

1

Paper CC-19

Don't Get the Finger... You Know the FAT Finger

Creating a Modular Report Approach using SAS® Macros

Penny Eckert, Equifax Inc.

ABSTRACT

As SAS report developers we often use the same bits and pieces of code for different reports and analyses. We
take a morsel of code from this program and combine it with a scrap of code from that program to create a new
analysis. While retreading code is something we all do, surprisingly it can be time consuming and can often lead to
the dreaded phenomena of fat fingering. By understanding how your organization uses its code base, you can
choose the SAS Macro techniques to create a modular reporting approach from which you can choose bits and

pieces of your most useful code lines, yet minimize the amount of necessary tweaking. By developing this modular
approach, you can save time, standardize your report output, minimize coding errors and avoid getting the fat finger.

INTRODUCTION

As SAS professionals we are accustomed to working under deadlines to produce reports or analyses. In order to
complete our tasks as quickly as possible, we retread previous programs and code snippets to complete the
assignments. Rather than implementing macros or developing a modular reporting approach which would require
additional testing and debugging – therefore taking more time - we complete the analysis and then move on to the
next task. The irony is that often by trying to work quickly, we don’t always work efficiently and, we introduce errors to
our work and as a result, add time to the task.

A modular reporting approach is focused on reusing existing code and programs (something we all do) without
manually modifying the code (something we all should do, but don’t). The process creates a code base or library of
programs that are designed to be used for current and future development with little or no code modifications. Macros
enable you to reuse code from different programs without modifying the code itself. Modifications or changes that do
need to be made to programs can be minimized or can be limited by their use. Adopting a few or all of the following
techniques drives a modular reporting approach.

This paper will review three macro techniques: macro variables, macros and autocall libraries. They are the
foundation to a modular reporting approach. There are additional macro techniques that aid report development and
data processing. For a complete review of the macro language and how code is processed through the macro
processor please review SAS 9.3 Macro Language: Reference. Understanding how the code is compiled and

executed will facilitate development. .

AN OUNCE OF ORGANIZATION IS WORTH A POUND OF AGGRAVATION

Surprisingly, two keys to a successful deployment of a modular reporting approach aren’t SAS functions and
procedures (but you will utilize them and they are super cool), but are planning and organization. Consider these

three questions:

1. Does your organization consistently reuse the same programs or code lines in some shape or form? If, so which
programs? What code lines?

2. Do multiple people use a version of the same program?

3. What portions of the programs are modified with each execution? Do you change the datasets involved in
processing? Do you filter the data or report?

The answers to these questions will shape the SAS MACRO techniques utilized. For example, if you consistently cut
and paste the same snippets of code into different programs, then using %INCLUDE or setting up a macro library

may solve your needs. If you only need to modify a few dates or data sources to execute your programs, using
%LET to create a macro variable to flow through your programs may a better approach. By posing these questions,

you will provide insight on the best approach to take to develop a modular reporting approach.

DO YOU CHANGE TITLES, DATES OR DATASETS REFERENCES?

If you change titles, dates or dataset references within a report, adding macro variables to your programs may
alleviate some basic code changes. %LET statements may limit the need make the routine code changes. %LET

defines a macro variable and assigns a value to it. A macro variable enables a user to declare the value of a variable
one time and then that value will flow throughout the program. Macro variables created through %LET are efficient

 SESUG 2013

2

tools to push title changes, dataset changes, and date changes in a program. The standard syntax of a %LET

statement is:

%LET macro-variable-name=value;

The assigned value must be a string. However, unlike standard variables, macro variables have no size limitations.
The macro variable is referenced or used in the program by prefixing ‘&’ to the variable name. The below %LET
statement creates a macro variable region. This limits the code modifications to the %LET statement and provides
the flexibility to change the macro variable in future executions. This seemingly small MACRO function can reap large

rewards in the battle against the fat finger.

%LET region=Europe;

title “Average MSRP by Car Make”;

title2 “®ion”; –becomes -> where origin="Europe" during execution.

PROC sql;

 select make, avg(msrp)

 from sashelp.cars

 where origin=”®ion” –becomes -> where origin="Europe" during execution.

 group by make;

quit;

%LET is also a good tool to use set librefs in the libname statement. This can be handy when source directory paths

are lengthy. Below is a Unix directory path.

%LET dir=/my_primary_directory/my_project_directory/data_directory;

libname abc “&dir”;

If the source directory changes, modifications are limited to the %LET statement. If your organization utilizes a
consistent directory structure, a single %LET macro variable reference can be used to reference multiple directories.

%LET dir=/my_primary_directory/my_project_directory;

libname abc “&dir/DATA”;

libname def “&dir/RPTS”; -> needs double quotes to be read by macro processor

There are other subtleties or ‘gotchas’, around macro variables and how they are referenced and processed. When a
macro variable is used within quotes, double quotes are necessary. If a macro variable is used in combination with a
letter, underscore, number or period, the macro variable would be referenced with a with a period. The period tells
the macro processor to identify the macro variable from the rest of the word or code.

%LET lib=sashelp;

 set &lib..cars; -> extra ‘.’ tells SAS where macro variable ends

%LET creates user defined macro variables. There are also system or automatic macro variables. As the name

implies, these macro variables provide information about the SAS system environment. These include information
about the operating system, current job ids and the most recently created SAS dataset. For a complete listing of all
system macro variables review SAS® 9.3 Macro Language: Reference: Macro Variables Defined by the Macro
Processor. The uses of these macro variables may not be apparent at first glance. The listing in the following table
demonstrates some possible applications of these automatic provided macro variables.

SYSTEM MACRO
VARIABLE

DESCRIPTION POSSIBLE APPLICATION

SYSDATE/SYSDATE9 Date at SAS invocation or
SAS session start

Add dates to report titles, foot notes. Use in data
processing.

SYSDAY/SYSTIME Provides day of the week/
or time at SAS invocation
or SAS session start

Add dates to report titles, foot notes. Use in data
processing.

 SESUG 2013

3

SYSTEM MACRO
VARIABLE

DESCRIPTION POSSIBLE APPLICATION

SYSLAST Provides name of the
most recently created
SAS data set.

Verify that dataset is created before executing
report.

SYSERR Provides a return code
set by SAS procedures
and the DATA step

Check the return code provided by the macro and
abort the job if there is an error.

 Table 1. Selected System Macro Variables

%LET region=Europe;

title “Average MSRP by Car Make”;

title2 “®ion”;

footnote "Created &sysday, &sysdate9";

PROC sql;

 select make, avg(msrp)

 from sashelp.cars

 where origin="®ion" and make

like “V%”

 group by make;

quit;

 Output 1. Output with System Macro Variable

%PUT YOUR MACRO WHERE YOUR LOG IS

If reducing errors is one of the goals of using macro variables, then it’s important to check that the values being
passed to the program are correct. The %PUT statement writes the values of the macro variables in the SAS log so

that they can be verified.

%put region;

Specific macro variables can be listed or all macro variables, all automatic, or all user defined macro variables can
be listed in the log.

%put region;

%put _all_;

%put _automatic_;

%put _user_;

 Output 2. Log Output from %Put _automatic_

The listings provided by the %PUT function can be lengthy. It is helpful to specify the macro variables to check to

make the log easier to read.

Average MSRP by Car Make”

“Europe”

Make

Volkswagen 32248.67

Volvo 36314.17

Created Thursday, 05SEP2013

%put ®ion;
Asia

%put _automatic_;

AUTOMATIC AFDSID 0

AUTOMATIC AFDSNAME

AUTOMATIC AFLIB

AUTOMATIC AFSTR1

AUTOMATIC FSPBDV

AUTOMATIC SYSADDBITS 64

AUTOMATIC SYSBUFFR

AUTOMATIC SYSCC 3000

AUTOMATIC SYSCHARWIDTH 1

AUTOMATIC SYSCMD

AUTOMATIC SYSDATE 05SEP13

AUTOMATIC SYSDATE9 05SEP2013

AUTOMATIC SYSDAY Thursday

 SESUG 2013

4

A WORD ABOUT DEBUGGING

In addition to %PUT, there are also a series of system options which add notes to the log when a macro or macro
variable is executed that provide information to debug programs. A combination of MPRINT, SYMBOLGEN, and/ or
MLOGIC will provide details of a macro or macro variables execution, or if there is a problem lack of execution. Below

is a macro and the log provided using these options.

option symbolgen mprint mlogic;

%MACRO avg_make(country);
title “Average MSRP by Car Make”;

PROC SQL;

select make, avg(msrp)

from sashelp.cars

where origin="&country" and make

like “V%”

group by make;

quit;

%MEND;

%avg_make(Europe)

 Output 3. Log Output Using Debugging Options

Table 2 provides the key system options that can be used for macro implementation and debugging.

SYSTEM OPTION DESCRIPTION SAS LOG NOTES EXAMPLE

MPRINT Notes are added to the SAS log that
detail the text produced from a macro.

MPRINT(AVG_MAKE): title

“Average MSRP by Car Make”;

MPRINT(AVG_MAKE): proc

sql;

SYMBOLGEN Notes are added to the SAS log that
details how macro variables are
resolved within the macro.

SYMBOLGEN: Macro variable

COUNTRY resolves to Europe

MLOGIC Notes are added to the SAS log that
describes the execution of the macro.

MLOGIC(AVG_MAKE):

Beginning execution.

MLOGIC(AVG_MAKE):

Parameter COUNTRY has value

Europe

SERROR Adds notes to the log when an
ampersand and word combination is
found, but the macro variable cannot be
resolved.

WARNING: Apparent symbolic

reference GROUPBY not

resolved.

MERROR Adds notes to the log when an % and
word combination is found, but the
macro cannot be resolved.

WARNING: Apparent

invocation of macro

AVG_REGION not resolved.

 Table 2. SAS Macro Debugging System Options

When the development is complete the options can be removed or the option can be set to off by using the NO
version of the option. Like some of the %PUT functions, they very useful during development, but the options

increase the log output and can be quite cumbersome. It’s recommended that the options be turned off when the
solution is in production.

%avg_make(Europe)

MLOGIC(AVG_MAKE): Beginning execution.

MLOGIC(AVG_MAKE): Parameter COUNTRY has value

Europe

MPRINT(AVG_MAKE): title “Average MSRP by Car

Make”;

MPRINT(AVG_MAKE): PROC SQL;

SYMBOLGEN: Macro variable COUNTRY resolves to

Europe

MPRINT(AVG_MAKE): select make, avg(msrp) from
sashelp.cars where origin="Europe" and make like

"V%" group by make;

MPRINT(AVG_MAKE): quit;

MLOGIC(AVG_MAKE): Ending execution.

 SESUG 2013

5

DOES YOUR ORGANIZATION CONSISTENTLY REUSE THE SAME PROGRAMS OR CODE LINES IN
SOME SHAPE OR FORM?

In many organizations, the same program or code lines are used for many different analyses. Why reinvent the
wheel? A small change here and a small change there, and maybe a piece of new code here and the analysis is
complete. If your organization uses the same programs or code snippets, transforming the code into macros that can
be called or used without modifying the main code base, may help eliminate error and speed development. The first
task is to identify those programs and code lines that are consistently utilized. The second task is to transform them
to macros.

Macros embody the flexibility of the modular reporting approach. Macros package those code snippets or programs
for repeated use. Write once and use as many times as needed, in one program or in many programs. The general
syntax of a macro is:

%MACRO macro-name;

 macro-text;

%MEND;

To use or invoke that macro, the syntax is:

%macro-name

The %MACRO signals the start of the macro and the %MEND signals the end. Macros can range from simple,
similar to macro variables, to highly complex. Like macro variables, macros have qualities that are important in
regards of a modular reporting approach. First, macros are stored in files. And macros can have parameters, which
are simply macro variables that are referenced in the macro definition. By storing the macro is a file, the code can be
used for repeated use within and the parameters provide the flexibility to change the content with each execution.

To be effective, macros must be founded on error free code. When writing macro based programs it is best to first
write and test the SAS program without any macro content using hard coded constraints and a fixed data set. If you
are transforming existing code, this task is complete. When the code is error free and provides the desired results,
add the macro content. By developing in this two stage approach, SAS code syntax and logic errors are isolated
from macro syntax and logic errors enabling a less painful development process.

The below macro, avg_make provides the average MSRP for each automobile make in the dataset cars. To invoke
or use the macro, execute %avg_make. Notice that that macro doesn’t need a semi-colon as traditional SAS
statements do.

%MACRO avg_make;
title “Average MSRP by Car Make”;

PROC SQL;

select make, avg(msrp)

label 'Avg MSRP' format dollar10.2

from sashelp.cars

where make like "M%"

orderby make

quit;

%MEND;

%avg_make

 Output 4. Macro %avg_make

This macro is useful if the only information needed is about car makes starting with the letter ‘M’. What if you need to
know the average MSRP of car makes starting with the letter ‘V’? From different regions? Parameters increase a
macros utility by increasing its flexibility. One macro can provide different results based on the parameter provided.
Parameters are macro variables referenced in the macro text. A macro can have any number of parameters.

Parameters can be either keyword or positional and are provided in the %MACRO statement and are enclosed in

parentheses and separated by commas. Keyword parameters are defined keyword parameters are defined by the
name of the parameter and do not have to be included for the macro to execute. Positional parameters are defined
only by their order in the macro invocation and must always be included in the macro execution. A macro can
contain both positional and keyword parameters, but the positional parameters must come first. The parameters
themselves can be null values, text, macro variables and macro references.

Average MSRP by Car Make”

Make Avg MSRP

MINI $18,499.00

Mazda $21,770.73

Mercedes-Benz $60,656.81

Mercury $27,972.78

Mitsubishi $23,423.62

 SESUG 2013

6

 %MACRO avg_make(letter) ;

title “Average MSRP by Car Make”;

PROC SQL;

select make, avg(msrp)

label 'Avg MSRP' format dollar10.2

from sashelp.cars

where make like "&letter.%"

group by make;

quit;

%MEND;

%avg_make(S) use period to define

 end of macro name

 Output 5. Macro %avg_make with Parameter

The macro to the left below uses keyword parameters, while the macro to the right uses positional parameter.

%MACRO avg_msrp(region=, type=);

title “Average MSRP of &Type”;

title2 “&Region”;

PROC SQL;

select make, avg(msrp) as Avg_MSRP

from sashelp.cars

where origin="®ion" and type="&type"

group by make;

quit;

%MEND;

 %avg_msrp(region=Europe,type=Sedan)

Both macros produce the same output.

SNIPPETS TO MACROS

Macros do not need to be complex. Do you or your team members repeat the same functions or code lines in the
same program? Identifying these code snippets and making them portable also drives a modular reporting approach.
Consider this scenario. A commonly used dataset provides a date in a month-year format. However, all other
datasets have complete dates in a mm/dd/yyyy format. The month-year date needs to be recast to the standard
mm/dd/yyyy format for consistency and to be used in any calculations.

The code to convert the month-year date into a new date with a default day of ‘01’ is:

data test;

mon_date='02/1965';

new_date=mdy(substr(mon_date,1,2),'01',substr(mon_date,4));

format new_date mmddyy10.;

run;

What if there numerous columns that need to be recast? Transform the code to a macro.

%MACRO get_mm01yyyy(date);

new_&date=mdy(substr(&date,1,2),'01',substr(&date,4));

format new_&date mmddyy10.;

%MEND;

data test;

mon_date='02/1965';

%get_mm01yyyy(mon_date);

run;

It is easy to see how transforming those routine data manipulations and code lines can speed development. Previous
code is utilized and the number of code lines is minimized. A win-win in the drive to a modular reporting approach.

Average MSRP by Car Make”

Make Avg MSRP

Saab $37,640.00

Saturn $17,234.38

Scion $13,565.00

Subaru $25,501.82

Suzuki $16,230.25

 %MACRO avg_msrp(type, region);

title “Average MSRP of &Type”;

title2 “&Region”;

PROC SQL;

select make, avg(msrp) as Avg_MSRP

from sashelp.cars

where origin="®ion" and type="&type"

group by make;

quit;

%MEND;
%avg_msrp(Sedan,Europe)

 SESUG 2013

7

LOCAL VS GLOBAL

One can see how useful macros are in a modular reporting approach. The same code can be referenced without
modifying the core code and it can be used multiple times. Multiple macros can be used within the same report and
the same macro can be used within different reports. When using multiple macros it’s important to recognize the
difference between LOCAL and GLOBAL macro variables. Local macro variables are those defined in inside a macro
and can be used only within that macro. Global macro variables are defined outside macros and can be used both
outside and within other macros.

In the example below &groupby is a GLOBAL macro variable while ®ion is a LOCAL macro variable because it

is defined within the avg_cars macro.

%LET groupby=type;

%MACRO avg_cars(region);

title “Average MSRP by &groupby”;

title2 “®ion”;

PROC SQL;

 select &groupby, avg(msrp) as avg_msrp

from sashelp.cars where origin="®ion"

group by &groupby;

quit;

%MEND;

%avg_cars(Europe)

The macro variable REGION was created within the avg_car macro. When the macro variable is used with in the
macro avg_invoice an error is noted. This differentiation between LOCAL and GLOBAL becomes important as
multiple macros are referenced. For a macro value to flow within multiple macros, which is a common scenario
within a modular reporting approach, the macro variable must be GLOBAL

%LET groupby=type;

%MACRO avg_cars(region);

title “Average MSRP by &groupby”;

title2 “®ion”;

PROC SQL;

select &groupby, avg(msrp) as avg_msrp

from sashelp.cars

where origin="®ion"

group by &groupby;

quit;

%MEND;

%avg_cars(Europe)

%MACRO avg_invoice;

PROC SQL;

select &groupby, avg(msrp) as avg_msrp

from sashelp.cars

where origin="®ion"

group by &groupby;

quit;

%MEND;

%avg_invoice

 Output 6. Log avg_invoice Macro

A macro variable can be declared as global by using the syntax:

%global region;

Using the debugging options helps understand if and how your macro variables and macros are resolved. When in
doubt, use %PUT to list GLOBAL or LOCAL (%put _local_) macro variables in the log.

%MACRO avg_invoice;

56 PROC SQL;

57 select &groupby, avg(msrp) as avg_msrp

58 from sashelp.cars

59 where origin="®ion"

60 group by &groupby;

61 quit;

62 %MEND;

63 %avg_invoice

MLOGIC(AVG_INVOICE): Beginning execution.

MPRINT(AVG_INVOICE): PROC SQL;

SYMBOLGEN: Macro variable GROUPBY resolves to type

WARNING: Apparent symbolic reference REGION not

resolved.

SYMBOLGEN: Macro variable GROUPBY resolves to type

MPRINT(AVG_INVOICE): select type, avg(msrp) as

avg_msrp from sashelp.cars where origin="®ion"

group by type;

NOTE: No rows were selected.

MPRINT(AVG_INVOICE): quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

MLOGIC(AVG_INVOICE): Ending execution.

 SESUG 2013

8

%put _global_;

%put _local_;

DO MULTIPLE PEOPLE USE A VERSION OF THE SAME PROGRAM?

It is very common for organizations to use multiple versions of the same program. Version control is a challenge in
many organizations. Programs are handed down from analyst to analyst, and along the way they are morphed and
changed. Data sources change, business rules change and for good or bad, developers have the inherent desire to
place their stamp on the code they use. The result is often code that is changed beyond the original intent. Having a
single source of code for multiple users solves this problem. It has additional benefits: it frees programmers to
concentrate on new development, provides one version of the ‘truth’, and facilitates training new team members.

The answer to this problem is to create a central repository that contains the programs or macros for all users to
access and utilize. %INCLUDE and SAS Autocall libraries provide the two main ways to access programs and or

macros located in an centralized external location. The first step to implement either technique is to designate a
directory or directories to maintain the macros and programs. User access should be limited, so that the macros or
programs can be edited by a select few. This helps maintain version control and if all users use the same core
macros and programs for analysis contributes to creating one version of the truth.

%INCLUDE

%INCLUDE enables the execution an external file or program from another program. Contents of the referenced

program can range from full programs with multiple procedures and data manipulation, mere lines of code, and
macros. The general %INCLUDE syntax is:

 %include ‘/specified-program-directory/program-name.sas /source;

A filename reference can also be used. The fileref references the program which can later be used with the
%INCLUDE .

Filename carspgm ‘/specified-program-directory/program-name.sas’;

%INCLUDE carspgm;

The source option captures the execution notes of the referenced program in the SAS log. Programs referenced
using %INCLUDE are immediately executed in the program. You can reference macros and pass macro variables to
the programs accessed through the %INCLUDE.

Numerous programs can be nested within each other – but there is the possibility that you can have too much of a
good thing. If the goal is to reduce the possibility errors, then it’s important to maintain traceability of the programs –
the more nesting the harder it is to follow your program.

AUTOCALL LIBRARY

A SAS Autocall libraries provides functionality similar to %INCLUDE. An autocall library is a central location that

contains macros as programs for multiple users to access. There are subtle differences on how a SAS autocall library
is referenced based on the operating system. Please refer to Saving Macros in an Autocall Library to verify the
specifications of a specific platform. Examples provided in the following examples are based on a Unix platform.

The system option MAUTOSOURCE turns on the autocall facility and the SASAUTOS option directs SAS to check

the listed directory or directories for macros. In the example below, the options direct SAS to checks the directory,
‘mydirectory/mac_lib’ for macros. Multiple directories can be referenced in the statement.

options MAUTOSOURCE sasautos=('/mydirectory/mac_lib,sasautos) mautolocdisplay;

The macros must be saved with the same program names as the macro. So, the macro avg_make would be saved
in a program names avg_make.sas. To execute any macro located within the macro library, it is referenced simply by
its name, such as within a program.

 &avg_make

%INCLUDE VS AUTOCALL LIBRARY

For the most part, there is little difference to the user between using %INLCUDE or using an AUTOCALL library. But

 SESUG 2013

9

it is important to understand the differences between the two techniques. The autocall library uses the name of the
macro file while %INCLUDE requires the physical name and path of the program.

 &avg_make -> Autocall library

 %include ‘/specified-program-directory/avg_make.sas /source; -> %INCLUDE

Also, a macro being referenced using an autocall library will not be compiled until it is used the first time and
thereafter will not be compiled during that current SAS session. A program using a macro reference using
%INCLUDE will be compiled upon each execution.

A mix of both techniques can drive the best results. %INCLUDE can access both traditional programs and macros,

while an autocall library requires macro programs. For users not comfortable or just becoming familiar with macros
%INCLUDE is a straightforward way that can be leveraged to standardize and centralize a code base without

necessarily using macro themselves. The brevity that the macro naming convention provides may be more useful
when a macro is used as a replacement for code lines or functions.

CONCLUSION

The benefits of adopting a modular reporting approach outweigh the extra time implementing requires. The first step
is reviewing the reporting and development code used within your organization. Then based on the needs of your
organization, the appropriate macro techniques can be used. Organizations that currently don’t employ macros can
start by adding macro variables and transforming existing code lines and programs into macros. Organizations that
already use macros can focus on creating a centralized library and using %INCLUDE and or autocall libraries so that
all members of the organization can access the same code repository and leverage the modular code.

These macro techniques are just a few of all the macro functions available in SAS. However, the techniques reviewed
provide the most bang for the effort when developing a modular report approach. Using one or all of these macro
functions will help your organization prompt faster development, standardize report output, minimize coding errors
and avoid getting the fat finger.

REFERENCES

Delwiche, Lori D. and Susan J. Slaughter, The Little SAS® Book: A Primer, Second Edition, Copyright @ 1998, pp.
153-167, Cary, North Carolina: The SAS Institute, Inc.

Aster, Rick, Professional SAS® Programming Logic, Copyright @ 2000, pp. 431-446, Paoli, Pennsylvania: Breakfast
Communications Corporation

Paper CC-019 SAS® Macro Autocall and %Include, Jie Huang, Merck & Co., Inc. Tracy Lin, Merck & Co., Inc.

ACKNOWLEDGMENTS

I owe much gratitude to Dessa Overstreet for persuading me to write a paper and the support of Equifax
management in the writing of the paper itself.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Penny Eckert
Enterprise: Equifax, Inc.
E-mail: penny.eckert@equifax.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective company.

