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ABSTRACT 

In this practical application of some special SAS® functions and CALL routines we control the location in memory of 
variables to be compared from one observation to the next. Forcing the variables to be written adjacent to one 
another enables us to treat them as a single variable. We use the special functions PEEKC, ADDR, and CALL POKE, 
along with a DOW loop. 

INTRODUCTION 

This paper does not attempt to cover all the aspects of the special functions, dubbed the APP functions (for ADDR-
PEEK-POKE).  Peter Crawford and Paul Dorfman have already done so. This paper demonstrates how we use the 
functions, which read directly from and write directly to memory, to streamline the process of re-segmenting roadway 
data.  

Roadway traffic records contain descriptions of contiguous, homogeneous stretches of roadway, called segments. 
The begin- and end-points for the segments are milepost values. The homogeneity encompasses many attributes. 
There are times when some attributes are irrelevant for a study, and the segments need to be redefined using a 
smaller subset of variables. For example, if shoulder width is the only difference between two adjacent segments, and 
shoulder width variance is to be ignored, the two segments are collapsed into one. This paper explores various ways 
to use the APP functions to facilitate collapsing the data. Our examples are carried out using character variables in a 
32-bit environment, so we use PEEKC, ADDR and CALL POKE rather than PEEKCLONG, ADDRLONG and CALL 
POKELONG. 

THE DATA 

A partial listing of the input roadway data is shown in Figure 1. The goal is to collapse contiguous records when the 
variables of interest do not change. The collapsed record has new boundaries, and is given new begin and end 
milepost values to reflect these new boundaries. We name the new begin and end milepost variables for our 
collapsed segments bmp and emp, respectively. The variables begmp and endmp represent begin and end milepost 
values in the input data, which is sorted by cntyrte (roadway id) and begmp. Red lines show where homogeneity is 
lost; the changing values are circled in grey. After collapsing, the first three segments should have the following 
pairings for bmp and emp: (0,0.228), (0.228,0.849), and (0.849,1.319).  All variables are character except for the 
milepost values. 

 

Figure 1. Data listing and variables of interest 

The segments shown in Figure 1 are contiguous, meaning that each segment begins where the last segment ends. 
This is not the case, however, throughout the data. Occasionally, there will be a gap, where begmp does not equal 
the previous record’s endmp. We begin a new segment after a gap. 

Checking for gaps requires comparing two different variables - the begin milepost of the current record must be 
compared with the end milepost of the previous record. Things start getting ugly when we perceive a gap. The values 
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to be output are those of the previous record, rather than the values in the Program Data Vector (PDV,) which is 
holding the current record. We examine one way to accomplish the task without APP functions. When a new segment 
begins, we store the new values in a set of retained variables.  The values in each subsequent record are compared 
with the retained values to look for changes.  When a change is found, the retained values are renamed as they are 
written to the output table. The retained variables are then populated with the values from the new segment. The first 
and last records need special treatment. For the first record, we must initialize bmp, emp, and the array we use for 
comparison.  For the last record, we must write the final segment record. The following code collapses the data 
without the use of APP functions.  
    

DATA segs(DROP=cntyrte access no_lanes medtyp rural  
RENAME= 
(cntyrte1=cntyrte access1=access no_lanes1=no_lanes medtyp1=medtyp 
rural1=rural) 
); 

SET s.roads END=eof; 
LENGTH cntyrte1  $ 10 access1  $ 1 no_lanes1  $ 2 medtyp1 rural1  $ 1; 
ARRAY currnt(5) cntyrte access no_lanes medtyp rural; 
ARRAY compar(5) cntyrte1 access1 no_lanes1 medtyp1 rural1; 
RETAIN bmp emp cntyrte1 access1 no_lanes1 medtyp1 rural1; 
IF _n_=1 THEN DO; 
 bmp=begmp;  
 emp=endmp; 
 DO j=1 TO 5;   
  compar(j)=currnt(j); 
  END; 
 RETURN; 

END; 
IF cntyrte NE cntyrte1 OR access NE access1 OR no_lanes NE no_lanes1  
OR medtyp NE medtyp1 OR rural NE rural1 OR begmp NE LAG(endmp) 

THEN DO; 
 segnum+1; 
 OUTPUT; 
 bmp=begmp; 
 DO j=1 TO 5;  

compar(j)=currnt(j);  
END; 

END; 
emp=endmp; 
IF eof THEN DO;  

segnum+1;  
OUTPUT;  
END; 

RUN; 
 

CONTROLLING MEMORY LOCATIONS 

We begin to examine how the APP functions can be used to compare a single value, rather than five, across 
observations. If we can cajole SAS into storing these variables adjacent to one another, we will be able to treat them 
as one long string. We begin by seeing what the default locations are for these variables. We know that SAS stores 
groups of variables contiguously. The groups are retained numeric, retained character, non-retained numeric, and 
non-retained character. Because we are reading these character variables from a SAS table, they belong in the 
retained character storage group. The ADDR function returns the memory address for the first byte of a variable. For 
each variable of interest, we create a new variable containing that memory address and write it to the SAS log. 

DATA roads; 
SET p.roads(OBS=1); 
a_cntyrte=ADDR(cntyrte);  PUT a_cntyrte=; 
a_access= ADDR (access);  PUT a_access=; 
a_no_lanes= ADDR (no_lanes);  PUT a_no_lanes=; 
a_medtyp= ADDR (medtyp);  PUT a_medtyp=; 
a_rural= ADDR (rural);   PUT a_rural=; 
RUN; 
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Here are the values revealed in the SAS log. We know that cntyrte is 10 characters long. The variable stored in 
memory adjacent to cntyrte will begin in position 263653850.  We see that our next variable of interest does not begin 
in that position.  

a_cntyrte = 263653840 
a_access =  263653866 
a_no_lanes = 263653875 
a_medtyp =  263653880 
a_rural =  263653881 

 

Our variables of interest are only a few of the variables in the source data. When we display the memory address of 
all the character variables in the input data set, we see that they all are indeed stored adjacent to one another, but 
our 5 variables are scattered throughout. Although the actual memory addresses change with a new run, the offsets 
match what we saw above: a_access begins 26 bytes after a_cntyrte, and a_no_lanes begins 9 bytes after a_access.  
The intervening variables occupy the space between our variables of interest. Here is a partial listing of all the 
retained character variables: 

a_cntyrte = 263829240 
a_improve1 = 263829250 
a_town =  263829252 
a_func_cls = 263829256 
a_rte_type = 263829258 
a_aadt_yr = 263829259 
a_terrain = 263829263 
a_pop_grp = 263829264 
a_med_type = 263829265 
a_access =  263829266 
a_pct_trk1 = 263829267 
a_county =  263829269 
a_spd_limt = 263829271 
a_surf_typ = 263829273 
a_no_lanes = 263829275 
… 

 

Next, we experiment with methods that might keep our subset of 5 variables adjacent to one another. Using PROC 
SQL and selecting our variables of interest first might force adjacency. 

PROC SQL;  
CREATE TABLE roads AS SELECT cntyrte, access, no_lanes, medtyp, rural, *, 
ADDR(cntyrte) AS a_cntyrte,  
ADDR(access) AS a_access,  
ADDR(no_lanes) AS a_nolanes, 
ADDR(medtyp) AS a_medtyp, 
ADDR(rural) AS a_rural  
FROM p.roads(obs=1); 
QUIT; 
 

The VIEWTABLE seen in Figure 2 shows that PROC SQL arranges the variables as listed. A warning in the log is 
triggered for each explicitly named variable, because SELECT…* attempts to load each explicitly named variable a 
second time. Now cntyrte occupies 10 bytes, followed by access using 1 byte, and so forth. PROC SQL works, but 
since we need to process this data sequentially, we return to the DATA step for more experimentation. 

 

 

Figure 2. PROC SQL provides adjacency 
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From reading previously published papers about the APP functions, we know that an ARRAY statement should help.  
We find, however, that if we use the ARRAY statement before the SET statement, SAS makes unfortunate 
assumptions about the variable lengths. 

DATA roads;  
ARRAY myvars [5] $  cntyrte  access  no_lanes medtyp rural; 
SET p.roads(OBS=1);  
a_cntyrte= ADDR(cntyrte);  PUT a_cntyrte=; 
a_access= ADDR(access);  PUT a_access=; 
a_no_lanes= ADDR(no_lanes);  PUT a_no_lanes=; 
a_medtyp= ADDR(medtyp);  PUT a_medtyp=; 
a_rural= ADDR(rural);   PUT a_rural=; 
RUN; 
 

We see a warning in the SAS log about multiple length definitions, and learn that cntyrte will be truncated. Examining 
the addresses in the log, we see that our variables are adjacent, but now have lengths of 8 bytes. This is the SAS 
default with ARRAY definitions that introduce new variables. Here is the log: 

WARNING: Multiple lengths were specified for the variable cntyrte by 
         input data set(s). This may cause truncation of data. 
a_cntyrte = 257807392 
a_access =  257807400 
a_no_lanes = 257807408 
a_medtyp =  257807416 
a_rural =  257807424 
 

We move the ARRAY statement so that it follows, rather than precedes, the SET statement. We hope SAS will use 
the variable lengths from the input SAS table, and still store the ARRAY variables together. 

DATA roads;  
SET p.roads(OBS=1); 
ARRAY x[5] $ cntyrte access no_lanes medtyp rural; 
a_cntyrte= ADDR(cntyrte);  PUT a_cntyrte=; 
a_access= ADDR(access);  PUT a_access=; 
a_no_lanes= ADDR(no_lanes); PUT a_no_lanes=; 
a_medtyp= ADDR(medtyp);  PUT a_medtyp=; 
a_rural= ADDR(rural);  PUT a_rural=; 
RUN; 
 

This approach works! Our variables are not only adjacent, but also have correct lengths.  

a_cntyrte = 267520424 
a_access =  267520434 
a_no_lanes = 267520435 
a_medtyp =  267520437 
a_rural =  267520438 

 

Since the ARRAY statement is processed at compilation time and the SET statement at execution time, it seems 
counter-intuitive that SAS would use information from a SET statement at compilation time. The reader can perform a 
test, compiling a DATA step that reads from a table. Replacing the table after compilation with one having different 
variable lengths and examining the results will show that metadata is accessed for a SET statement at compilation 
time.    
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Now that we can force our variables of interest to be adjacent to one another (contiguous in memory), let’s prove that 
we can read them in as a single string. The combined length of our variables is 15. The PEEKC function in the 
following code returns the contents in memory for the 15 bytes beginning with byte 1 of the variable cntyrte. The 
value of that string should be the same as a string built by concatenating our 5 variables using the CAT function. The 
values do match: 

DATA roads;  
SET p.roads(OBS=1); 
ARRAY x[5] $ cntyrte access no_lanes medtyp rural; 
str=PEEKC(ADDR(cntyrte),15); 
catstr=CAT(cntyrte,access,no_lanes,medtyp,rural); 
PUT str= / catstr=; 
RUN; 
 
str =   00200000700 210 
catstr = 00200000700 210 

 

BABY-STEPPING WITH APP FUNCTIONS 

Feeling confident (but not really) we take a baby step forward. We use what we have learned to perceive changes 
and assign new segment numbers to our original segments. We are not collapsing the data at this point. We write out 
every record read, adding the implicitly retained variable segnum. This segment number should not increment until a 
change occurs in any of our variables of interest. We create an explicitly retained variable to hold the value of our five 
variables (the contents of the 15 bytes in memory,) for comparison with each subsequent record. We call it str and 
assign it a length of 15. We replace the value in str only when we perceive a change or find a gap: 

DATA roads;  
LENGTH str $ 15; 
RETAIN str; 
SET p.roads; 
ARRAY x[5] $ cntyrte access no_lanes medtyp rural; 
IF PEEKC(addr(cntyrte),15) NE str OR begmp ne LAG(endmp) THEN DO;  

segnum+1;  
str=PEEKC(ADDR(cntyrte),15);  
END; 

RUN; 
 
 

A VIEWTABLE of the relevant variables in Figure 3, again marked to show desired break points due to value 
changes, reveals success. The value for segnum changes with each red line. 

  

Figure 3. Successful assignment of new segment numbers 

Code to accomplish the same thing without using the direct memory addressing might look like this: 

DATA roads;  
SET p.roads; 
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IF cntyrte NE lag(cntyrte)  
OR access NE lag(access)  
OR no_lanes NE lag(no_lanes)  
OR medtyp NE lag(medtyp)  
OR rural NE lag(rural)  
OR begmp NE LAG(endmp)  
THEN segnum+1; 

RUN; 
 

There are many ways to test for differences between records and append a segment number. Here are two more: 

Create a variable containing the memory string and compare it with its lag: 

DATA roads;  
LENGTH str $ 15;  
SET p.roads; 
ARRAY x[5] $ cntyrte access no_lanes medtyp rural; 
str=PEEKC(ADDR(cntyrte),15); 
IF str NE LAG(str) OR begmp ne LAG(endmp) THEN segnum+1;  
RUN; 

 
Read the data in a DOW loop: 

DATA roads;  
LENGTH str $ 15; 
 DO j=1 BY 1 UNTIL(eof); 
  SET p.roads END=eof; 

IF PEEKC(ADDR(cntyrte),15) NE str OR begmp NE lag(endmp)  
THEN segnum=SUM(segnum,1); 

  str=PEEKC(ADDR(cntyrte),15);  
  OUTPUT;  
  END; 
ARRAY x[5] $ cntyrte access no_lanes medtyp rural; 
RUN; 
 

However we go about appending a new segment number to our input records, we can now take the last baby step. 
We use BY group processing in a DATA step to output one record per segnum assigning the new begin and end 
milepost values bmp and emp. Figure 4 shows the resulting data, with new milepostings that span the collapsed input 
segments. 

DATA segs;  
SET roads;  
BY segnum;  
RETAIN bmp; 
IF FIRST.segnum THEN bmp=begmp; 
IF LAST.segnum THEN DO; 
 emp=endmp; 
 OUTPUT;  
END; 
RUN; 
 

 

Figure 4. One record per new segment 
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STRIDING WITH APP FUNCTIONS 

Feeling even more confident, we abandon baby steps. To skip creation of an intermediate table we must juggle some 
variables, and introduce CALL POKE, which writes to a memory location. We read a record and immediately store 
the relevant memory string in variable str. We use the variable str2 to hold values from the previous record for 
comparison. A non-iterative DO group, executed only for the first input record, copies str to str2, initializes bmp and 
emp, and, since there is no previous record for comparison, skips to the end of the DOW loop via CONTINUE. For all 
the remaining records, we compare str (new values) with str2 (old values) and we check for milepost gaps.  If either 
condition is met, we increment segnum and perform a juggling trick. The PDV contains new roadway values, but we 
want to write out the previous record’s values. CALL POKE takes those previous values, stored in str2, and writes 
them to the memory location in the PDV where our variables are stored. We output the record. The current values, 
held in str, are copied to str2, which is now ready to be compared with subsequent records. At end of file, we write the 
final record. Since the last segment read may constitute an entirely new segment, we plug str, rather than str2, back 
into the PDV before writing the record: 

DATA segs;  
LENGTH str str2 $ 15;  
DO j=1 BY 1 UNTIL(eof); 

SET p.roads END=eof;  
str=PEEKC(ADDR(cntyrte),15); 
IF j=1 THEN DO; 

  str2=str; 
  bmp=begmp; 
  emp=endmp; 
  CONTINUE;  
 END; 

IF str NE str2 OR begmp NE emp THEN DO;  
  segnum=SUM(segnum,1);  
  CALL POKE(str2,ADDR(cntyrte),15); 
  OUTPUT;  
  bmp=begmp; 
  str2=str; 

END; 
emp=endmp; 
IF eof THEN DO; 
 segnum=SUM(segnum,1); 
 CALL POKE(str,ADDR(cntyrte),15); 
 OUTPUT; 
END; 

END; 
ARRAY v (*) $ cntyrte access no_lanes medtyp rural; 
RUN;  

  

In real life, more would be required than simply collapsing the data into new segments. Segment accumulators would 
be initialized first in the j=1 DO group, and again when each new segment begins. Another CALL POKE can write str 
back into place if current variable values feed segment calculations. LAG values can be used for end-of-segment 
calculations involving variables not in str. These are shown in red, italicized, below: 

DATA segs;  
LENGTH str2 $ 15;  
DO j=1 BY 1 UNTIL(eof); 

SET p.roads END=eof;  
str=PEEKC(ADDR(cntyrte),15); 
IF j=1 THEN DO; 

  str2=str; 
  bmp=begmp; 
  emp=endmp; 
  *initialize seg accumulators; 
  CONTINUE;  
 END; 

IF str NE str2 OR begmp NE emp THEN DO;  
  segnum=SUM(segnum,1);  
  *calc seg summaries – possibly use LAG functions; 
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  CALL POKE(str2,ADDR(cntyrte),15); 
  OUTPUT;  
  bmp=begmp; 
  CALL POKE(str,ADDR(cntyrte),15); 
  *initialize seg accumulators; 
  str2=str; 

END; 
*accumulate seg stuff; 
emp=endmp;  
IF eof THEN DO; 
 segnum=SUM(segnum,1); 
 CALL POKE(str,ADDR(cntyrte),15); 
 calc seg summaries – possibly use LAG functions; 
 OUTPUT; 
END; 

END; 
ARRAY v (*) $ cntyrte access no_lanes medtyp rural; 
RUN;  

 

POKING AROUND 

So far, we have been comparing variable values, looking for exact matches.  Suppose that one of the variables used 
to define segments needs to be grouped. As a very simple example, suppose the values 0 and 1 for the variable 
access should be considered equivalent. In other words, all other things being equal, if one input segment has the 
value 1 and the next has the value 0, they will be treated as homogeneous segments.  We can add one statement (in 
red, italicized, below) to accomplish this. CALL POKE replaces the value ‘0’ with ‘1’ in the 11th position of str  

… 
DO j=1 BY 1 UNTIL(eof); 

SET p.roads END=eof;  
str=PEEKC(ADDR(cntyrte),15); 
if access=’0’ then CALL POKE(‘1’,ADDR(str)+10,1); 
IF j=1 THEN DO; 

… 
 

 

For a more complicated comparison, we consider using value ranges in a variable as homogeneous. We use the 
same input data, but ignore changes in the variable rural. Instead, we use the numeric variable aadt. For this variable, 
we consider the following ranges of values, reflected in this PROC FORMAT, to be homogeneous: 

PROC FORMAT; 
VALUE adtf 0='0' 
1-999='1-999' 
1000-4999='1,000-4,999' 
5000-9999='5,000-9,999' 
10000-19999='10,000-19,999' 
20000-high='20,000+';  
RUN; 
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Figure 5. Data listing with new segment changes 

 

The input data is seen in Figure 5 with lines indicating where the new segment breaks should belong. Now, our first 
two segment bmp and emp values should be (0,1.319) and (1.319,1.432).  In the PROC FORMAT code seen above, 
the resulting format, adtf, supplies value labels with a maximum length of 13. An inefficient but illustrative way to 
incorporate this range comparison is to create a new variable, assigning it the value of PUT(aadt,adtf.). If we do so, 
we have a new character variable of length 13.  It will not be, however, a retained character variable, so adding our 
new variable to the ARRAY statement does not place it adjacent to the other retained character variables: 

DATA roads; 
LENGTH c_aadt $ 13; 
SET p.roads(OBS=1); 
c_aadt=PUT(aadt,adtf.); 
ARRAY v(*) $ cntyrte access no_lanes medtyp c_aadt; 
a_cntyrte=addr(cntyrte);  PUT a_cntyrte=; 
a_access=addr(access);  PUT a_access=; 
a_no_lanes=addr(no_lanes); PUT a_no_lanes=; 
a_medtyp=addr(medtyp);  PUT a_medtyp=; 
a_c_aadt=addr(c_aadt);   PUT a_c_aadt=; 
RUN;; 
 
a_cntyrte = 234957384 
a_access =  234957394 
a_no_lanes = 234957395 
a_medtyp =  234957397 
a_c_aadt =  234957520 
 

The new variable, c_aadt, is not located 1 byte after rural, but is instead located 123 bytes later where, apparently, 
the non-retained character variables are stored; our new variable is in that storage group.  We can bring it back into 
the fold by retaining it.  Using a RETAIN statement brings the variable into the retained character group.  Adding 
c_aadt to the ARRAY statement places it adjacent to the other variables in the array.  

 

DATA roads; 
LENGTH c_aadt $ 13; 
RETAIN c_aadt; 
SET s.roads(OBS=1); 
c_aadt=PUT(aadt,adtf.); 
ARRAY v(*) $ cntyrte access no_lanes medtyp c_aadt; 
a_cntyrte=addr(cntyrte);  PUT a_cntyrte=; 
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a_access=addr(access);  PUT a_access=; 
a_no_lanes=addr(no_lanes); PUT a_no_lanes=; 
a_medtyp=addr(medtyp);  PUT a_medtyp=; 
a_c_aadt=addr(c_aadt);   PUT a_c_aadt=; 
RUN; 

 

a_cntyrte =  234971448 
a_access =  234971458 
a_no_lanes =  234971459 
a_medtyp =  234971461 
a_c_aadt =  234971462 

  
We use the string in memory that starts in ADDR(cntyrte) and extends for a length of 27 to find changes: 

 

DATA roads;  
LENGTH c_aadt $ 13 str $ 27; 
RETAIN c_aadt str; 
SET s.roads; 
c_aadt=PUT(aadt,adtf.); 
ARRAY x[5] $ cntyrte access no_lanes medtyp c_aadt; 
IF PEEKC(addr(cntyrte),27) NE str OR begmp ne LAG(endmp) THEN segnum+1;  
str=PEEKC(ADDR(cntyrte),27);  
RUN; 

 

The results, seen in Figure 6 show the segment breaks due to aadt changes as well as another due to a gap. 

 

Figure 6. Expected breaks plus a gap break 

ANOTHER VIEW 

Suppose we need not look for gaps. Without the APP functions, our code might look like this: 

DATA segs(KEEP=segnum cntyrte bmp emp  access no_lanes medtyp rural); 
SET p.roads; 
BY cntyrte access no_lanes medtyp rural NOTSORTED; 
RETAIN bmp; 
IF FIRST.rural THEN bmp=begmp; 
IF LAST.rural THEN DO;  

segnum+1;  
emp=endmp;  
OUTPUT;  
END;   

RUN; 
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To take a similar approach using APP functions, we can create a view or table using SQL or a DATA step that will 
provide a single BY variable. These two approaches create views: 

PROC SQL;  
CREATE VIEW roads AS  

SELECT cntyrte, access, no_lanes, medtyp, rural,  
*,  
PEEKC(ADDR(cntyrte),15) AS str 

FROM p.roads; 
QUIT; 
 
 
DATA roads/VIEW=roads; 
SET p.roads; 
ARRAY v(*) $ cntyrte access no_lanes medtyp rural; 
str=PEEKC(ADDR(cntyrte),15); 
RUN; 
 

Having created the view or table, we can use a DATA step to both assign the new segment number and write one 
record per segment. BY group processing is much faster with one BY variable rather than five BY variables.   

DATA segs;  
SET roads;  
BY str NOTSORTED;  
RETAIN bmp; 
IF FIRST.str THEN bmp=begmp; 
IF LAST.str THEN DO; 
 segnum+1; 

emp=endmp; 
 OUTPUT;  
 END; 
RUN; 

 

 

CONCLUSION  

The APP functions provide an opportunity to take shortcuts. The careful coder will drive with caution, testing along the 
way. In this paper, we have experimented with a single storage group – retained character variables. Extending the 
example herein to include numeric variables from the input roadway segments would require PEEKing at a different 
string variable. Although it would be read from a different starting point in memory, and all the variable lengths would 
be 8 bytes, the technique would remain the same. The author strongly recommends studying the meticulous 
information available in previously published papers about the APP functions.  
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