other times it contains one of
two special missing values .N or .Z. You would like to display .N and .Z with some notation, but otherwise use the
SAS™ DATE9. format to display the date values. The following code fragment will create a user-defined format
called OTDATE which does just that.

proc format;
 value otdate
 .Z = 'Some Zs'
 .N = 'Some 9s'
 other = [date9.];

The trick is to encapsulate the embedded format in square brackets. On operating systems which do not support this
character, you may replace ‘[‘ with ‘(|’ and ‘]’ with ‘|)’.

You can do the same thing when reading data. For example, assume that a date field in raw data either contains
eight zeroes, eight nines, or a properly-formatted date in YYYYMMDD format. Rather than read the field as a
character string and convert it as necessary, you can create a user-defined informat to do the work for you. For
example, the following code fragment will create a user-defined format called INDATE which reads the date field as
described above.

proc format;
 invalue indate
 '00000000' = .Z
 '99999999' = .N
 other = [yymmdd8.];
 run;

To see how this all works together, consider the following short SAS™ program which uses both the INDATE
informat as well as the OTDATE format.

8

data nesug;
 infile cards;
 input aDate indate8.;
 cards;
00000000
99999999
20000605
;
run;

proc print data = nesug;
 format aDate otdate.;
 run;

The results look like this:

aDate

 Some Zs
 Some 9s
 05JUN2000

Example of hybrid format applied to a date field

10. MULTI-VALUE LABELS
The final topic for this paper is multi-value labels. That is, how to handle situations where you want to use a user-
defined format to associate more than one attribute with a given key value. For example, in our vendor example
above, we might have a region and salesperson associated with each vendor as well as a discount amount.

There are two choices: create a separate user-defined format for each attribute, or create label which stores both
attributes using some unique character to distinguish one attribute from the other.

Consider the following VENDOR data set

data vendor;
 infile cards;
 input vendor $ region $ salesp $;
 cards;
ABC NE Alice
DEF MW Molly
XYZ SE Linda
;
run;

The following code fragment will create a CNTLIN= data set which will create two separate user-defined formats –
one for the region and one for the salesperson.

data cntlin(keep = fmtname type start label);
 retain type ‘C’;
 set vendor;
 start = vendor;
 fmtname = ‘region’; label = region; output;
 fmtname = ‘salesp’; label = salesp; output;
 run;

proc sort data = cntlin; by fmtname;
 run;

proc format cntlin = cntlin;
 run;

We could have created two separate CNTLIN data sets and fed them to PROC FORMAT one at a time. Instead we
created a CNTLIN data set which contains two rows of output for each row of input from the VENDOR data set.

9

When using the later technique the PROC SORT is crucial. Using it ensures that all the region definitions come first
followed by all the salesperson definitions.

Alternatively, you could create a label which concatenates the region and salesperson values with a delimiting
character like ‘#’. For example,

data cntlin(keep = fmtname type start label);
 retain fmtname ‘vinfo’ type ‘C’;
 set vendor;
 start = vendor;
 label = region || ‘#’ || salesp;
 run;

proc format cntlin = cntlin;
 run;

The $VINFO format is not very useful as a display format. It is designed for use inside a data step in conjunction with
the PUT() function. For example, the following data-step code fragment will create two data-step variables called
REGION and SALESP from VENDOR using the user-defined format $VINFO.

length region $ 2 salesp $ 5 vinfo $ 8;
vinfo = put(vendor, $vinfo.);
region = scan(vinfo, 1, ‘#’);
salesp = scan(vinfo, 2, ‘#’);

Choice of the delimiting character is crucial when using this technique. The character you choose as a delimiter must
never appear as in either of the tokens inside the concatenated label.

CONCLUSION
The FORMAT procedure is a real gem. You may use it in a variety of situations to make your code more robust and
easier to maintain. Just as importantly, the use of PROC FORMAT encourages separation of code and data which
leads to cleaner and more understandable code. This paper has surveyed ten use of PROC FORMAT that should be
in every SAS™ programmer’s toolbox. It is not an exhaustive list of all that you can do with PROC FORMAT; there
are plenty more uses that await you in your applications. If you already use PROC FORMAT extensively, this paper
may have provided you with one or two new ways to tackle a problem. If you haven’t begun to use PROC FORMAT
yet in your day-to-day programming, this paper should provide some good examples on how to get started.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jack Shoemaker
d-Wise Technologies, Inc.
Suite 150, 1500 Perimeter Park Drive
Morrisville, NC 27560
(919) 397-9066

jack.shoemaker@d-wise.com
www.d-wise.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

	ABSTRACT
	1. IT’S JUST A SAS™ CATALOG
	2. USE THE DESCRIPTION
	3. EXAMINE THE CONTENTS
	4. UNLOAD THE CONTENTS
	5. THE REQUIRED COLUMNS
	6. THE PUT() FUNCTION
	7. LOAD FORMAT FROM DATA SET OR TABLE
	8. PICTURE CLAUSES
	9. HYBRID FORMATS
	10. MULTI-VALUE LABELS
	CONCLUSION
	Contact Information

