
1

A Row is a Row is a Row, or is it?
A Hands-on Guide to Transposing Data

Christianna S. Williams, Chapel Hill, NC

ABSTRACT

Sometimes life would be easier for the busy SAS programmer if information stored across multiple rows were all
accessible in one observation, using additional columns to hold that data. Sometimes it makes more sense to turn a
short, wide data set into a long, skinny one -- convert columns into rows. Base SAS® provides two primary methods
for converting rows into columns or vice versa – PROC TRANSPOSE and the DATA step. How do these methods
work? Which is best suited to different transposition problems? The purpose of this workshop is to demonstrate
various types of transpositions using the DATA step and to “unpack” the TRANSPOSE procedure. Afterwards, you
should be the office go-to gal/guy for reshaping data.

INTRODUCTION

I probably shouldn’t admit this, but for me, the best way to really learn something in SAS is trial and error, or, perhaps
more accurately, to see what happens when I try different things…and to gradually narrow down to what I’m trying to
accomplish. The hope is that next time around, I’ll get there a little more quickly. I’ll also confess that PROC
TRANSPOSE sort of confused me for a long time (die-hard DATA Step-per that I am), until I played with all the
different features in TRANSPOSE enough to really (almost) commit them to memory. My intention in this paper is to
have you climb that learning curve with me, through a series of examples showing what TRANSPOSE can do. For
many of the examples, I also provide DATA step code that will accomplish the same thing, and muse a bit, about the
pros and cons of each.

THE DATA

All the examples in this paper are based on some completely fictitious data for 30 participants in a longitudinal study
of blood pressure. These patients may have had up to 3 visits over the course of the study. At each visit, their blood
pressure (systolic and diastolic, both in mm/Hg – SBP and DBP, respectively), and their waist-hip ratio (WHR) were
recorded. A listing of the entire data set is at the end of this paper, in case you want to try out some of the examples
– or make up your own! – with a few more observations.

EXAMPLE 1 – PLAIN VANILLA PROC TRANSPOSE

For this first example, I’m starting with a small subset of the
larger data set, just the first 8 observations and a subset of
three variables – patient ID, visit number, and systolic blood
pressure (SBP). What it looks like to start is shown in Exhibit
1.1.

Currently this data set is normalized – there is a separate row
in the data set for each visit for a given patient. A few features
to note as we proceed through the examples: First, for
PTID=02, VISIT=2, there is a missing value for SBP. Also,
PTID 03 has no observation at all for VISIT=2.

Let’s see what happens if we use PROC TRANSPOSE
without any additional statements or options.

Exhibit 1.1. Plain vanilla TRANSPOSE
Before Transposition (Data set = LONG11)

 Obs ptid visit sbp
 1 01 1 142
 2 01 2 141
 3 01 3 131
 4 02 1 107
 5 02 2 .
 6 02 3 111
 7 03 1 135
 8 03 3 128

2

This is the “plain vanilla” code, and what it looks like after this transposition is shown in Exhibit 1.2.

So what happened? The three columns in the input data set (PTID, VISIT and SBP) became three rows in the
output. And the data values that were in the eight rows are now held in eight columns (variables), and these
variables were given the names COL1 – COL8. Additionally, there are two more columns, containing the name
(_NAME_) and label (_LABEL_) of the transposed variables. Incidentally, if none of the transposed variables had
labels on the input data set (LONG11), the transposed (wide) data set would not have the _LABEL_ variable. While I
can imagine some scenarios where this wide data set might be the desired result (e.g. in preparations for some type
of reporting), it does strike me as a rather odd because each COL variable contains three different kinds of
information, which is unusual for a SAS data set…and, fiddler that I am, made me want to know what would happen if
one of the variables in the original (long) data set was a character variable.

A note about Character Variables and PROC TRANSPOSE
So, let’s make a slight tweak to the input data set, by including SEX, which is a character variable. This data set,
LONG12 is shown in Exhibit 1.3. We run the same code, just changing the data set names:

Somewhat surprisingly, the resulting data set,
WIDE12, is identical to WIDE1. SAS ignored the
character variable. By default, only numeric variables
are transposed by PROC TRANSPOSE. If we want to
have a character variable transposed, then we must
include a VAR statement as follows:

I have included all the variables in the LONG2 data set in the VAR statement. I could also have used the statement
“VAR _ALL_;” with the same result. Either way, the resulting data set is shown in Exhibit 1.4.

PROC TRANSPOSE DATA=long12 OUT=wide12;
RUN;

PROC TRANSPOSE DATA=long12 OUT=wide12a;
VAR ptid sex visit sbp;
RUN;

Exhibit 1.2. Plain vanilla TRANSPOSE
After Transposition (Data set = WIDE11)

Obs _NAME_ _LABEL_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8
1 ptid Patient ID 1 1 1 2 2 2 3 3
2 visit Visit # 1 2 3 1 2 3 1 3
3 sbp Systolic BP 142 141 131 107 . 111 135 128

PROC TRANSPOSE DATA=long11 OUT=wide11;
RUN;

Exhibit 1.3. Plain vanilla TRANSPOSE with a character
variable

Before Transposition (Data set = LONG12)

 Obs ptid sex visit sbp
 1 01 F 1 142
 2 01 F 2 141
 3 01 F 3 131
 4 02 F 1 107
 5 02 F 2 .
 6 02 F 3 111
 7 03 M 1 135
 8 03 M 3 128

Exhibit 1.4. TRANSPOSE with VAR statement to include a character variable
After Transposition (Data set = WIDE12a)

Obs _NAME_ _LABEL_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8
 1 ptid Patient ID 01 01 01 02 02 02 03 03
 2 sbp Systolic BP 142 141 131 107 . 111 135 128
 3 sex Gender (M/F) F F F F F F M M
 4 visit Visit # 1 2 3 1 2 3 1 3

3

NOTE: Numeric variables in the input data set will be converted to character in the
output data set.

So...now COL1-COL8 are holding both numeric and character data…how is this possible?!? It’s not…check the log,
and the following message is there:

So, even my data that is truly quantitative (e.g. the systolic blood pressure) has been converted to character values.
This is a little deceptive, since SAS even goes so far as to show a period (.) for the missing blood pressure value,
which might even fool you into thinking it was a numeric variable. I’ll note also that funky things can happen even for
numeric variables, because SAS has to figure out what to do about different formats. We actually see this above:
the PTID variable has a Z2. format on the LONG data set, and this was lost in the first transposition (Exhibit 1.2).
Also, if one of the variables contained non-integer values, all the variables would show the number of decimal points
being displayed for the non-integer, and all are given a numeric length corresponding to the longest length of any of
the variables being transposed. …So, at least for this data set, this kind of TRANSPOSE is probably not very useful,
but we’ve learned something about the PROC.

The NAME= and LABEL= Options in PROC TRANSPOSE
Before moving onto the next main example, I’ll
demonstrate the use of two options in PROC
TRANSPOSE that are very useful if you are transposing
multiple variables in one step. Instead of the default
variable names of _NAME_ and _LABEL_, we can use
the NAME= and LABEL=options to give our choice of
names to those variables in the output data set. The code is shown at right and the result below (Exhibit 1.5). Good
to keep in mind if you wanted to use a TRANSPOSEd data set as a basis for some type of report.

EXAMPLE 2 – PROC TRANSPOSE WITH BY STATEMENT

It is more likely, given the structure of our long data set (i.e. multiple rows per person), that we would want to re-
shape it so that it has one observation for each person (PTID) and variables corresponding to the different
measurements on each person at each time point. In terms of PROC TRANSPOSE that means using a BY
statement – that is, TRANSPOSing BY PTID. Again, we start with the LONG11 data set from Exhibit 1.1, and use
the code below.

The output is shown in Exhibit 2.1.
PROC TRANSPOSE DATA=long11 OUT=wide21;
BY ptid ;
RUN;

PROC TRANSPOSE DATA=long12 OUT=wide13
 NAME=varname LABEL=varlabel;
VAR ptid sex visit sbp;
RUN;

Exhibit 1.5. TRANSPOSE with VAR statement to include a character variable and Using NAME= and LABEL=
Options –

After Transposition (Data set = WIDE13)

Obs varname varlabel COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8
 1 ptid Patient ID 01 01 01 02 02 02 03 03
 2 sbp Systolic BP 142 141 131 107 . 111 135 128
 3 sex Gender (M/F) F F F F F F M M
 4 visit Visit # 1 2 3 1 2 3 1 3

4

So, in comparing this to the output without the BY statement (Exhibit 1.1), we see that instead of one observation per
variable (or one row in the output for each column of the input) we now have one set of rows for each value of the BY
variable, and each set contains a row for each of the variables (other than the BY variable).

Let’s make a few enhancements. First, so that our variables are not storing different kinds of information, let’s just
TRANSPOSE the SBP variable; we do this by using the VAR statement. (We’ll deal with the VISIT number in the
next example). Second, it would sure be nice for the columns in the output data set to have meaningful names; for
that we use the PREFIX option on the PROC
statement, so that the output variables will be
SYSTOLIC1 – SYSTOLICn where N is the largest
number of observations for any BY group in the input
data set (here, 3). And, third, since we won’t really
need the _NAME_ and _LABEL_ variables anymore
(it is redundant with the info in the new
variable/column names), we’ll drop those. So, the new code is shown here, followed by the output in Exhibit 2.2
below:

Now, this is all great EXCEPT we have lost some potentially critical information. In the input data set (Exhbit 1.1),
PTID 02 has an observation for VISIT=2 but the SBP value is missing. This is reflected in the output data set shown
in Exhibit 2.2 (i.e. SYSTOLIC2 is missing). In contrast, in the input data, PTID 03 has no observation for VISIT 2, but
because we are not using the VISIT information in this transposition, SAS doesn’t “know” that the second
observation for PTID 03 corresponds to VISIT 3. Hence, the SBP value for the second observation is stored in
SYSTOLIC2, resulting in the situation where the variable SYSTOLIC2 is storing data that we may not consider to be
comparable across observations (i.e. for different visits). There might be some applications where that is OK – but for
this data, we have lost an important feature of the study design. Read on…

PROC TRANSPOSE with BY Statement and ID Statement

Fortunately, If we want the suffixes for the
systolic variables to correspond to the visit
number, we can use the ID statement in PROC
TRANSPOSE to achieve just that. That is all
that has changed in the code between the last
example and this one.

The new and improved output data set is
shown below (Exhibit 2.3).

Exhibit 2.1. TRANSPOSE with BY statement
After Transposition (Data set = WIDE21)

Obs ptid _NAME_ _LABEL_ COL1 COL2 COL3

1 01 visit Visit # 1 2 3
2 01 sbp Systolic BP (mm/Hg) 142 141 131
3 02 visit Visit # 1 2 3
4 02 sbp Systolic BP (mm/Hg) 107 . 111
5 03 visit Visit # 1 3 .
6 03 sbp Systolic BP (mm/Hg) 135 128 .

PROC TRANSPOSE DATA=long11
 OUT=wide22 (DROP=_NAME_ _LABEL_)

 PREFIX=systolic;
BY ptid;
VAR sbp;
RUN;

Exhibit 2.2. TRANSPOSE with BY statement and PREFIX option
After Transposition (Data set = WIDE22)

 Obs ptid systolic1 systolic2 systolic3

 1 01 142 141 131
 2 02 107 . 111
 3 03 135 128 .

PROC TRANSPOSE DATA=long11
 OUT=wide23 (DROP=_NAME_ _LABEL_)
 PREFIX=systolic;
BY ptid;
VAR sbp;
ID visit;
RUN;

5

This is more like it! Consistently, across PTID’s, SYSTOLIC1 holds the SBP value for VISIT = 1, SYSTOLIC2
corresponds to VISIT=2, and SYSTOLIC3
corresponds to VISIT=3. What we can’t tell from the
above is that PTID 2 was just missing the systolic
value for VISIT 2, while PTID 3 was missing the entire
visit; that may or may not be important. If it is
important, the next example shows one way of
making the distinction. .

First, pre-process the LONG data set to assign a
special missing value (e.g. .M) to variables with
missing data. Then TRANSPOSE as before. These
special missing values show up in the transposed
data, while values where there had been an entirely
missing row (visit) still have the standard missing
value (.) as shown below in Exhibit 2.4. This
example also demonstrates the use of the SUFFIX= option, which can be used along with (or instead of) the
PREFIX= option. Note the variable names in the result.

Another note here – if there are other variables that are at the level of the BY group that you want to keep associated
with each BY group value, you can add them into the
BY statement and they will be carried along. More
concretely, in this example data set, the variable SEX is
constant within each PTID, and I would like to keep it on
my transposed data set…basically it needs to come
along for the ride in the TRANSPOSE. Simply add SEX
to the BY statement, as shown here. The output is
shown in Exhibit 2.5.

Exhibit 2.3 TRANSPOSE with BY statement, ID statement and PREFIX option
After Transposition (Data set = WIDE23)

Obs ptid systolic1 systolic2 systolic3

 1 01 142 141 131
 2 02 107 . 104
 3 03 135 . 128

PROC TRANSPOSE DATA=long12
 OUT=wide25 (DROP=_NAME_ _LABEL_)
 PREFIX=systolic;
BY ptid sex;
VAR sbp;
ID visit;
RUN;

Exhibit 2.5 TRANSPOSE with BY statement, ID statement and PREFIX option
After Transposition (Data set = WIDE25)

Obs ptid sex systolic1 systolic2 systolic3

1 01 F 142 141 131
2 02 F 107 . 111
3 03 M 135 . 128

DATA long24 ;
 SET long21 ;

IF sbp = . THEN sbp = .M ;
RUN;

PROC TRANSPOSE DATA=long24 OUT=wide24
(DROP= _NAME_ _LABEL_)
 PREFIX=vis SUFFIX=sysbp;
BY ptid;
VAR sbp ;
ID visit ;
RUN;

Exhibit 2.4 TRANSPOSE with BY statement, ID statement, PREFIX= and SUFFIX= option; Use of Special
Missing value to distinguish missing data from missing visit

After Transposition (Data set = WIDE24)

Obs ptid vis1sysbp vis2sysbp vis3sysbp

1 01 142 141 131
2 02 107 M 111
3 03 135 . 128

6

EXAMPLE 3 – MORE ON THE ID STATEMENT
To examine how the ID statement actually works, let’s play with the VISIT variable a little. See the DATA step below.
First, I am changing the value of VISIT for each of the patients. What this data then looks like is shown in Exhibit
3.1. Then, we use PROC TRANSPOSE as before. The resulting data set is listed in Exhibit 3.2.

Notice the order of the SYSTOLICn variables in WIDE31. This is
dictated by the order in which the different values of VISIT were
encountered in the input data set. This often will not matter, and, of
course, there are ways to change the position of variables on the data set, but it does show that TRANSPOSE is
behaving without regard to the ‘meaning’ of the values of the ID variable. Also note that since none of the patients
had a VISIT 3, there is no SYSTOLIC3 variable in the resulting data set.

Two other notes about the ID statement. First, it is perfectly OK to have more than one variable on the ID statement.
TRANSPOSE will then create variables in the output data set corresponding to the unique combinations of the ID
variables. This could be useful if there was additional structure in the data – say the patients had VISITS 1-n before
some treatment and VISITS 1-n again after the treatment. If there was a variable indicating which visits were before
and which after, you could transpose and have variables SYSTOLIC_BEFORE1-SYSTOLIC_BEFOREn and
SYSTOLIC_AFTER1-SYSTOLIC_AFTERn. A second related point is that TRANSPOSE will not work (i.e. will
generate an error message) if, within a BY group, there are duplicates on the ID variable(s). So, following the
example of visits before and after treatment, if a given patient had multiple observations with VISIT=1, etc., you would
get an error if you specified only VISIT on the ID statement….If you wanted all the BEFORE on one row for a patient
and all the AFTER on another row, then you would put PTID and the BEFORE/AFTER variable on the BY statement,
and VISIT on the ID statement.

DATA long31 ;
 SET long24 ;
IF ptid IN (1,2) AND visit = 3 THEN visit = 5;
ELSE IF ptid = 3 AND visit = 3 THEN visit = 4;
RUN;

PROC TRANSPOSE DATA=long31
 OUT=wide31 (DROP= _NAME_ _LABEL_)
 PREFIX=systolic;
BY ptid;
VAR sbp ;
ID visit ;
RUN;

Exhibit 3.1 Playing with the VISIT variable
to illustrate ID statement

Before TRANSPOSE (LONG31)

 ptid visit sbp

 01 1 142
 2 141
 5 131

 02 1 107
 2 M
 5 111

 03 1 135
 4 128

Exhibit 3.2 Playing with the VISIT variable to illustrate ID statement
After Transposition (Data set = WIDE31)

ptid systolic1 systolic2 systolic5 systolic4

01 142 141 131 .
02 107 M 111 .
03 135 . . 128

7

Before moving on, let’s summarize what we have learned about the BY statement and the ID statement.

 Variables in the BY statement affect the structure of the output data set; that is, what
generates a new observation (or set of observations). The output data set will have
one observation for each transposed varialbe for each BY group in the input data set.

 Values of variables in the ID statement affect the names of the variables in the output
data set, and can provide additional information about the data structure. Within a BY
group, observations in the input data set must be uniquely identified by the value(s) of
variable(s) on the ID statement.

 The PREFIX= and/or SUFFIX= options also contribute information to the names of the
transposed variables.

EXAMPLE 4 – THE IDLABEL STATEMENT IN PROC TRANSPOSE
Normally, the labels of transposed variables are “lost” in the output data set. Or more accurately, they get placed as
values of the automatic _LABEL_ variable, but they are not directly associated with the newly created transposed
variables themselves. The IDLABEL statement offers a way around this, and it can be particularly useful when there
are LOTS of observations per BY group in the “long” data set and thus, lots of new variables in the transposed “wide”

data set. The values of the variable that is named on
the IDLABEL statement provides LABELS to the
transposed variables.

In the example at left, I am using the VISIT variable in
both the ID and IDLABEL statements. The result
(using the LABEL option on PROC PRINT) is shown in
Exhibit 4.1.

The transposed variables still have the names SYSTOLIC1-SYSTOLIC3, but they now have labels 1-3. The
alignment is a little odd since VISIT is a numeric variable, so SAS used its normal alignment when converting it to
text.

This might be adequate, but in my
experience, it often requires a little pre-
processing so that an appropriate IDLABEL
variable exists on the long (pre-
transposition) data set. As shown at right,
let’s add a variable to the LONG21 data set
that will work in this way. The variable
SBPLABEL concatenates some descriptive
text with the value of visit for the current
observation. The resulting LONG42 data
set is shown in Exhibit 4.2. This new
variable is then specified in the IDLABEL
statement in our TRANSPOSE. If we use
the LABEL option in PROC PRINT of

PROC TRANSPOSE DATA=long21
 OUT=wide41 (DROP= _NAME_ _LABEL_)
 PREFIX=systolic;
BY ptid sex;
VAR sbp ;
ID visit ;
IDLABEL visit ;
RUN;

Exhibit 4.1 Using the VISIT variable on both the ID and IDLABEL statements
After Transposition (Data set = WIDE41)

 Patient Gender
 ID (M/F) 1 2 3

 01 F 142 141 131
 02 F 107 M 111
 03 M 135 . 128

DATA long42 ;
SET long21 ;

LENGTH sbplabel $25;
sbplabel = CAT('Systolic BP visit ',PUT(visit,1.));
RUN;

PROC TRANSPOSE DATA=long42 OUT=wide42 (DROP=
 NAME _LABEL_) PREFIX=systolic;
BY ptid sex;
VAR sbp ;
ID visit ;
IDLABEL sbplabel ;
RUN;

8

dataset WIDE6B, we see the effects of the IDLABEL statement (Exhibit 4.3). We’ll use this statement again when
we are transposing multiple variables…

EXAMPLE 5 – USING THE DATA STEP TO TRANSPOSE A SINGLE VARIABLE

If you need to transpose a single variable – as we’ve
been doing in most of the above examples, then PROC
TRANSPOSE may be the way to go. However, when
you need to transpose (or as we sometimes say at
work, “horizontalize”) multiple variables, DATA step
methods may be preferable. To build up to that, I first
show DATA step code for transposing a single variable.
One method is shown to the right.

The result, shown in Exhibit 5.1, is identical to what we
saw in an earlier example (Exhibit 2.5). A few notes
about this strategy:

1) VISIT is used as an index in the array, to place the
SBP values in the right places, which is handy.

2) We needed to know what the max value of the
VISIT variable is in order to set this up, which
might require some pre-processing.

3) The RETAIN is needed so that values assigned to each element of the SYSTOLIC array are maintained across
observations for a given BY value.

4) It is necessary to initialize the array elements to missing values at the beginning of each BY group so that
values are not carried over from previous PTID by the RETAIN statement. This would not be necessary (though
perhaps still good practice) if there were no missing data and all PTID’s had the same number of visits.

DATA wide51 (KEEP = ptid sex
 systolic1-systolic3);
 SET long1 ;
BY PTID ;

ARRAY sys{3} systolic1 - systolic3;
RETAIN systolic1 - systolic3;
IF FIRST.ptid THEN DO i = 1 TO 3;
 sys{i} = . ;
END;

sys{visit} = sbp ;

IF LAST.ptid;
RUN;

Exhibit 5.1 Using the DATA step to transpose a single variable
After Transposition (Data set = WIDE51)

ptid sex systolic1 systolic2 systolic3

01 F 142 141 131
02 F 107 M 111
03 M 135 . 128

Exhibit 4.2. Adding a variable that will work as IDLABEL
Before Transposition (Data set = LONG42)

Patient Visit Systolic
 ID # BP (mm/Hg) sbplabel

 01 1 142 Systolic BP visit 1
 2 141 Systolic BP visit 2
 3 131 Systolic BP visit 3

 02 1 107 Systolic BP visit 1
 2 M Systolic BP visit 2
 3 111 Systolic BP visit 3

 03 1 135 Systolic BP visit 1
 3 128 Systolic BP visit 3

Exhibit 4.3. Transposition using IDLABEL
After Transposition (Data set = WIDE42)

 Systolic Systolic Systolic
Patient BP BP BP
 ID visit 1 visit 2 visit 3

 01 142 141 131
 02 107 M 111
 03 135 . 128

9

An alternative DATA step method (The DOW LOOP)
A slight twist on the above is to put the SET statement within the DO loop. This may be somewhat unconventional,
but it eliminates the need for RETAIN, because the DATA step doesn’t reinitialize SYSTOLIC1-SYSTOLIC3 to

missing until it returns to the DATA statement, which will
be the last observation for the BY group. This method,
which has many applications outside the topic of this
paper, is often called the DOW loop, and has been
written about extensively for SAS Global Forum (see
References for an example). The resulting data set, not
repeated again, is identical to that shown in Exhibit 2.5
(& 4.1).

In summary, for transposing a single variable, the
advantages of the TRANSPOSE method are that the
code is a little shorter and that there is no requirement to

know the maximum number of observations in a BY group. Of course, one could use a little bit of additional code to
determine that maximum number and store it in a macro variable so that it wouldn’t have to be hard-coded (e.g.
Virgile, 1998 or Williams, 2005). On the other hand, the DATA step has some additional flexibility, if, for example we
wanted to do some cross-row arithmetic, as in the next example.

Also, if we want to keep other variables at the level of the BY variable – that is, are constant across observations for a
PTID – such as SEX, all that is required in either DATA step method is to KEEP those variables. Recall that with
TRANSPOSE, such variables need to be on the BY statement, possibly requiring a pre-SORT of the data.

EXAMPLE 6 – TRANSPOSING WITH CROSS-ROW ARITHMETIC
Let’s say that we want to compute the average of the systolic BP values for each PTID, and determine at which visit,
the value was the lowest. If we wanted to use PROC TRANSPOSE, we’d also have to add a DATA step. In my

mind, it’s simpler to just use the DATA step.
The code shown here will work. It starts with
the same program as Example 5, and
elaborates on it a bit. When the DATA step is
at the first observation within a BY group (i.e.
FIRST.ptid is true), we initialize not only the
elments of the systolic array, but also our
summary variables, setting these (MIN_SYS,
which will store the lowest systolic value for
each patient, and MIN_SYS_VIS, which will
store the VISIT at which that minimum value
was recorded) to missing, so that the RETAIN
statement only maintains these values within
records for a given PTID, not across different
patients.

As in Example 5, we assign the current SBP
value to its correct spot in the array. We then
check to see which value is lower – the
current SBP value or the minimum (so far)
SBP value for the patient, and assign that to
MIN_SYS. If the current value is the lowest
value (so far), then the current visit number is
assigned to the variable MIN_SYS_VIS.

Finally, when the DATA step gets to the last observation for the BY group (i.e. LAST.ptid is true), we obtain the
average value of the array elements and assign it to AVG_SYS, and OUTPUT an observation. The resulting data set
is shown in Exhibit 6.1.

DATA wide52 (KEEP = ptid sex
 systolic1-systolic3);

ARRAY sys{3} systolic1 - systolic3;
DO i = 1 TO 3 UNTIL (LAST.ptid);
 SET long1;
 BY ptid ;
 sys{visit} = sbp ;
END;

RUN;

DATA wide61 (KEEP = ptid systolic1-systolic3
 min_sys avg_sys min_sys_vis);
SET long21 ;
BY ptid ;

ARRAY sys{3} systolic1 - systolic3;
RETAIN systolic1-systolic3 min_sys min_sys_vis;
IF FIRST.ptid THEN DO ;
 DO i = 1 TO 3;
 sys{i} = . ;
 END;
 min_sys = . ;
 min_sys_vis = . ;
END;

sys{visit} = sbp ;
min_sys = MIN(min_sys,sbp) ;
IF min_sys = sbp THEN min_sys_vis = visit ;

IF LAST.ptid THEN DO;
 avg_sys = MEAN(OF systolic1-systolic3) ;
 OUTPUT ;
END;
RUN;

10

TIP!! Don’t forget that ‘OF” in the argument to the MEAN function; without it the value
assigned to AVG_SYS will be the value of SYSTOLIC1 minus the value of SYSTOLIC3 –
likely to be a negative value – a lesson I’ve learned the hard way!

EXAMPLE 7 – TRANSPOSING MULTIPLE VARIABLES FOR A BY GROUP – DATA STEP
As we saw in Example 2, if there are multple variables in the VAR statement for PROC TRANSPOSE, then the
resulting data set has multiple rows per BY group – one per transposed variable. So, if what we need to do is string
all the variables out within one row for each BY
group, we need a different strategy. Using the
DATA step, we can very simply modify either
technique from Example 5 to accommodate multiple
variables.

First, I create another subset of the full data set
(LONG71; Exhibit 7.1), including the variables
PTID, SEX, VISIT, SBP, DBP, and WHR, and all
observations for the first 5 PTID’s. Below I show the
two different DATA step methods, which are obvious
extensions of the one-variable methods, and the
results – identical for both methods – are shown in
Exhibit 7.2. The program on the right that has the
SET and BY statements inside the DO loop is
notably shorter, as it doesn’t require the
“intialization” step or the RETAIN, but the two
accomplish exactly the same result.

Exhibit 6.1 Transposing with Cross-Row Arithmetic (Data set = WIDE61)

 min_sys_
Obs ptid systolic1 systolic2 systolic3 min_sys vis avg_sys

1 01 142 141 131 131 3 138.0
2 02 107 . 104 104 3 105.5
3 03 135 . 128 128 3 131.5

Exhibit 7.1. Transposing multiple variables for a BY
Groups

Before Transposition (Data set = LONG71)

Obs ptid sex visit sbp dbp whr

 1 01 F 1 142 92 0.88
 2 01 F 2 141 91 0.87
 3 01 F 3 131 83 0.83
 4 02 F 1 107 58 0.75
 5 02 F 2 M 58 0.75
 6 02 F 3 111 55 0.71
 7 03 M 1 135 80 0.97
 8 03 M 3 128 74 0.94
 9 04 F 1 145 84 M
10 04 F 2 145 84 0.71
11 04 F 3 139 79 0.68
12 05 M 1 136 86 1.00
13 05 M 2 132 83 0.99
14 05 M 3 126 M 0.96

11

DATA wide71 (KEEP = ptid sex
 sbp1-sbp3 dbp1-dbp3 whr1-whr3);

SET long71 ;
BY ptid ;

ARRAY sys{3} sbp1 - sbp3;
ARRAY dia{3} dbp1-dbp3;
ARRAY wst{3} whr1-whr3;
RETAIN sbp1-sbp3 dbp1-dbp3
 waisthip1-waisthip3;

IF FIRST.ptid THEN DO i = 1 TO 3;
 sys{i} = . ;
 dia{i} = . ;
 wst{i} = . ;
END;

sys{visit} = sbp ;
dia{visit} = dbp ;
wst{visit} = whr ;

IF LAST.ptid;
RUN;

EXAMPLE 8 – TRANSPOSING MULTIPLE VARIABLES FOR A BY GROUP – PROC TRANSPOSE

To accomplish the same task with PROC TRANSPOSE requires a separate step for each variable. The three data
sets can then be combined with a MERGE step. I’m also assuming that I have a data set LONG81, which contains
variables SBPLABEL, DBPLABEL and WHRLABEL that are analogous to the SBPLABEL variable from Exhibit 4.2.
Aside from that enhancement (i.e. the transposed variables have labels) the result is identical to the data set shown
in Exhibit 7.2.

PROC TRANSPOSE DATA=long81 OUT=wide81a (DROP= _NAME_ _LABEL_) PREFIX=sbp;
BY ptid sex;
VAR sbp;
ID visit ;
IDLABEL sbplabel ;
RUN;

PROC TRANSPOSE DATA=long81 OUT=wide81b (DROP= _NAME_ _LABEL_) PREFIX=dbp;
BY ptid sex;
VAR dbp;
ID visit ;
IDLABEL dbplabel ;
RUN;

DATA wide71a (KEEP = ptid sex
 sbp1-sbp3 dbp1-dbp3 whr1-whr3);

ARRAY sys{3} sbp1 - sbp3;
ARRAY dia{3} dbp1-dbp3;
ARRAY wst{3} whr1-whr3;

DO i = 1 TO 3 UNTIL (LAST.ptid);
 SET long71;
 BY ptid ;
 sys{visit} = sbp ;
 dia{visit} = dbp ;
 wst{visit} = whr ;
END;

RUN;

Exhibit 7.2 Transposing Multiple Variables for a BY Group (Data set = WIDE71 & 71a)

ptid sex sbp1 sbp2 sbp3 dbp1 dbp2 dbp3 whr1 whr2 whr3

01 F 142 141 131 92 91 83 0.88 0.87 0.83
02 F 107 M 111 58 58 55 0.75 0.75 0.71
03 M 135 . 128 80 . 74 0.97 . 0.94
04 F 145 145 139 84 84 79 M 0.71 0.68
05 M 136 132 126 86 83 M 1.00 0.99 0.96

12

%MACRO x1var(inds=long81,byvar=ptid sex,
 idvar=visit,xvar=);
PROC TRANSPOSE DATA=&inds
 OUT = wide_&xvar (DROP= _NAME_ _LABEL_)
 PREFIX = &xvar;
BY &byvar;
ID &idvar ;
IDLABEL &xvar.label ;
VAR &xvar;
RUN;
%MEND x1var ;

%x1var(xvar=sbp)
%x1var(xvar=dbp)
%x1var(xvar=whr)

DATA wide81x ;
 MERGE wide_sbp wide_dbp wide_whr ;
 BY ptid ;
RUN;

PROC TRANSPOSE DATA = long71
 OUT = wide101 (DROP = _LABEL_)
 NAME = measure
 PREFIX = visit;
BY ptid;
VAR sbp dbp whr;
ID visit ;
RUN;

PROC TRANSPOSE DATA=long81 OUT=wide81c (DROP= _NAME_ _LABEL_) PREFIX=whr;
BY ptid sex;
VAR whr;
ID visit ;
IDLABEL whrlabel ;
RUN;

DATA wide81 ;
MERGE wide81a wide81b wide81c ;
BY ptid ;
RUN;

Of course, we can write a simple MACRO for
the TRANSPOSE step, setting the variable to
be transposed as a macro parameter, and
calling the macro once for each variable to
TRANSPOSE; it might look something like
the code to the right, which will again
reproduce the data set shown in Exhibit 7.2.
This might well be the way to go if your
application requires some flexibility with
regard to what variables needed to be
transposed.

Further, as noted before, the TRANSPOSE
method does not require that you “know”
what the maximum number of observations
per BY group. Otherwise, whether you
choose TRANSPOSE or the DATA step
might be just a matter of personal
preference.

EXAMPLE 10 – TRANSPOSING DATA TWICE
At first it might seem that transposing data twice is a completely useless thing to do. However, what it will
accomplish, as we’ll see is to create a rectangular data set.
We start with the data set LONG71 (shown in Exhibit 7.1).
Here is the code for the first TRANSPOSE, a slight variation
on what we’ve done earlier. The resulting data set,
WIDE101, is shown in Exhibit 10.1.

Note that the NAME= option assigns the variable name
MEASURE to the column in the output data set containing
the names of the transposed variables; without this, that
variable would have the name _NAME_.

13

PROC TRANSPOSE DATA = wide101
 OUT = long101a
 NAME = visit ;
BY ptid ;
ID measure ;
VAR visit1 – visit3;
RUN;

Also observe that the display values of VISIT1-
VISIT3 corresponding to the SBP and DBP
measures, which were integer values in the
original data set, have been changed to be
consistent WHR, which has two decimal places.
Any FORMATS that were attached to the
original numeric variables will be lost, and the
display will add decimal places so that the
decimal points line up, but the underlying values
haven’t changed. Finally, note that there are
missing values for VISIT2 for all 3
measurements for PTID=03, who had no row for
VISIT2 in the original data set.

So now, let’s transpose this data set again. The code is shown below. Compare the code to that of the first
transpose. In both cases, we transpose BY PTID. Note how the NAME= option and the ID statement have sort of

“switched places” from the previous transpose. Before we were
transposing the variables SBP< DBP and WHR, which became
MEASURE values in WIDE101, while the ID statement and PREFIX=
option specified that the values of these transposed variables would
go into variables called VISIT1-VISIT3. Now, we are transposing
those visit variables and using the values of MEASURE to specify the
“new” column names to hold those transposed values. See the result
in Exhibit 10.2… which looks a lot like data set LONG71 (refer back
to Exhibit 7.1).

The values of VISIT are different – previously they were integers 1-3; now they have values VISIT1-VISIT3. The key
structural change is that we now have an observation for visit 2 for PTID=03…we have ‘squared the data set’ so that

all PTIDs have records corresponding to all
VISITS…in this simple example, this meant
adding only a single row for one PTID, but
you can imagine that in real data, with
possibly quite varying visit patterns for
different patients, this could be a very useful
transformation.

Exhibit 10.1 Double Transpose
After the first TRANSPOSE (Data set = WIDE101)

ptid measure visit1 visit2 visit3

 01 sbp 142.00 141.00 131.00
 01 dbp 92.00 91.00 83.00
 01 whr 0.88 0.87 0.83
 02 sbp 107.00 M 111.00
 02 dbp 58.00 58.00 55.00
 02 whr 0.75 0.75 0.71
 03 sbp 135.00 . 128.00
 03 dbp 80.00 . 74.00
 03 whr 0.97 . 0.94
 04 sbp 145.00 145.00 139.00
 04 dbp 84.00 84.00 79.00
 04 whr M 0.71 0.68
 05 sbp 136.00 132.00 126.00
 05 dbp 86.00 83.00 M
 05 whr 1.00 0.99 0.96

Exhibit 10.2 Double Transpose
After the second TRANSPOSE (Data set = LONG101A)

ptid visit sbp dbp whr

 01 visit1 142 92 0.88
 visit2 141 91 0.87
 visit3 131 83 0.83

 02 visit1 107 58 0.75
 visit2 M 58 0.75
 visit3 111 55 0.71

 03 visit1 135 80 0.97
 visit2 . . .
 visit3 128 74 0.94

 04 visit1 145 84 M
 visit2 145 84 0.71
 visit3 139 79 0.68

 05 visit1 136 86 1.00
 visit2 132 83 0.99
 visit3 126 M 0.96

14

DATA long110 (KEEP = ptid visit systolic
 diastolic waisthip);
 SET wide71 ;
 BY ptid ;

ARRAY sys{3} sbp1-sbp3 ;
ARRAY dia{3} dbp1-dbp3;
ARRAY wst{3} whr1-whr3;

DO visit = 1 TO 3;
 systolic = sys{visit} ;
 diastolic = dia{visit} ;
 waisthip = wst{visit} ;
 OUTPUT ;
END;
RUN;

PROC TRANSPOSE DATA=wide101
 OUT=long102 (RENAME=(COL1=Value))
 NAME=Visit ;
BY ptid measure NOTSORTED;
VAR visit1-visit3 ;
RUN;

There is something else we could have done with the second TRANSPOSE step, which is to make the ‘long’ data set
even longer…or more ‘normalized’, if you prefer.

In this variation, I have moved the MEASURE variable to the
BY statement – the NOTSORTED option is important because
the types of measures were not in alphabetical order within
patient. Otherwise, the code is the same as the previous
version. The resulting data for the first 3 PTIDs is shown in
Exhibit 10.3. This can be a very efficient way to store data.
One additional DATA step...or even a WHERE clause on the
OUT= data set in the PROC TRANSPOSE, could eliminate
rows with missing values if that was desired. I recently needed
to get some data into a format similar to this to support a
website database display, and TRANSPOSE was very handy!
Think about a situation in which different ‘measures’ would be
applicable for different subjects (or subject-intervals),

EXAMPLE 11 – GOING FROM WIDE TO LONG…
So far most of the examples have been different variations on going from a long, skinny data set to a shorter, wider
one. What if you need to go in the other direction – if for example you are starting with the data set shown in Exhibit

7.2, and need to get to a data set that has one
observation per patient-visit? This might be the case
if you are doing some type of repeated measures or
other longitudinal analyses.

For this task, I’d go straight to the DATA step toolbox.
Instead of taking 3 observations per PTID and putting
out just one, we are putting out one observation for
each VISIT, and assigning the values from the correct
positions in the ARRAYS to the measurement
variables. The resulting data set is shown in Exhibit
11.1.

Exhibit 10.3 Double Transpose
An alternative second TRANSPOSE

 (Data set = LONG102)

ptid measure Visit Value

01 sbp visit1 142.00
01 sbp visit2 141.00
01 sbp visit3 131.00
01 dbp visit1 92.00
01 dbp visit2 91.00
01 dbp visit3 83.00
01 whr visit1 0.88
01 whr visit2 0.87
01 whr visit3 0.83
02 sbp visit1 107.00
02 sbp visit2 M
02 sbp visit3 111.00
02 dbp visit1 58.00
02 dbp visit2 58.00
02 dbp visit3 55.00
02 whr visit1 0.75
02 whr visit2 0.75
02 whr visit3 0.71
03 sbp visit1 135.00
03 sbp visit2 .
03 sbp visit3 128.00
03 dbp visit1 80.00
03 dbp visit2 .
03 dbp visit3 74.00
03 whr visit1 0.97
03 whr visit2 .
03 whr visit3 0.94

15

If you look carefully, you’ll see that this
data set is not identical to LONG71,
shown in Exhibit 7.1. For one thing, it
has 15 observations, rather than 14.
This is because we put out an
observation for each visit for each PTID
even if they had no data from that
VISIT – similar to the result after the
second TRANSPOSE step in Example
10 (Exhibit 10.2). Now, we might want
to do this, or we might only want to put
out an observation if there was data for
at least one of the measurements – or
some other decision rule. Probably in a
real study, you’d have some variable
telling you whether the individual had a
visit or not. A simple way to generate
the data set identical to LONG71 is to
make the OUTPUT statement in the
code above conditional. For example, it could say…

The problem with using PROC TRANSPOSE for this task of wide to long transposition is that TRANSPOSE doesn’t
know anything about the structure of your data set…it can’t reverse the ID statement so to speak, and create a VISIT
variable from the suffixes (1, 2, 3) of the measurement variables. This is not to say that you might not want to
TRANSPOSE to go wide to long, but the result will be different. You can experiment…see what happens if you use
PTID as an ID variable, or as the BY variable…You might see results that could be useful in some contexts.

CONCLUSIONS
My intention in this paper has been to take some of the guesswork out of using PROC TRANSPOSE, demonstrating
some of its different features, as well as providing DATA step syntax that, sometimes, accomplishes the same tasks
as TRANSPOSE more simply. As with most data manipulation jobs in SAS, when it comes to reshaping your data
from long to wide or vice versa, there are multiple means to the same end. Each may have its advantages or
disadvantages in terms of clarity, efficiency (processing or programming), flexibility – or programmer preference, but
it’s good to be aware of different paths – some may be more adaptable to particular variations than others. And,
while I am a firm believer in reading the manual – and reading papers written by other users – sometimes there is no
substitute for experimentation. Take a small data set, such as the one at the end of this paper – and PLAY…Not only
are you likely to really get how TRANSPOSE works after doing this, you are likely to see a way that it might generate
something that could be useful to you in the future!

Speaking of reading papers by other users, there have been MANY papers written on the subject of data
transposition, both with and without PROC TRANSPOSE. A selection of these that I have found useful and ones
that I’ve referenced in this paper are listed below. Enjoy!

REFERENCES

TRANSPOSE
1. Leighton, Ralph W. Some Uses (and Handy Abuses) of PROC TRANSPOSE. SUGI 29 (2004).

http://www2.sas.com/proceedings/sugi29/267-29.pdf

2. Virgile, Bob. Changing the Shape of Your Data – PROC TRANSPOSE vs. ARRAYS. SUGI 24 (1999).
http://www2.sas.com/proceedings/sugi24/Begtutor/p60-24.pdf

3. Williams, Christianna. SYMPLIFY your Data Set Transposition with SYMPUT, and Make it Data-Driven Too!.
NESUG 2005. http://www.nesug.org/proceedings/nesug05/cc/cc5.pdf.

IF N(systolic, diastolic, waisthip) > 0 THEN OUTPUT;

Exhibit 11.1 Going from Wide to Long (Data set = LONG110)

Obs ptid visit systolic diastolic waisthip
 1 01 1 142 92 0.88
 2 01 2 141 91 0.87
 3 01 3 131 83 0.83
 4 02 1 107 58 0.75
 5 02 2 . 58 0.75
 6 02 3 111 55 0.71
 7 03 1 135 80 0.97
 8 03 2 . . .
 9 03 3 128 74 0.94
10 04 1 145 84 .
11 04 2 145 84 0.71
12 04 3 139 79 0.68
13 05 1 136 86 1.00
14 05 2 132 83 0.99
15 05 3 126 . 0.96

16

4. Brucken, Nancy. 2 PROC TRANSPOSEs = 1 DATA step DOW-Loop, PharmaSUG 2007,
http://www.lexjansen.com/pharmasug/2007/cc/cc12.pdf.

DOW LOOP – (Of course you can just Google ‘DOW LOOP’ and many references will surface…)

5. Dorfman, Paul M.& Shajenko, Lessia S. In Lockstep with the DoW-Loop, SESUG 2011,
http://analytics.ncsu.edu/sesug/2011/SS01.Dorfman.pdf.

6. Dorfman, Paul M. The DOW-Loop Unrolled, SESUG 2010,
http://analytics.ncsu.edu/sesug/2010/BB13.Dorfman.pdf.

7. Ian Whitlock. Re: SAS novice question. Archives of the SAS-L listserv, 16 Feb. 2000.
http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0002C&L=sas-l&P=R5155.

ACKNOWLEDGMENTS
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

CONTACT INFORMATION
I welcome comments, suggestions and questions at:

Christianna S. Williams, PhD
Christianna.S.Williams@gmail.com

17

Appendix – Complete listing of data set … in case you want to play!!

ptid group sex visit sbp dbp whr

01 3 F 1 142 92 0.88
01 3 F 2 141 91 0.87
01 3 F 3 131 83 0.83
02 1 F 1 107 58 0.75
02 1 F 2 . 58 0.75
02 1 F 3 111 55 0.71
03 2 M 1 135 80 0.97
03 2 M 3 128 74 0.94
04 2 F 1 145 84 .
04 2 F 2 145 84 0.71
04 2 F 3 139 79 0.68
05 3 M 1 136 86 1.00
05 3 M 2 132 83 0.99
05 3 M 3 126 . 0.96
06 2 M 1 178 83 1.05
06 2 M 2 176 81 1.02
06 2 M 3 176 81 1.02
07 1 M 1 113 74 0.82
07 1 M 2 113 74 0.82
07 1 M 3 114 75 .
08 2 M 1 169 74 0.96
08 2 M 2 168 74 0.96
08 2 M 3 161 68 0.93
09 1 M 1 120 77 1.04
09 1 M 2 119 77 1.04
09 1 M 3 103 63 0.97
10 1 M 1 125 50 0.87
10 1 M 2 118 45 0.84
10 1 M 3 120 46 0.85
11 3 F 1 150 74 0.91
11 3 F 2 149 73 0.90
11 3 F 3 149 73 0.89
12 2 F 1 119 66 0.83
12 2 F 2 117 64 0.83
12 2 F 3 101 51 0.76
13 3 F 1 . . 0.78
13 3 F 2 138 82 0.80
13 3 F 3 136 80 0.76
14 2 M 1 130 80 0.88
14 2 M 2 129 79 0.88
14 2 M 3 122 73 0.85
15 3 M 1 169 93 1.12
15 3 M 2 160 86 1.08
15 3 M 3 156 83 1.07
16 3 M 2 194 98 1.19
16 3 M 3 194 98 1.19
17 2 F 1 125 81 0.81

ptid group sex visit sbp dbp whr
17 2 F 2 116 74 0.77
18 3 F 1 148 86 1.03
18 3 F 2 140 79 1.00
18 3 F 3 145 83 1.02
19 1 F 1 110 78 0.56
19 1 F 2 113 81 0.58
19 1 F 3 114 81 0.58
20 3 F 1 141 100 0.84
20 3 F 2 142 101 0.85
20 3 F 3 147 105 0.87
21 1 F 1 . 61 0.66
21 1 F 2 113 61 0.66
21 1 F 3 120 66 0.69
22 1 F 1 99 58 0.56
22 1 F 2 98 57 0.55
22 1 F 3 100 59 0.59
23 1 F 1 98 63 0.68
23 1 F 2 91 57 0.65
23 1 F 3 90 56 0.65
24 2 M 1 146 101 0.92
24 2 M 2 140 96 0.90
24 2 M 3 144 99 0.91
25 3 M 1 164 . 1.17
25 3 M 2 168 117 1.19
25 3 M 3 166 115 1.18
26 3 M 1 173 80 1.26
26 3 M 2 174 81 1.29
27 1 M 1 106 48 1.00
27 1 M 2 104 46 0.99
27 1 M 3 93 38 0.95
28 2 M 1 157 87 1.07
28 2 M 2 157 87 1.06
29 2 F 1 139 77 0.79
29 2 F 2 139 77 0.79
29 2 F 3 143 80 0.81
30 1 M 1 134 45 1.10
30 1 M 2 139 49 1.12
30 1 M 3 147 55 1.16

