
SESUG 2013

1

Paper CC-18

How SAS® Processes If-Then-Else Statements
Michael Leitson, Wellstar Research Institute, Marietta, GA

Elizabeth Leslie, Kaiser Permanente, Atlanta, GA

ABSTRACT

IF-THEN-ELSE statements are relatively simple and convenient to use in SAS. However, one must be careful to write
correct SAS syntax in order to achieve the desired result from data step processing. A single misplaced or forgotten
keyword can lead to erroneous results. This paper examines the proper way to produce IF-THEN-ELSE statements
and also shows how to avoid common errors that might produce incorrect data sets. The intended audience is
beginning SAS users who are learning about the joys and pitfalls of IF-THEN-ELSE statements.

INTRODUCTION

IF-THEN-ELSE statements are a very versatile piece of programming that can be used in many ways. Some common
uses of IF-THEN-ELSE statements are transforming quantitative (numeric) to qualitative (categorical) and data
cleaning. Learning how to correctly use IF-THEN-ELSE statements will strengthen a BASE SAS programmer‟s skills
and help them become more efficient programmers.

SYNTAX

The general form of the syntax is:

IF expression-1 THEN statement-1;
ELSE IF expression-2 THEN statement-2;

.

.

.
ELSE statement-n;

Here‟s how SAS processes the IF-THEN-ELSE statements:

 First, SAS checks expression-1. What happens next depends on whether or not the condition in expression-1 is
met. This is why IF-THEN-ELSE statements are sometimes referred to Conditional Processing.

 If expression-1 is true, SAS executes statement-1 and does NOT check the remaining ELSE IF statements. SAS
will then continue to process any additional code following the block of IF-THEN-ELSE statements.

 If expression-1 is false, SAS will move to the next ELSE IF line and check expression-2.

 If expression-2 is true, SAS executes statement-2 and does NOT check the remaining ELSE IF statements. SAS
will then continue to process any additional code following the block of IF-THEN-ELSE statements.

 If expression-2 is false, SAS will check the next ELSE IF expression.

 The same process will continue until SAS gets to the last ELSE statement. This last ELSE statement does not
have an expression to check, so SAS will execute the THEN statement whenever this line is read. IF-THEN-
ELSE statements are processed sequentially, so the only way SAS will execute the last THEN statement is if
none of the previous IF and ELSE IF conditions have been met. The final ELSE statement is a good catch-all to
make sure all contingencies are accounted for.

A couple of objectives worth noting: first, a THEN statement must always follow a corresponding IF statement.
Second, an ELSE statement is not always necessary. In fact, when an ELSE IF or ELSE statement is omitted, only
the IF statement will be processed, conserving computing power when working with large datasets. A note of caution:
make sure all contingencies are accounted for before omitting the else statement or you may get unexpected results.

SESUG 2013

2

Suppose that we have the following data set about students at a university:

ID Name GPA City Age Loan? Eye Color

00034111 Ann 3.7 Atlanta 19 No Blue

00089999 Bart 2.9 Kennesaw 21 Yes Blue

0008123e Cecil 3.5 Marietta 39 Yes Green

00035555 Denise 4.0 25 No Brown

00045678 Emily 2.5 Kennesaw 22 No Brown

00012929 Frank 3.6 Acworth 47 Yes Brown
Table 1: Original Data Set

Example 1: Correcting Data Errors with IF-THEN-ELSE statements

After examining the ID column, we learn that the „e‟ in the third row should actually be a 4. The following code (or a
variation of the code) could be used to make the proper replacement:

IF ID = '0008123e' THEN ID = '00081234';

ELSE ID = ID;

When SAS is processing the data set row by row, it will check to see if the IF expression is true for each row. If it is
true, SAS will make the replacement. If it is false, SAS will set ID=ID and the values of ID will not change. In this way,
ID will be replaced only when ID=‟0008123e’. Otherwise, ID remains the same.

Example 2: Categorizing Data with IF-THEN-ELSE statements

Now suppose that we want to group the students‟ GPAs into categories based on whether the student has an above
average, average or below average GPA. The average GPA is 3.7. We could code:

IF GPA > 3.7 THEN GPA_CAT = 'Above Average';

ELSE IF 3.0 >= GPA >= 3.7 THEN GPA_CAT = 'Average';

ELSE GPA_CAT = 'Below Average';

Name GPA GPA_CAT
Ann 3.7 Average

Bart 2.9 Below Average

Cecil 3.5 Average

Denise 4.0 Above Average

Emily 2.5 Below Average

Frank 3.6 Average
Table 2: Creating GPA Category

Again, for every row of data, SAS checks the IF expression. IF true, SAS will execute the THEN statement, if false,
SAS will move to the next ELSE IF statement. For the first student, Ann, SAS checks the first IF expression, GPA >

3.7. For Ann, with a GPA of 3.7, this expression is false, so SAS will not execute the THEN statement. SAS then

continues on to check the next ELSE IF expression, 3.0 >= GPA >= 3.7. This time, the expression is true, so

SAS executes the THEN statement and assigns a value of “Average” to Ann‟s GPA_CAT. Since the second condition
was met, SAS will not process the final ELSE statement for Ann. SAS repeats this process for all rows in the data set.

Because ELSE IF statements are only processed after IF statements, it is important to include the ELSE keyword
when the conditions are not mutually exclusive. Otherwise, SAS will process every single IF statement, one after the
other. When multiple conditions can be true at the same time, SAS could process multiple THEN statements leading
to unexpected results.

For instance the following code is incorrect and will give unexpected results:

IF GPA > 3.7 THEN GPA_CAT = 'Above Average';

IF 3.0 >= GPA >= 3.7 THEN GPA_CAT = 'Average';

ELSE GPA_CAT = 'Below Average';

SESUG 2013

3

The results will appear as:

Name GPA GPA_CAT

Ann 3.7 Average

Bart 2.9 Below Average

Cecil 3.5 Average
Denise 4.0 Below Average

Emily 2.5 Below Average

Frank 3.6 Average
Table 3: Incorrect GPA Category

Surely a GPA of 4.0 is not Below Average! Hence, this explains why an ELSE statement is needed after the first IF
statement. For Denise with a GPA of 4.0, SAS checks the first IF expression, GPA > 3.7. This is true, so SAS

processes the THEN statement, assigning Denise‟s GPA_CAT to “Above Average”. Since the next IF statement does
not have ELSE in front of it, SAS will process the next IF statement, regardless of the previous condition being met.
Since 3.0 >= GPA >= 3.7 is not true, SAS skips the THEN statement and moves on to process the ELSE

statement. The ELSE statement does not have an expression, so SAS processes the THEN statement every time it
reads this line, re-assigning Denise‟s GPA_CAT to “Below Average”. This is why we have unexpected outcomes and
an upset student. This code can be corrected by adding an ELSE keyword to the second line. Then the final ELSE
statement will only be processed when the GPA is not greater than 3.0.

Example 3: Taking Advantage of Sequential Processing of ELSE IF statements

There is another way to code the GPAs into categories. The following code will produce the same results as the
correct code in Example 2:

IF GPA > 3.7 THEN GPA_CAT = 'Above Average';

ELSE IF GPA >= 3.0 THEN GPA_CAT = 'Average';

ELSE GPA_CAT = 'Below Average';

The only difference between this code and the correct code in Example 2 lies in the second line; in the first code, we
set the boundaries for the Average GPA, while in the second code, we set the Average GPA to be greater or equal to
than 3.0. Why does this work? Because the ELSE keyword prevents SAS from processing the second line if the first
condition was met. Therefore, SAS will only check GPA >= 3.0 when GPA > 3.7 is false. The final results

should appear as below:

Name GPA GPA_CAT

Ann 3.7 Average

Bart 2.9 Below Average

Cecil 3.5 Average

Denise 4.0 Above Average

Emily 2.5 Below Average

Frank 3.6 Average
Table 4: Alternative Way of Creating GPA Category

Another way to take advantage of sequential processing of the ELSE IF statements is to check the most frequently
occurring condition first. Remember, SAS will always check the first IF statement, but SAS will only check the ELSE
IF statements when the proceeding IF expression is false. When the most common condition is in the first IF
statement, computing resources are conserved because SAS will not have to check the other conditions most of the
time.

Example 4: Recoding Values with IF-THEN-ELSE statements

Now let‟s suppose that we wanted to recategorize the loan values (which inform us if the student took out a loan) so
that “No” appears as 0 and “Yes‟‟ appears as 1, the standard method of binary classification. The following code will
accomplish this (note that we are replacing the loan values instead of creating a new category):

IF LOAN_ = 'No' THEN LOAN_ = 0;

ELSE LOAN_ = 1;

SESUG 2013

4

CONCLUSION

IF-THEN-ELSE statements are a great way to use conditional processing, but it should also be noted that this method
is not the only way for Base programmers to perform this task. PROC FORMAT or SELECT statements can also be
used to perform the same operations. IF-THEN-ELSE statements are applicable in many other situations not covered
in this paper. A key tool for the Base programmer is the utilization of IF-THEN-ELSE statements with correct syntax,
which can be learned with relative ease. There are a variety of ways to avoid errors and knowledge of such methods
will be beneficial to a new programmer.

REFERENCES

Cody, Ron. Learning SAS® by Example: A Programmer’s Guide, Cary, NC: SAS Institute, Inc.

SAS Institute Inc. 2011. SAS® Certification Prep Guide: Base Programming for SAS®9, Third Edition. Cary, NC: SAS

Institute, Inc.

ACKNOWLEDGEMENTS

We would like to thank the Kennesaw State University Department of Mathematics and Statistics for the depth of
knowledge provided to us on this subject.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors by email at:
Michael.Leitson@wellstar.org or Elizabeth.Leslie@kp.org.

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
registered trademarks or trademarks of their respective companies.

