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ABSTRACT  

Wang and Song (2011) proposed a k-means clustering algorithm in one dimension using exact dynamic 
programming, which guarantees optimality. Their algorithm solved the clustering problem by breaking it into smaller 
nested problems. The one-dimensional measure may, for example, be baseline measures related to a before-after 
study and subjects are grouped (clustered) on baseline before randomization. In this paper we extend their work by 
placing constraints on the cluster size, for example, each cluster must be no less than the number of study arms. A 
SAS macro will be presented which finds the optimal clustering given the constraint by minimizing the within cluster 
root mean squared error. An option that randomly allocates subjects to study arms is also included. An example will 
be given where a sample of primary care practices are to be allocated to treatment or control. The study measures 
the degree to which primary care physicians’ deliver smoking cessation counseling. Prior to randomization, the 
practices are clustered on the baseline measure.  

INTRODUCTION 

A pre-post design can help control the within subject variance to achieve the maximum power of analysis, since each 
subject serves as its own control (Park and Johnson, 2005). The variance may be further controlled by stratification 
into blocks prior to randomization, where the blocks are relatively homogeneous on the baseline primary measures 
(Park and Johnson, 2005). Although Park and Johnson (2006) pointed out that treating the baseline as a covariable 
provided maximal control of the variance, with or without pair-matching, we are interested in understanding the effect 
of baseline clustering when considering an analysis of pre-post differences. 

In order to stratify subjects into relatively homogeneous blocks, a partition of the subjects clustered on the baseline 
values may be formed so to minimize the root mean squared error (RMSE) of the baseline values. Since subjects 
within each block will be randomized to study arms, the subjects’ baseline values must be clustered such that not 
only the minimal RMSE is achieved, but also each cluster must have at least the same number of subjects as arms of 
the study.  

Hierarchical clustering methods, such as k-means (Lloyd, 1982), are often used to identify clusters. The k-means 
procedure does not always lead to the optimal clustering since the procedure employs a random path. These 
methods cannot easily constrain the result to have a minimum number of subjects for each cluster. Unconstrained, 
the solution may result in one or more clusters having less than the required number of subjects. Fusing neighboring 
clusters can resolve this, but may result in a non-optimal set of clusters (Park and Johnson, 2004). 

In order to get an optimal set of clusters with constraints on number of subjects, a modified hierarchical clustering 
algorithm is developed here for identifying clusters of univariate baseline outcome data. It not only guarantees 
optimality, but also places the desired constraint on the minimum number of subjects in each cluster. The algorithm is 
implemented using SAS/IML® with the macro ConClus (Constrained Uni-dimensional Clustering).  

Finally, we illustrate how to use this algorithm by allocating primary care practices into treatment and control groups. 
The practices are clustered on baseline physician delivery of smoking cessation counseling (Rothemich et. al, 2008).  

METHOD 

In order to cluster on baseline to achieve minimum RMSE with the constraint that every cluster size is no less than 
the number of study arms, we provide a new algorithm that is an improvement of the “CKmeans.1d.dp” algorithm 
(Wang and Song, 2011). Since, for a fix set of clusters, minimizing Euclidean sums of squares (ESS) is equivalent to 
minimizing RMSE when dealing with univariate data, we calculate RMSE by getting the square root of the ratio of 
withinss and degrees of freedom, where withinss represents the Euclidean sums of squares of within-cluster 
distances from each subject to its corresponding cluster mean and the degrees of freedom is the difference between 
total subjects and number of clusters.  

Let 1, , nx x  be the non-descending sorted baseline values of n subjects. We seek the cluster partition that 

minimizes RMSE subject to the constraint that every cluster has no less than the number of study arms r . Our 
method extends that developed by Wang and Song (2011) and is equivalent to their algorithm when 1r  . Suppose 
we have arranged i subjects into m clusters with minimum withinss. We record the corresponding minimum withinss 



 

2 

in entry [ , ]D i m of an 
n

n
r

 
  
 

matrix D , where 
n

r

 
 
 

means the integer part of 
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. The second dimension of D  is 

constrained since n subjects can be clustered into at most 
n
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 

clusters. The last row of the matrix D indicates  

clustering all the subjects, thus the minimum value of the last row in matrix D corresponds to the number of clusters 
related to the cluster partition with the smallest withinss value, the solution to the original problem.  

The matrix D is built dynamically. Suppose we want to find the withinss to place in [ , ]D i m  and the corresponding 

partition that leads to this value. Let j be the index of the smallest ordered data value in the last, 
thm , cluster. The 

value of j cannot be less than 1rm r  because it must have at least r subjects in each cluster, that is at least 

( 1)r m  totally for the first 1m  clusters. Further, j must be no greater than 1i r   since otherwise the thm cluster 

would not meet the constraint. Thus ( 1) 1 1r m j i r      . It is evident that [ 1, 1]D j m  must be the optimal 

withinss for the first 1j  points in 1m  clusters for otherwise one would have a better solution to [ , ]D i m . This 

establishes the optimal substructure for dynamic programming and leads to the recurrence equation 

   
( 1) 1 1

[ , ] min { 1, 1 , , }, 1 , 1j i
r m j i r

n
D i m D j m d x x i n m

r     

 
         

 
 

where ( , , )j id x x is the sum of squared distances from , ,j ix x to their mean. The matrix is initialized as 

1[ ,1] ( , , )iD i d x x , that is, withinss for clustering i subjects into one cluster, equals to the sum of squared distances 

from all i  observations to their mean. Using the above recurrence, we can obtain [ , ]D n m the minimum withinss if all 

n numbers are clustered into m groups, with minimum
,

,
D n m

RMSE n m
n m

    


. 

In order to make the program more efficient, as suggested in Wang and Song (2011), the values ( , , )j id x x in the 

recurrence ( , , )j id x x can be computed progressively—and stored—based on 1( , , )j id x x  . Using a general index 

from j  to i , we iteratively compute 
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where ,j i is the mean of ( , , )j ix x . To find a clustering of data with minimum withinss of D , an auxiliary 
n

n
r

 
  
 

matrix B is defined to record the index of the smallest number in cluster m  

   
( 1) 1 1

[ , ] argmin { 1, 1 , , },1 ,1j i
r m j i r

n
B i m D j m d x x i n m

r     
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Then we backtrack from ,B n k   to obtain the starting and ending indices for all clusters and generate an optimal 

solution to the k-means problem. 

EXAMPLE 

Eighteen primary care practices were recruited as research sites under the auspices of the Virginia Ambulatory Care 
Outcomes Research Network (ACORN), a practice-based research network. Before conducting the intervention, each 
practice’s baseline rate of providing cessation counseling by surveying a cross-sectional sample of visiting smokers 
was determined. The practices were then clustered according to their baseline rate. Since the study was a two-arm 
study with treatment and control, the clustering had the constraint that every cluster has at least two subjects. A 
group of 18 practices can be groups in 1 to 9 clusters as presented in Table 1. The within-cluster sum squares and 
RMSE are also presented. The results indicate that clustering practices into 8 clusters can achieve smallest RMSE, 
with 3 practices in first cluster and sixth cluster, and two practices in of the remaining clusters. Note that RMSE drops 
little from 5 to 8 clusters. For this study, 5 clusters were used. Also note that the 9

th
 cluster’s RMSE values are 

greater than those for the 8
th

 cluster. Such a skewed-U shape in the cluster  RMSE plot is typical when cluster size 
is constrained (Figure 1).  
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   Number of Clusters 

   1 2 3 4 5 6 7 8 9 

Cluster Withinss RMSE Cluster Size 

1 0.3007 0.1330 18 . . . . . . . . 

2 0.0627 0.0626 6 12 . . . . . . . 

3 0.0237 0.0398 5 5 8 . . . . . . 

4 0.0103 0.0271 5 4 7 2 . . . . . 

5 0.0050 0.0195 5 2 3 6 2 . . . . 

6 0.0035 0.0171 5 2 2 2 5 2 . . . 

7 0.0029 0.0161 5 2 2 2 3 2 2 . . 

8 0.0022 0.0150 3 2 2 2 2 3 2 2 . 

9 0.0046 0.0226 2 2 2 2 2 2 2 2 2 

Table 1: Withinss, RMSE, and Cluster Size for Optimal Partitions of the Study Baseline Data 

 

Figure 1: Example study: RMSE by the Number of Clusters. 

 

  Number of Clusters 

  2 3 4 5 6 7 8 9 

Baseline ID Cluster Number 

0.333 7 1 1 1 1 1 1 1 1 

0.348 5 1 1 1 1 1 1 1 1 

0.348 4 1 1 1 1 1 1 1 2 

0.350 13 1 1 1 1 1 1 2 2 

0.381 9 1 1 1 1 1 1 2 3 

0.464 6 1 2 2 2 2 2 3 3 

0.500 17 2 2 2 2 2 2 3 4 

0.529 12 2 2 2 3 3 3 4 4 

0.556 10 2 2 2 3 3 3 4 5 

0.576 16 2 2 3 3 4 4 5 5 

0.600 11 2 3 3 4 4 4 5 6 

0.619 2 2 3 3 4 5 5 6 6 

0.625 14 2 3 3 4 5 5 6 7 

0.632 18 2 3 3 4 5 5 6 7 

0.647 8 2 3 3 4 5 6 7 8 

0.650 15 2 3 3 4 5 6 7 8 

0.710 3 2 3 4 5 6 7 8 9 

0.731 1 2 3 4 5 6 7 8 9 

Table 2: Optimal Partitioning of 18 Primary Care Practices Into 1-9 Clusters 

The details of how to assign each practice into clusters are presented in Table 2. The partitioning for a single cluster 
is obvious and is not presented. For example, the column of Cluster 5 shows how to cluster 18 practices into 5 
clusters with the constraint that each cluster has at least 2 subjects: 5 practices with ID 7, 5, 4, 13 and 9 were 
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grouped into cluster 1, 2 practices with ID 6 and 17 were grouped into cluster 2, 3 practices with ID 12, 10 and 16 
were grouped into cluster 3, 6 practices with ID 11, 2, 14, 18, 8 and 15 were grouped into cluster 4, and the 
remainder, ID 3 and 1, were grouped into cluster 5. This was the partition used in the example study. 

THE MACRO 

OVERVIEW 

The algorithm shown above is implemented with SAS/IML® and provided as a macro, ConClus. The user supplies 
the input dataset name, variable on which clusters are desired (should be an ordinal numeric variable), variable that 
can help connect cluster result with original dataset (e.g., ID or post-treatment measures), and the constraint (e.g., 
number of study arms). Two datasets are created. Cluster contains the optimal cluster partitions given the constraint 
for all feasible number of clusters (example: Table 2). RMSE contains the withinss, RMSE, and the cluster sizes for 
each of the partitions (example: Table 1). 

SYNTAX 

%ConClus(baseline, <options>)  

baseline 

Name of numeric variable on which the cluster partition is desired. This is required and must be listed 
first. The variable should contain values of an ordinal measure. 

Options 

ID=< id-variable> 

Name of variable used to help connect cluster result with original dataset. 

DATA=<SAS-data-set> 
Name of input data set. Defaults to the last data set, _last_. 

CONSTR=<r > 

Positive integer-valued constraint. Defaults to 1 and must be a divisor of the number of observations. 

EXAMPLE 

data Example; 

 input Baseline ID @@; 

 datalines; 

0.600 11 0.522 6 0.625 14 0.731  1 0.647  8 0.333  7 0.576 16 0.348 4 0.348  5 

0.529 12 0.619 2 0.710  3 0.500 17 0.632 18 0.350 13 0.650 15 0.381 9 0.563 10 

; 

run; 

 

* Partition into clusters with two-arm study; 

%ConClus(Baseline,id=ID,data=Example,constr=2)  

CONCLUSION 

A modified hierarchical clustering algorithm was provided as a SAS macro for identifying clusters of univariate 
ordinal data that not only guarantees optimality but also places the desired constraint on the minimum number of 
subjects in each cluster. The macro provides two data sets: one describes how many subjects in each cluster and the 
minimum within-cluster sum squares and RMSE that can be achieved for each number of clusters, and the other one 
describes how to group the subjects into different number of clusters to achieve minimum RMSE. The algorithm 
presented here can only be applied to one-dimensional data. An algorithm that reaches optimality, is repeatable, and 
meets constraints on cluster size remains to be developed for multidimensional data. A future version of this macro 
will assist with randomization of subjects across study arms stratified by cluster. 
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