
SESUG 2013

1

Paper SD-04

Using Predetermined Factor Structures to Simulate a Variety of Data Conditions
Kevin Coughlin, Edison State College, Fort Myers, FL

Jeffrey Kromrey, University of South Florida, Tampa, FL
Susan Hibbard, Edison State College, Fort Myers, FL

ABSTRACT

This paper presents a method through which data sets of varying characteristics can be simulated based on
predetermined, uncorrelated factor structures. As demonstrated in a series of studies, this Monte Carlo method
yields factor structures that are clear and simple. The process begins with the application of conceptual and actual
factor loadings to the creation of correlation matrices; samples are then generated based on these correlation
matrices. The method for generating correlation matrices allows the researcher to manipulate the number of
observed variables, the communality among variables, and the number of common factors. The process for
simulating samples of observations provides additional options for specifying sample size and level of measurement.
This paper includes an example of the process for generating a correlation matrix and a distribution of simulated
observations. This paper is intended for researchers that are interested in factor analytic designs and are familiar
with PROC IML.

Keywords: COMMUNALITY, CORRELATION MATRICES, DICHOTOMY, FACTOR ANALYSIS, MULTIVARIATE
NORMALITY, OVERDETERMINATION, PROC IML, SAMPLE SIZE

BACKGROUND

Latent variables or factors are not directly observable; however, as a central assertion in factor analytic theory, much
of the variation in the phenomena that researchers witness and measure is attributable to these underlying traits
(Bartholomew, 1984; Cureton & D’Agostino, 1983; Stevens, 2002; Tucker & MacCallum, 1997). Moreover, factor
analytic theory asserts that these hypothetical, internal attributes are more “fundamental” than the surface attributes
which we observe (Tucker & MacCallum, 1997, p. 2). This paper presents a tool that can facilitate exploration of
exploratory factor analysis as a research method.

Although exploratory factor analysis is useful in “both measurement and substantive research contexts” (Henson &
Roberts, 2006, p. 396), it has been subjected to persistent criticism. Many of these objections are based on the
subjectivity of the decisions that researchers must make when conducting their factor analyses (Henson & Roberts,
2006). Attempts to incorporate non-normal data types into factor analyses represent another potential area of
criticism (Yuan, Marshall, & Bentler, 2002). Guiding principles are well established for contexts that include
continuous variables that exhibit multivariate normality. However, “no firm guidelines have as yet emerged concerning
situations in which qualitative and quantitative variables are mixed together” (Krzanowski, 1983, p. 235).

The program presented in this paper allows researchers to simulate data with known factor structures. The program
provides researchers with the opportunity to manipulate a variety of research contexts including the number of
observed variables, communality, and sample size. Through specifying the proportion of observed variables that are
dichotomized, researchers can also simulate varying levels of violations to assumption of multivariate normality.

SOURCES AND PREVIOUS METHODOLOGICAL RESEARCH

Tucker, Koopman, and Linn (1969) presented a method for simulating correlation matrices that correspond to pre-
specified common factor structures. Their method yields matrices that are more similar to real data correlation
matrices than those obtained directly from a structural model.

In the Tucker, Koopman, and Linn (1969) method, the population correlation matrix, R, is generated based on major,
minor, and unique factors,

1 1 2 2 3 3R A A A A A A    

where A1 is the p x k matrix of input factor loadings for the major factors, A2 is the matrix of input factor loadings for
the minor factors, and A3 is the p x p diagonal matrix of input factor loadings for the unique factors. If the contribution

SESUG 2013

2

of the minor factors (A2) is set to zero, the data generation model will exactly match a factor analytic model with k
common factors.

The process for creating A1 starts with the creation of a matrix of conceptual input factor loadings, Ã1. To create Ã1,
the loading on a randomly selected factor, j = 1 to k, is set to a value randomly chosen between 0 and k - 1 (i.e., for a
3-factor model the loading ã1j could be 0, 1, or 2). Next the loading on a randomly selected factor from those
remaining is set to a value randomly chosen between 0 and k – 1 - ã1j. This process continues until a conceptual
input factor loading has been chosen for each factor, and ensures the sum of the loadings across the factors is k-1.
This process is then repeated for each of the p variables.

The matrix of input factor loadings, A1, is then created from the matrix of conceptual input factor loadings, Ã1, through
a series of three steps: (1) normal deviates are added to introduce error, (2) a skewing function is used to limit
negative factor loadings, and (3) the matrix is scaled to ensure desired levels of communality. The diagonal matrix,
A3, for the unique factors is also scaled to ensure the desired levels of communality.

An important aspect of this simulation approach is that an infinite number of population correlation matrices may be
generated from a single specification of number of variables, number of common factors, and level of communality
(analogous to the inevitability that an infinite number of factor solutions may be obtained from a single correlation
matrix).

Tucker, Koopman, and Linn (1969) used this method in a Monte Carlo study comparing three methods of factor
extraction. Subsequently, MacCallum, Widaman, Zhang, and Hong (1999) used the method to simulate data for a
study of sample size requirements for factor recovery, controlling the number of variables in the correlation matrices,
the number of common factors, and the level of communality. In a follow-up study, MacCallum, Widaman, Preacher,
and Hong (2001) replicated their research with matrices for which the common factor model did not hold exactly in
the population (i.e., by including large numbers of minor common factors in the simulation). In addition, Hogarty,
Hines, Kromrey, Ferron, and Mumford (2005) used the method in their investigation of sample size requirements for
factor recovery. This research extended the range of conditions that were examined by MacCallum et al. (1999,
2001) and included a broader range of criteria for evaluating the congruence of the sample factor solutions with the
known population factor structure. Finally, Coughlin (2013) used this simulation method to investigate factor
extraction methods applied to correlation matrices obtained from mixtures of continuous and binary variables.

SIMULATION STRATEGY

The simulation program contains two phases. The first phase includes the derivation of population correlation
matrices from conceptual and actual factor input loadings. Through the second phase, population correlations are
used to simulate samples of data. As the flow chart in figure 1 demonstrates, researchers can manipulate different
research characteristics at each phase of the simulation strategy.

GENERATING POPULATION CORRELATION MATRICES

As described by Tucker, Koopman, and Linn (1969), the simulation procedures include a “mathematical, probabilistic
model” and presume the existence of major, minor, and unique factors. The major factors represent the “influences
on observed scores of individuals for the phenomena which the experimenter wishes to study” (Tucker, Koopman, &
Linn, 1969, p. 424); minor factors exert systematic influence on the value of observations but are not within the
experimenters’ control, and unique factors represent error. Major factors are identified by a subscript value of one;
minor factors are given a subscript value of two, and a subscript of three indicates a unique factor. The number of
each type of factor is designated by ܯ௦ (Tucker, Koopman, & Linn, 1969).

The generation of correlation matrices begins with a matrix ܣ௦of “actual input factor loadings” (Tucker, Koopman, &
Linn, 1969, p. 425). Through a three-step process, these actual input loadings are derived from a matrix of
conceptual input loadings, ܣሚ. Conceptual input factor loadings represent the researcher’s expectations concerning
the “factorial composition of the variables” (Tucker, Koopman, & Linn, 1969, p. 426).

The first step in the development of conceptual input loadings involved the creation of “relative conceptual input
loadings” for each variable. For a three-factor domain, the loadings conform to the following guidelines:

1. A zero, one, or two is chosen at random and is assigned to the first factor.
2. The sum of the loadings for any one variable is limited to two; this limit implies that if the first loading is two,

then other two must be zero; if the first loading is one, then the other two have an equal probability of being
a zero or a one.

3. The loading of the third factor is chosen so that the sum of all three will be two (Tucker, Koopman, & Linn,
1969).

SESUG 2013

3

Figure 1. Flow chart summarizing simulation strategy

In the first step towards creating actual input factor loadings, the conceptual input factor loadings are combined with
random normal deviates; these deviates represent the natural “discrepancies” that occur in the construction of
instruments (Tucker, Koopman, & Linn, 1969, p. 428). The output of this step, ሺݕଵሻ௝௠భ

, is defined by:

ሺݕଵሻ௝௠భ
	ൌ 	 ሺ ෤ܽଵሻ௝௠భ

ܿ௠ଵ 	൅	݀ଵ௝ݔଵ௠భ
ሺ1 െ ܿ௠ଵ

ଶ ሻ
ଵ
ଶൗ 	

Where:
1. ሺ ෤ܽଵሻ௝௠భ

is the entry in row j and column m1 of matrix ܣሚଵ
௝௠భݔ .2

 is a random, normal deviate ሺߤ ൌ 0, ߪ ൌ 1ሻ
3. ܿ௠భ

 is a constant for each factor m1; the possible values range from zero to one; the constants
represent the “general control an experimenter has on the loading of actual variables on the factors”
(Tucker, Koopman, & Linn, 1969, p. 429)

SESUG 2013

4

4. ݀ଵ௝ is a constant for each variable j; this constant normalizes each row of ݔଵ௠భ
to a unit length vector; it

is defined as: ݀ଵ௝ ൌ ൫∑ ௝௠భݔ
ଶ

௠భ
൯
ିଵ

ଶൗ (Tucker, Koopman, & Linn, 1969, p. 429)

The second step in this translation process includes a skewing function that reduces negativity in factor loadings.
This function yields coefficients, ሺݖଵሻ௝௠భ

, according to the following equality:

ሺݖଵሻ௝௠భ
ൌ 	

ሺ1 ൅ ݇ሻ
ሺ2 ൅ ݇ሻ

	
ሺݕଵሻ௝௠భ

ൣሺݕଵሻ௝௠భ
൅	หሺݕଵሻ௝௠భ

ห ൅ 	݇൧

ൣหሺݕଵሻ௝௠భ
ห ൅ 	݇൧

In this expression, k is a parameter that can range from zero to infinity. Each vector of ሺݖଵሻ௝௠భ

coefficients is reduced
to unit length by the following:

ሺܽଵ
∗ሻ௝௠భ

ൌ ݃ଵ௝ሺݖଵሻ௜௠భ

 Where:

݃ଵ௝ ൌ 	 ቎෍ሺݖଵሻ௝௠భ
ଶ

௠భ

቏

ିଵ ଶൗ

The third step in this process includes scaling the matrix “to ensure desired levels of communality” (Hogarty et al.,
2005, p. 207).

The matrix of actual input factor loadings, ܣ௦ is a ܬ	 ൈ ௦ matrix that contains a row for each variable J and a columnܯ	
for each major, minor, and unique factor (Tucker, Koopman, & Linn, 1969, p. 425). For each matrix ܣ௦, a matrix ܣ௦∗
can be defined by adjusting the rows of ܣ௦ to unit length vectors. P is a square, symmetric matrix of order J; P is
positive and semi-definite; it is defined by:

௦ܲ ൌ ∗௦ܣ∗௦ܣ	
′

ሺ݃ܽ݅ܦ ௦ܲሻ ൌ .ܫ

The simulated correlation matrix is given by:

ܴ ൌ ଵܤ	 ଵܲܤଵ ൅ ଶܤ ଶܲܤଶ ൅ ଷܤ ଷܲܤଷ

 ௦ are diagonal matrices that include ܾଵ௜, ܾଶ௜, and ܾଷ௜as entries. These entries are real, positive numbers that haveܤ
the following property:

ܾଵ௜
ଶ ൅	ܾଶ௜

ଶ ൅	ܾଷ௜
ଶ ൌ 1

These considerations imply the following equalities:

௜௜ݎ ൌ 1	
ሺܴሻ	݃ܽ݅ܦ ൌ ܫ

Matrix ܣ௦is now defined as:

௦ܣ 	ൌ ∗௦ܣ௦ܤ	
The correlation matrix is given by:

ܴ ൌ ଵܣଵܣ	
′ ൅ ଶܣଶܣ

′ ൅ ଷܣଷܣ
′ 	ൌ ሺܣଵ, ,ଶܣ ,ଵܣଷሻሺܣ ,ଶܣ ′ଷሻܣ

The supermatrix (A1, A2, A3) contains the matrices A1, A2, and A3 as horizontal sections (Tucker, Koopman, & Linn.
1969).

The coefficients in the Bs matrices “regulate” the amount of variability in the variables that is related to the major,
minor, and unique factors. The ܤଵ

ଶ matrix contains communalities, and the ܤଷ
ଶcontain values for uniqueness. When

B2 matrix is zero, the “simulation model” equals the “formal model” (Tucker, Koopman, & Linn, 1969, p. 426).

This simulation program included the formal model as the simulation model. The B2 matrix is set to zero, and by
implication, the input factor loadings for minor factors were zero. This forced the “data generation model” to match “a
factor analytic model” with the number of common factors equal to the levels specified for each combination of
research contexts that was examined in this study.

SESUG 2013

5

SAMPLE GENERATION

With few modifications, the simulation strategy included in this study is derived from Hogarty, Hines, Kromrey, Ferron,
and Mumford’s (2005) investigation of the relationship between sample size and factor solutions. This strategy allows
the researcher to control for the number of observed variables, levels of communality, and sample size. The current
program provides researchers with the opportunity to vary the percentage of observed variables that are categorical
or dichotomous.

APPLICATION EXAMPLE

To illustrate program output, a population correlation matrix and an example data set were simulated using SAS 9.3©.
This example includes eight observed variables, two factors, and 100 observations (n = 100). The communality level
was set at the high condition, and 25% of the observed variables were dichotomized. Table 1 presents the
communalities, the conceptual input factor loadings, and the actual input factor loadings.

Table 1
Communalities, Conceptual Input Factor Loadings, and Actual Input Factor Loadings by Eight Observed Variables
 Conceptual Input Factor Loadings (Ã1) Actual Input Factor Loadings (A1)

Variable Communalities Factor 1 Factor 2 Factor 1 Factor 2

1 .836 1 0 0.836 -0.007

2 .836 1 0 0.834 -0.067

3 .836 0 1 0.558 0.623

4 .774 0 1 0.495 0.596

5 .774 1 0 0.769 0.093

6 .836 0 1 -0.115 0.829

7 .774 0 1 0.585 0.507

8 .894 0 1 -0.197 0.872

This illustrative example included five population correlation matrices. However, the number of population correlation
matrices simulated is a design characteristic that can be specified by the researcher. Table 2 contains one of these
correlation matrices.

Table 2
Population Matrix of Pearson Product Moment Correlations for Eight Observed Variables
 1 2 3 4 5 6 7 8

1 .698 .462 .409 .642 -.102 .485 -.171

2 .424 .973 .635 -.151 .454 -.222

3 .648 .487 .452 .642 .434

4 .436 .437 .592 .422

5 -.011 .497 -.070

6 .353 .746

7 .327

8

Table 3 contains simulated data for the first ten and last ten observations from a data set based on a sample size of
100. This illustrative example included five simulated data sets per population correlation matrix. As was the case
with the number of population correlation matrices, the number of data sets per correlation matrix is specified by the
researcher.

SESUG 2013

6

Table 3
Simulated Data Set Excerpt (Sample Size = 100, Eight Observed Variables, and .25 Dichotomization Level Condition)
 Observed Variables

Observation 1 2 3 4 5 6 7 8

1 1 1 1.070 0.247 0.993 -1.568 -0.611 -1.634

2 0 0 -1.431 -1.547 -0.883 1.100 -0.470 -0.267

3 1 1 -0.027 -0.444 0.997 -1.036 0.129 -0.237

4 0 1 0.406 0.626 0.052 0.753 1.523 0.800

5 0 0 -0.270 1.190 -1.876 1.945 -0.120 0.662

6 1 1 -1.088 0.886 0.247 -0.987 -0.437 -1.222

7 1 1 1.172 0.625 1.438 -0.120 0.682 -0.722

8 1 0 -0.041 0.502 -0.467 0.649 0.037 -0.154

9 0 0 0.458 0.952 -0.806 1.010 0.181 1.704

10 0 0 -1.789 -0.938 -1.622 0.964 -1.583 -0.242

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

91 1 1 0.903 0.082 1.035 -0.905 -0.432 -0.060

92 1 1 -0.473 -1.464 -0.314 -0.981 1.061 -1.182

93 0 1 -0.313 0.220 -0.740 -1.214 -0.902 -0.900

94 1 1 1.546 2.260 1.441 1.059 2.000 1.185

95 1 1 0.701 0.601 1.401 0.815 0.402 -0.614

96 1 0 0.862 -0.017 -0.028 0.854 1.208 1.300

97 1 1 -0.527 -1.300 1.086 -0.044 -0.337 -0.374

98 0 0 -0.514 -0.655 -1.562 0.165 -0.472 0.656

99 1 1 1.262 0.340 1.853 -1.202 0.472 -1.220

100 0 0 0.589 0.380 -1.536 0.968 0.111 2.570

PROC IML CODE

The PROC IML code is presented below in its entirety. The nature of the data to be simulated is controlled by setting
six scalar values at the beginning of the program. The number of variables in the data matrix is set with the scalar p
and the number of common factors with the scalar k. The value of d_frac controls the proportion of variables that are
generated as dichotomies rather than continuous variables and commun_type sets the communality of the variables
to low, wide, or high (with the values 1, 2 and 3, respectively). Finally, n_pops sets the number of population
correlation matrices to be generated and replicat controls the number of samples to simulate from each population.
The sample size is manipulated within a loop in the program (see the S_Size scalar). As provided, samples of size
100, 200, 300, and 1000 are generated from each population correlation matrix.

option ls = 256 ps = max nonumber nodate nocenter;
proc printto print='c:\SESUG2013.lst';
proc iml;

p = 8; *8; *20; *40; *60;
k = 2; *2; *4; *8;
d_frac = .25; *.00; *.05; *.25; *.50; *.75; *.95;
Commun_type = 3;
N_pops = 5; * N of populations to generate;
replicat= 5; *1000; * N of samples from each population;
nn1 = 100000;
means=j(1,p,0);
variance = j(1,p,1);

SESUG 2013

7

start Make_PopR(nvars,nfactors,commun_type,A1tilde,B1,x,x2,d,A1,R);
bp1=j(nvars,nvars,0);
bp2=uniform(bp1);
if commun_type=3 then do;
 bp3=(bp2*.2999999)+.55;
 b1square=round(diag(bp3),.1);
end;
if commun_type=1 then do;
 bp3=(bp2*.2999999)+.15;
 b1square=round(diag(bp3),.1);
end;
if commun_type=2 then do;
 bp3=(bp2*.6999999)+.15;
 b1square=round(diag(bp3),.1);
end;

B1=b1square##.5;
b3square=I(nvars)-b1square;
B3=b3square##.5;
A1tilde1=j(nvars,nfactors,0);
A1tilde2=round((uniform(A1tilde1)*(nfactors-.00000001))-.5);
A1tilde=A1tilde2;
do j=2 to nfactors;
 do i=1 to nvars;
 if j<nfactors then do;
 A1tilde[i,j]=round(((nfactors-.00000001-sum(A1tilde[i,1:j-1]))
 *uniform(0))-.5);
 end;
 if j=nfactors then do;
 A1tilde[i,nfactors]=nfactors-sum(A1tilde[i,1:nfactors-1])-1;
 end;
 end;
end;

x=normal(A1tilde);
x2=x##2;
d=j(nvars,nfactors,0);
do j=1 to nfactors;
 do i=1 to nvars;
 d[i,j]=(sum(x2[i,1:nfactors]))##-.5;
 end;
end;

cvec=j(1,nfactors,0);
do j=1 to nfactors;
 cvec[1,j]=round((uniform(0)*.2999999)+.65,.1);
end;
c=j(nvars,1,1)*cvec;
c2=c##2;
ones=j(nvars,nfactors,1);
y=A1tilde#c + d#x#((ones-c2)##.5);
k=.2;
z=j(nvars,nfactors,0);
do j=1 to nfactors;
 do i=1 to nvars;
 z[i,j]=((1+k)*y[i,j]*(y[i,j]+abs(y[i,j])+k))/((2+k)*(abs(y[i,j])+k));
 end;
end;

z2=z##2;
g=j(nvars,nfactors,0);
do j=1 to nfactors;
 do i=1 to nvars;
 g[i,j]=(sum(z2[i,1:nfactors]))##-.5;
 end;

SESUG 2013

8

end;

A1star=g#z;
A1=B1*A1star;
A3star=I(nvars);
A3=B3*A3star;
R=A1*A1`+A3*A3`;

Finish;

start gendata2a(NN1,seed1,variance,bb,cc,dd,mu,r_matrix,YY,p,d_frac);
 L = eigval(r_matrix);
 neg_eigval = 0;
 do r = 1 to nrow(L);
 if L[r,1] < 0 then neg_eigval = 1;
 end;
 if neg_eigval = 0 then do; * matrix is positive definite, so use the Cholesky root
approach;
 COLS = NCOL(r_matrix);
 G = ROOT(r_matrix);
 YY=rannor(repeat(seed1,nn1,COLS));
 YY = YY*G;
 do r = 1 to NN1;
 do c = 1 to COLS;
 YY[r,c] = (-1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3);
 YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c];
 end;
 end;
 end;
 if neg_eigval = 1 then do; * matrix is not positive definite, so use the PCA
approach;
 COLS = NCOL(r_matrix);
 V = eigvec(r_matrix);
 do i = 1 to nrow(L);
 do j = 1 to ncol(V);
 if L[i,1] > 0 then V[j,i] = V[j,i] # sqrt(L[i,1]);
 if L[i,1] <= 0 then V[j,i] = V[j,i] # sqrt(.000000001);
 end;
 end;
 YY=rannor(repeat(seed1,nn1,COLS));
 YY = V*YY`;
 YY = YY`;
 do r = 1 to NN1;
 do c = 1 to COLS;
 YY[r,c] = (-1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3);
 YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c];
 end;
 end;
 end;
 if d_frac > 0 then do;
 do r = 1 to nn1;
 do c = 1 to (p*d_frac);
 if yy[r,c] < 0 then yy[r,c] = 0;
 else if yy[r,c] = 0 then yy[r,c] = 1;
 else if yy[r,c] > 0 then yy[r,c] = 1;
 end;
 end;
 end;
finish;

start gendata2b(NN2,seed1,variance,bb,cc,dd,mu,r_matrix,YY,p,d_frac);
 L = eigval(r_matrix);
 neg_eigval = 0;
 do r = 1 to nrow(L);
 if L[r,1] < 0 then neg_eigval = 1;

SESUG 2013

9

 end;
 if neg_eigval = 0 then do; * matrix is positive definite, so use the Cholesky root
approach;
 COLS = NCOL(r_matrix);
 G = ROOT(r_matrix);
 YY=rannor(repeat(seed1,nn2,COLS));
 YY = YY*G;
 do r = 1 to NN2;
 do c = 1 to COLS;
 YY[r,c] = (-1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3);
 YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c];
 end;
 end;
 end;
 if neg_eigval = 1 then do; * matrix is not positive definite, so use the PCA
approach;
 COLS = NCOL(r_matrix);
 V = eigvec(r_matrix);
 do i = 1 to nrow(L);
 do j = 1 to ncol(V);
 if L[i,1] > 0 then V[j,i] = V[j,i] # sqrt(L[i,1]);
 if L[i,1] <= 0 then V[j,i] = V[j,i] # sqrt(.000000001);
 end;
 end;
 YY=rannor(repeat(seed1,nn2,COLS));
 YY = V*YY`;
 YY = YY`;
 do r = 1 to NN2;
 do c = 1 to COLS;
 YY[r,c] = (-1*cc) + (bb*YY[r,c]) + (cc*YY[r,c]##2) + (dd*YY[r,c]##3);
 YY[r,c] = (YY[r,c] * SQRT(variance[1,c])) + mu[1,c];
 end;
 end;
 end;
 if d_frac > 0 then do;
 do r = 1 to nn2;
 do c = 1 to (p*d_frac);
 if yy[r,c] < 0 then yy[r,c] = 0;
 else if yy[r,c] = 0 then yy[r,c] = 1;
 else if yy[r,c] > 0 then yy[r,c] = 1;
 end;
 end;
 end;
finish;

Do pop_num = 1 to N_pops; * Loop for 10 populations;

run Make_PopR(p,k,commun_type,A1tilde,B1,x,x2,d,A1,R_pop);
Lambda = A1;
numr = r_pop[+,+] - p;
deno = r_pop[+,+];
ratio = numr/deno;
f2_pop = (p/(p-1))*ratio;
r2_pop = f2_pop/(1+f2_pop);
corr = r_pop;
seed1=round(1000000*rannor(0));
chg = 1;
cycle = 0;
corr_tmp = corr;
do until (chg = 0);
 run gendata2a(NN1,seed1,variance,1,0,0,means,corr_tmp,sim_data,p,d_frac);
 sim_corr = corr(sim_data);
 resid_m = sim_corr - corr;
 tot_res = sum(abs(resid_m));
 if cycle = 0 then do;

SESUG 2013

10

 best_corr = corr_tmp;
 best_res = tot_res;
 end;
 if cycle > 0 then do;
 if tot_res < best_res then do;
 best_corr = corr_tmp;
 best_res = tot_res;
 end;
 end;
 if tot_res < (.005#(((p-1)#p)/2)) then CHG = 0; * Convergence!;
 if cycle > 30 then do;
 if tot_res < (.01#(((p-1)#p)/2)) then CHG = 0; * Convergence!;
 end;
 if cycle > 200 then CHG = 0;
 if CHG = 1 then corr_tmp = corr_tmp - resid_m; * adjust template and simulate
another large sample;
 cycle = cycle + 1;
 if CHG = 0 then do;
 end;
 end;

Do S_Size = 1 to 4; * Loop for sample sizes;

 if S_Size = 1 then Sampsize2=100;
 if S_Size = 2 then Sampsize2=200;
 if S_Size = 3 then Sampsize2=300;
 if S_Size = 4 then Sampsize2=1000;

Do rep=1 to replicat; * Loop for 1000 Samples;

seed1=round(1000000*ranuni(0));
nn2 = sampsize2;
corr_tmp = best_corr;

r_sing = 0;
do until (det(r_samp) > 0);
 run gendata2b(NN2,seed1,variance,1,0,0,means,corr_tmp,sim_data,p,d_frac);
 sampdat = sim_data;
 r_samp=corr(sampdat);
 if det(r_samp)<=0 then do;
 r_sing = r_sing +1;
 end;
end;

if rep = 1 then _r_sing = r_sing;
if rep > 1 then _r_sing = _r_sing + r_sing;

end; *End replications loop;

print A1tilde;
print B1;
print x;
print x2;
print d;
print A1;
print R_pop;
print sampdat;

end; *End sample size loop;
end; *End populations loop;

quit;

SESUG 2013

11

CONCLUSIONS

The SAS/IML code provided in this paper provides a straight-forward method for simulating sample data that may
arise from a given population factor structure. The two-step method of simulating population correlation matrices
followed by the simulation of samples from those matrices yields samples that have the variability expected from a
common factor model. As provided, the program allows easy manipulation of variable communality, number of latent
factors and observed variables, sample size, and proportion of dichotomous variables. Further, the program may be
readily modified to allow the simulation of non-normal observed variables, including discrete ordinal variables that are
obtained from rating scale items.

The program will be useful primarily to methodologists who study techniques of exploratory and confirmatory factor
analysis and other latent variable methods such as structural equation models. In addition, the program has utility for
the investigation of meta-analytic techniques that synthesize sample results across a variety of empirical studies
which may differ in their operationalization of latent variables. Finally, this program should be valuable for research
related to psychometric methods including the investigation of measurement invariance.

REFERENCES

Bartholomew, D. J. (1984). The foundations of factor analysis. Biometrika, 71(2), 221-232.

Coughlin, K. B. (2013). An Analysis of Factor Extraction Strategies: A Study of the Relative Strengths of Principal

Axis, Ordinary Least Squares, and Maximum Likelihood Factor Extraction Methods in Research Contexts
that Include Varying Ratios of Categorical to Continuous Variables (Unpublished doctoral dissertation).
University of South Florida, Tampa, FL.

Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis practices in

organizational research. Organizational Research Methods, 6, 147- 168.

Costello, A. B., & Osborne, J. W. (2005). Recommendations for getting the most from your analysis. Practical

Assessment, Research & Evaluation, 10 (7), 1-9.

Cureton, E. E. & d’Agostino, R. B. (1983). Factor analysis: An applied approach. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Harman, H. H. (1976). Modern factor analysis (3rd ed.). Chicago: University of Chicago Press.

Hesnon, R. K. & Roberts, J. K. (2006). Exploratory factor analysis in published research: Common errors and some

comment on improved practice. Educational and Psychological Measurement, 66(3), 393-416.

Hogarty, K. Y., Hines, C. V., Kromrey, J. D., Ferron, J. M. & Mumford, K. R. (2005). The quality of factor solutions in

exploratory factor analysis: The influence of sample size, commuanltiy, and overdetermination. Educational
and Psychological Measurement, 65, 202-226.

Krzanowski, W. J. (1983). Distance between populations using mixed continuous and categorical variables.

Biometrika, 70(1), 235-243.

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological

Methods, 4, 84-99.

MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of

model error. Multivariate Behavioral Research, 36, 611-637.

Stevens, J. P. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Lawrence

Erlbaum.

Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of

simulated correlation matrices. Psychometrika, 34, 421-459.

Tucker, L. & MacCallum, R. (1997). Exploratory factor analysis: A book manuscript. Retrieved August 20, 2008, from

http://www.unc.edu/~rcm/book/factornew.htm.

SESUG 2013

12

Yuan, K. H., Marshall, L. L., & Bentler, P. M. (2002). A unified approach to exploratory factor analysis with missing
data, nonormal date, and in the presence of outliers. Psychometrika, 66(1), 95-122.

Contact Information

Kevin Coughlin, Ph.D.
Office of the Registrar & Academic Course Level Assessment
Edison State College
8099 College Parkway
Fort Myers, FL 33919
(239) 489-9027
Kcoughlin@edison.edu

SAS and all other SAS Institute inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA Registration. Other brand and product names are
registered trademarks or trademarks of their respective companies.

