
SESUG 2013

1

Paper CC-17

Using Arrays to Handle Transposed Data
Michael Leitson, Wellstar Research Institute, Marietta, GA

ABSTRACT

Often times, particularly in the health care field, programmers and analysts need to deal with multiple repeated

observations (or patients), with the task of searching for a desired string, number or other trait within a certain

variable. PROC TRANSPOSE can be utilized to transpose the data so that each record has a unique observation,

with the transposed variable displayed across multiple columns. Then an array is processed throughout the multiple

columns, optionally using FIND, SCAN, SUBSTR or other character function, and returns a new variable with a value

of 1 if the transposed variables contain the desired information. Additional code must be written to return a value of 0

if the transposed variables do not contain the desired information.

All techniques are intended for the working knowledge of the Base SAS
®
 programmer, with the hope that the

provided simple, straightforward array code will make the task of seeking characteristics of observations much easier.

INTRODUCTION

The use of arrays in SAS, in conjunction with the proper DO loops, can easily save a programmer a multitude of

hours of repeated and unnecessary coding. Imagine that you are a Base SAS programmer in the health care industry

and have elementary knowledge of SQL. Suppose that you are asked to analyze a data set from a clinician’s office

that includes the patient’s unique ID, and any risk factors the patient has, among other variables. Since patients can

visit the clinician’s office multiple times, the same patient can make up numerous observations. The main goal is to

find out what risk factors are more prevalent among these patients.

Since the patients take up varying number of rows, the most natural instinct would be to transpose the data, so that

each unique patient only appears in one row. After transposing the data successfully, you discover that you have 300

risk factor columns (due to patients coming to the office many times over or having an abundance of risk factors),

many of which are duplicates. You brainstorm about what to do next – you ultimately want a data set with only the

patients’ IDs and an indicator of if they have the risk factors or not. This is where arrays come in handy – the Base

SAS programmer has seen many calculations done within arrays, but using IF-THEN-ELSE statements within arrays

sheds a whole new capability and flexibility of arrays to the Base programmer.

Please note that the above scenario is from my own experience but this technique can be applied to any coder in all

fields. Such examples include a business analyst needing to analyze several customer transactions, where

customers can have more than one transaction, or manufacturing repeated products for quality control.

SESUG 2013

2

SYNTAX

Suppose that you have an initial SAS data set that is similar to the following:

ID Risk Factor

1 Coronary Artery Disease

1 Congestive Heart Failure

1 Coronary Artery Disease

2 Hypertension

2 Diabetes

2 Diabetes

2 Diabetes

.

.

.
1036 Leukemia

1036 Renal Insufficiency Syndrome

1036 Hypertension

1036 Diabetes

1036 Diabetes

1037 Hypertension

1037 Congestive Heart Failure

1037 Congestive Heart Failure

Table 1: Original Data Set

Basically, this data set has information about 1,037 patients and risk factors that each patient has. The next obvious

task would be to transpose the data. If the data is not already sorted by the identifying variable, a PROC SORT step

should be done to accomplish that. Next, the following code on the next page would be implemented to transpose the

data:

SESUG 2013

3

PROC TRANSPOSE DATA=DATASET OUT=DATASET1;

BY ID;

VAR RISK_FACTOR;

RUN;

Note that the OUT option is optional, but it would be very wise to exercise this, as one error in coding can cause you

to lose your data set. Now, your new data set should look like the following:

ID Name

of

Former

Variable

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

1 Risk

Factor

Coronary

Artery

Disease

Congestive

Heart

Failure

Coronary

Artery Disease

2 Risk

Factor

Hypertension Diabetes Diabetes Diabetes

.

.

.
1036 Risk

Factor

Leukemia Renal

Insufficiency

Syndrome

Hypertension Diabetes Diabetes

1037 Risk

Factor

Hypertension Congestive

Heart

Failure

Congestive

Heart Failure

Table 2: Transposed Data Set

After this point has been reached, you begin to wonder if additional transformation is needed in order for each risk

factor to appear only once within each patient. A quick glance at the actual data set in SAS conveys that the columns

do not stop at COL8. One patient has 300 recorded risk factors; hence the many empty columns for all other patients.

You want to assign patients the standard labeling of values – a 0 if they do not have a certain risk factor and a 1 if

they do have the same risk factor. Certainly, there must be a way to achieve the desired task instead of writing 300

IF-THEN-ELSE statements for each risk factor.

That is where the beauty of the functionality of SAS comes in. The common Base SAS programmer knows the basic

methods of coding, but the simple flexibility of SAS allows users to combine functions within one another. A better

SESUG 2013

4

method to achieve the task on hand would be to use IF-THEN-ELSE statements within an array. First, a review of the

concepts of arrays in SAS is needed (SAS Institute Inc, 2011):

1. A SAS array exists only for the period of the DATA step.

2. Do not use variable names in the DATA step as the array name.

3. Remember to include the array dimension, followed by the variables, in order that they appear in the data set.

The first statement to code (aside from the DATA and SET statements) would be to write an array statement, with a

corresponding DO statement:

ARRAY RISKS {300} COL1--COL300;

DO I = 1 TO 300;

You are simply assigning an array called ‘RISKS’ that is referencing the 300 columns in which the risk factors can be

found. The fact that the columns are conveniently called COL1 through COL300 makes the task easier. The DO loop

signals that the next lines of code will be performed on the array. After the DO loop, the following can be written:

IF RISKS(I) = 'Coronary Artery Disease' THEN CAD = 1;

IF RISKS(I) = 'Congestive Heart Failure' THEN CHF = 1;

IF RISKS(I) = 'Diabetes' THEN DIABETES = 1;

IF RISKS(I) = 'Hypertension' THEN HYPERTENSION = 1;

IF RISKS(I) = 'Leukemia' THEN LEUKEMIA = 1;

IF RISKS(I) = 'Renal Insufficiency Syndrome' THEN RIS = 1;

The alternative coding assignment of the 0’s should not be written as the ELSE statement below each corresponding

IF statement, as that would lead to erroneous results. Assignment of the 0’s for the non-risk factors will take place in

a moment. For the new data set, however, the 300 columns holding the risk factors are not of any concern, so we can

drop them, which is essentially the same as keeping the desired variables.

KEEP ID CAD CHF DIABETES HYPERTENSION LEUKEMIA RIS;

END;

An END statement is necessary to enclose the DO loop. Now the assignment of the 0’s is necessary, as it is much

easier to work with 0’s rather than missing values. At this point, the new data set that is still in process of being

created has a 1 for each risk factor that the patient has and a period (.) if the patient does not have a certain risk

factor. You can simply write another array statement to take care of the non-risk factors. However, note that it is not

needed to reference the original 300 columns, as those columns are not part of the data set now. Instead, the missing

values will appear in the 6 newly created columns. So an array should be written that references these 6 columns.

SESUG 2013

5

ARRAY NONRISKS {6} CAD--RIS;

DO I = 1 TO 6;

IF NONRISKS(I) = . THEN NONRISKS(I) = 0;

END;

Note that it is very important to reference the columns in the array exactly as you coded them in the original IF

statements. This is why it is recommended to keep the variables, rather than dropping them, so you can make sure

you are counting the correct number of variables in the arrays by double-checking. After you have concluded the

process with a RUN statement, the newly created data set should look like the following:

ID CAD CHF DIABETES HYPERTENSION LEUKEMIA RIS

1 1 1 0 0 0 0

2 0 0 1 1 0 0
.
.
.

1036 0 0 1 1 1 1

1037 0 1 0 1 0 0
Table 3: Final Data Set

An ideal data set has been reached! It can be readily identified which patients have predictors and which do not. You

can now perform frequency table analysis on all these predictors with much more ease than the original data set. If

there is an outcome variable, such as a certain brand of medicine or the number of hospital visits, you can perform

regression analysis to see which predictors are significant.

OTHER TIPS

Often times, the data will not be as clean as the examples used. Strings may be misspelled or numeric data may be

used. Some strings may be capitalized, other may not. For example, if you have ‘hypertension’ as one risk factor and

‘Hypertension’ as another risk factor, the human brain knows that those two strings are equivalent, but SAS initially

will not. To overcome this, use:

IF FIND(RISK(I),'hypertension','i') > 0 THEN HYPERTENSION = 1;

The FIND function can be used to ignore case sensitivity when ‘ i’ is denoted in the 3rd argument (note that this is

vastly different than the ‘I’ specified in the DO loop). Other times, when using numeric data, such as ICD-9 codes, the

goal will be to search for numbers in a certain order within a specific string. The ICD-9 code for hypertension depends

on what specific kind of hypertension one is referring to, but it can take values of 401.1, 401.9, etc., with 401 referring

to general hypertension. A code can simply be written to generalize this:

IF SUBSTR(RISK(I),1,3) = '401' THEN HYPERTENSION = 1;

SESUG 2013

6

A SCAN function or other character function can also be used.

CONCLUSION

Arrays are useful tools for saving time to repeatedly write code. When combined with IF-THEN-ELSE statements,

arrays can be utilized to bring transposed data with repeating variables to a single, clean data set that informs the

user of the characteristics of the observations. Proper coding is the key here, so a coder must remember the rules of

arrays and to code the 1s before the 0’s. In the instance that a substring is desired, then a simple SUBSTR, SCAN or

FIND function can be nested within the IF-THEN-ELSE statement. SAS has powerful flexibility and functionality when

combining two or more concepts. The possibilities for the Base programmer are endless.

REFERENCES

SAS Institute Inc. 2011. SAS® Certification Prep Guide: Base Programming for SAS®9, Third Edition. Cary, NC: SAS

Institute, Inc.

ACKNOWLEDGEMENTS

Thanks to Dr. Louise Lawson for helping with the syntax and sparking the idea to write about it.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author by email at:

Michael.Leitson@wellstar.org.

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are

registered trademarks or trademarks of their respective companies.

SESUG 2013

7

APPENDIX

The following is the full SAS code that was used as the primary component for obtaining the desired data set:

*TRANSPOSING THE DATA;;

PROC TRANSPOSE DATA=DATASET OUT=DATASET1;

BY ID;

VAR RISK_FACTOR;

RUN;

DATA DATASET2;

SET DATASET1;

*CREATING THE ARRAY TO HANDLE THE 1 VALUES;

ARRAY RISKS {300} COL1-COL300;

DO I = 1 TO 300;

IF RISKS(I) = 'CAD' then CAD = 1;

IF RISKS(I) = 'Congestive Heart Failure' then CHF = 1;

IF RISKS(I) = 'Diabetes' then DIABETES = 1;

IF RISKS(I) = 'Hypertension' then HYPERTENSION = 1;

IF RISKS(I) = 'Leukemia' then LEUKEMIA = 1;

IF RISKS(I) = 'Renal Insufficiency Syndrome' then RIS = 1;

*KEEPING THE DESIRED VARIABLES;

KEEP ID RIS CHF CAD DIABETES HYPERTENSION LEUKEMIA ;

END;

*CREATING THE ARRAY TO HANDLE THE 0 VALUES;

ARRAY NONRISKS {6} CAD-RIS;

DO I = 1 TO 6;

IF NONRISKS(I) = . THEN NONRISKS(I) = 0;

END;

RUN;

