
SESUG 2012

1

 Paper IT-06

Review That You Can Do: A Guide for Systematic Review of Complex Data

Lesa Caves, RTI International, Durham, NC
Nicole Williams, RTI International, Durham, NC

ABSTRACT

Quality control is a critical step in the process of creating and reviewing composite variables. Review of a single
composite variable typically requires several iterations of multi-way crosstabs and case-level review in order to verify
that the variable is programmed according to the analyst’s specifications. This approach is suitable when working
with simple data structures (e.g., a single dataset or multiple datasets with the same number of records per file) or
when the variable is simple to program. However, when a composite variable is created from complex, multi-level
data structures, it requires special care in review and quality control procedures. Analysts, with content expertise but
basic SAS® programming skills, may find it difficult to adequately review the variable. In this paper, we describe a
process for effectively and systematically reviewing a composite variable created from several multi-level datasets.
Through this process, a programmer creates a composite variable in few data steps for efficiency, while an analyst
methodically breaks the code down into multiple small data steps to create a local version of the same variable. The
programmer’s and analyst’s versions of the variable are then compared and discrepancies are investigated.

INTRODUCTION

When cleaning and analyzing data, one of the first things the analyst must do is determine what new variables must
be created to facilitate their research. Creating composite variables (i.e. a variable that is created by combining
multiple variables into one variable) allows the user to control the path of their research. In some cases, analysts
must rely on the assistance of a programmer to create complex composite variables they would not otherwise be able
to create. When working with programmers to create composite variables, the analyst must find a way to review the
newly created variable.

This paper details a method that can be used by a programmer and analyst to program and methodically review
complex composite variables. The programmer has the expert SAS skills while the analyst has the content expertise.
Together, the team can create a composite variable with confidence.

SIMPLE COMPOSITE VARIABLE REVIEW

The complexity of reviewing a composite variable depends greatly on the data structures from which it is created. A
simple data structure, such as a single dataset or multiple datasets with the same number of records (i.e. on the
same level), generally lends itself to simple data review because the review can be completed with a few merges and
outputs. In addition, identifying discrepancies and their causes is easier because the analyst is able to output
crosstabs or prints, and review each value of the composite variable to ensure proper values. As an example of a
composite variable created from a simple data structure, we can look at the derivation of a composite AGE variable
that calculates age as of January 1, 2012.

data a;

length AGE 8. year 4 mon $2;

input ID DOB $;

year = SUBSTR(DOB,1,4);

mon = SUBSTR(DOB,5,2);

if mon = "01" then

AGE = (2012 - year);

else

AGE = (2012 - year) - 1;

datalines;

 1 198001

 2 197205

 3 198312

 4 197909

 5 198807

 6 199006

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

2

 7 197205

 8 196811

 9 197206

 10 197503

;

run;

The date of birth input, DOB, comes from one dataset that is one record per ID. It contains the month and year of
birth in YYYYMM format. A crosstab of the original DOB value and the derived AGE value can be output.

proc freq data = a;

tables DOB * AGE / list missing;

run;

Using a single crosstab, the output is sufficient for a complete review of AGE. The input of DOB and the derived AGE
values can be compared for accuracy side by side. The analyst can go through the output, line by line, and confirm
that AGE is calculated as intended for each case. This method of data review by multi-way crosstabs is appropriate
for other composite variables that are not complex in data structure and inputs.

Output 1. Output from PROC FREQ Statement

COMPLEX TRANSCRIPT DATA

The need to create a systematic review process grew from a complex academic transcript study. The data for this
study were extracted from more than 25,000 academic transcripts collected for approximately 17,000 postsecondary
students. The transcripts were entered into an electronic database that translated the data contained on the transcript
into a series of variables in several data sets. Several different datasets were created to accommodate the different
types and unique nature of the data. There were five datasets created from the initial transcript data, and three
additional datasets created with composite variables only. The datasets created are shown in Table 1 and described
below.

File Example variables/sections
Number of

records
Number of
students

Average
Number per

student

Transcript Cumulative credits earned, Cumulative
GPA, Clock hours

25,110 16,960 1.5

Courses Course name Normalized grade,
Normalized credits, Honors

636,300 16,900 37.6

Institution IPEDS ID
1
, level, control, EIN number

2
,

Carnegie classification
3,070 -- --

Degree Major, Minor, Degree date, Honors 24,300 16,270 1.5

Terms Term start date, Term end date, Term
name, Credits attempted during term

149,460 16,900 8.8

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

3

Table 1. Datasets created from transcripts.

1
 IPEDS ID is a unique identification number assigned to postsecondary institutions surveyed through the Integrated

Postsecondary Education Data System (IPEDS).
2
 EIN (Employment Identification Number) number is the number assigned to an institution by the Internal Revenue

Service for tax purposes.

NOTE: Numbers included here have been rounded to the nearest tenth.

 Transcript. The transcript dataset included items such as cumulative credits earned, cumulative grade point

average (GPA), and clock hours. In addition, this dataset included the student’s high school graduation date, if it
was listed on the transcript. Each transcript received represented one record in the dataset. There were 25,110
records on the transcript dataset. On average, each student had approximately 1.5 records.

 Courses. The courses dataset included items describing each course listed on the transcript. The variables on

this dataset included term start date, term end date, course name, course number, course code (based on a
coding scheme designed for this study), normalized grades, normalized credits, honors, and course attributes.
Each course listed on the transcript represented one record in the dataset. There were 636,300 records on the
courses dataset. On average, each student had approximately 37.6 records.

 Institution. The institution dataset included variables defining each postsecondary institution in the study. These

included IPEDS ID, level, control, EIN number, Carnegie classification, and latitude and longitude coordinates.
This was the only dataset that did not contain a student ID number or a transcript ID number. Each institution in
the study represented one record on this dataset.

 Degrees. The degree dataset included items detailing each degree included on the transcript. The variables on

this dataset included major, minor, degree date, honors, and degree type. Each degree listed on the transcript
represented one record in the dataset. There were 24,300 records on the degree dataset. On average, each
student had approximately 1.5 records.

 Terms. The terms dataset included information about each term during which the student was enrolled, including

term start date, term end date, term name, credits attempted during the term, credits earned during the term,
term GPA, and term honors. Each term listed on the transcript represented one record in the dataset. There were
149,460 records on the term dataset. On average, each student had approximately 8.8 records.

In addition to the five datasets above that were primarily created from “raw” transcript variables, three additional
datasets were created to accommodate composite variables and provide users with more versatility for analysis.

 Student/Schools. The student/schools dataset was created to review the relationships between students and

each school they attended. Every student was paired with each school they attended, creating one record for
each pair in the dataset. Variables included grade point average (GPA), number of terms enrolled, credits earned
by subject, and units needed for an award at the institution. There were 26,930 records on the student/schools
dataset. On average, each student had approximately 1.6 records.

 Derived. The derived dataset contained student-level variables. Variables were divided into 5 categories:

Transcript Totals, Pre-College Information, Enrollment and Attendance, Coursework Across Institutions, and
Awards. This dataset contained one record per student.

 Transfer. The transfer dataset contained variables describing transfer patterns among students who attended

multiple postsecondary institutions. The variables in this dataset included percentage of credits transferred,
degree program at origin and destination institution, and selectivity at origin and destination institution, and
enrollment dates for each enrollment period at origin and destination institution. Approximately 6,680 students
were included in transfer dataset. Each transfer opportunity represented one record in the dataset. There were
13,660 records on the transfer dataset. On average, each student included in this dataset had approximately 2
records.

Student/Schools GPA, Number of terms enrolled, Credits
earned by subject, Units needed for an
award at the institution

26,930 16,960 1.6

Derived Transcript Totals, Pre-College Information,
Enrollment and Attendance, Coursework
Across Institutions, and Awards

16,960 16,960 1.0

Transfer Percentage of credits transferred, Degree
program at origin and destination
institution, Selectivity at origin and
destination institution

13,660 6,770 2.0

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

4

More than 500 composite variables were created by pulling variables from the datasets detailed above. The review
process described below was developed to systematically and methodically review each variable with confidence.

COMPLEX COMPOSITE VARIABLE REVIEW

This section describes the composite variable review process in 6 steps. This process is shown in Figure 1 below.

Step 1: Composite variable specification
Description of how the variable should be

programmed and coded.

Step 2: Programmer creates composite

variable

Step 3: Analyst creates alternate version

of composite variable

Step 4: Compare programmer’s variable

and analyst’s variable

Step 5: Investigate discrepancies
If discrepancies exist, the analyst must determine

whether the variable specification, analyst’s version, or

programmer’s version needs revision.

Step 6: Composite variable review is

complete

Revise

analyst’s version

Revise

programmer’s version

Discrepancies

exist

Revise variable

specification

No discrepancies

 exist

Figure 1. Flowchart of composite variable review process.

 Step 1: Composite variable specification: The analyst creates the composite variable specification, or “specs”.

These specs are typically written in pseudo-code and detail exactly how the variable should be programmed.

 Step 2: Programmer creates composite variable: The programmer creates the composite variable based on the

composite variable specs.

 Step 3: Analyst creates an alternate version of composite variable: The analyst creates an alternate version of

the variable after the programmer has created the composite variable. Whether the analyst has basic or
advanced SAS skills, the analyst should create the alternate version independent of the programmer’s version of
the variable.

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

5

 Step 4: Compare programmer’s variable and analyst’s variable: The programmer’s variable and the analyst’s

variable are compared to determine if any discrepancies are present.

 Step 5: Investigate discrepancies: If discrepancies are found in step 4, the analyst and programmer work

together to resolve any discrepancies. The resolution of discrepancies can result in one of three actions: revise
the variable specifications, revise the analyst’s code, or revise the programmer’s code.

 Step 6: Composite variable review is complete: The review and revision continue until the analyst and

programmer are in agreement on the variable values and no discrepancies exist.

The process is illustrated below, using a composite variable, EARNBA, from the transcript data which calculates the
elapsed time from a student’s entry into a postsecondary education to earning a Bachelor’s degree.

SAMPLE DATA

For the purposes of this paper, sample input datasets are provided here. There are three datasets needed for
EARNBA: cases, degrees, and first_attended.

data cases ;

input ID ;

datalines;

1

2

3

4

5

6

7

8

9

10

;

run ;

data degrees ;

input ID INSTID DEGPROGRAM DEGMY DEGREC ;

datalines;

1 1 2 200905 1

3 1 1 200812 1

3 2 2 200605 1

4 6 1 -9 -9

7 6 3 200705 1

7 3 1 200904 1

7 1 7 201112 1

10 2 1 200808 1

;

run ;

data first_attended ;

input ID firstAttendedMY ;

datalines ;

1 200708

2 200609

3 200401

4 200308

5 200808

6 200307

7 200508

8 200708

9 200409

10 200409

;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

6

run ;

STEP 1: COMPOSITE VARIABLE SPECIFICATION

Before any programming begins, the analyst must create the variable specification or “spec” in order to communicate
the requirements of the composite variable to the programmer. Specs for the composite variable consist of pseudo-
code, expected values, source datasets (noted in parentheses), and any special notes that could be useful to the
programmer. For the transcript study, the analyst enters variable specs in an application which allows all users to
keep track of the progress of the composite variable. A comment is entered in the application when the variable is
ready for various stages of the review process. The programmer and analyst can track progress by viewing these
comments.

Once specs for EARNBA are entered in the application by the analyst (Figure 2), the variable is ready for initial

programming.

 EARNBA = Number of months from FIRSTATTENDEDMY to earliest DEGMY(degrees)
 where DEGPROGRAM (degrees) = 1 and DEGREC (degrees) = 1;

 /*Set negative values*/

 If FIRSTATTENDEDMY or DEGMY (-6 -9), then EARNBA = -9.

 If EARNBA is negative, then EARNBA = -6.

Figure 2. Variable specifications for EARNBA

STEP 2: PROGRAMMER CREATES COMPOSITE VARIABLE

Once the analyst completes the specifications, or “specs” for the composite variable, the programmer can begin to
create the variable. According to the specs, the programmer must use DEGMY, DEGPROGRAM, and DEGREC

from the degrees dataset and FIRSTATTENDEDMY from the first_attended dataset, FIRSTATTENDEDMY is

another composite variable that was derived earlier in the programming process.

Variable Source Label

ID Degree, Derived Student case ID

DEGMY Degree Date of degree

DEGPROGRAM Degree Degree program (1 = Bachelor’s)

DEGREC Degree Degree received

FIRSTATTENDEDMY Derived First attended ever month/year

Table 2: Variables and descriptions

Create datasets

The programmer creates two datasets, each containing the input variables of interest: degree date and first
attendance date. The code below creates two datasets: FIRSTATTENDEDMY and prog_a. Prog_a contains all the
cases (ID) that earned a Bachelor’s degree. DEGMY is recoded from a -9 (missing) to 999999 so that missing date
values will fall to the end of the sorting process.

data prog_a ;

set degrees;

/* Recode reserve codes */

if DEGMY = -9 then DEGMY = 999999;

if DEGREC = 1 and DEGPROGRAM = 1 ;

run ;

Find the earliest degree date

Next, the programmer sorts the prog_a dataset by case and degree date (ID and DEGMY) then adds a data step that
keeps the first record for each case, that is, the earliest degree date awarded over all Bachelor’s degrees.

proc sort data = prog_a ;

by ID DEGMY ;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

7

data prog_a;

set prog_a (keep = ID DEGMY) ;

by ID DEGMY ;

if first.ID then output;

run ;

Calculate difference between two dates

Now the programmer merges the two datasets containing the dates, first_attended and prog_a into a single

dataset with one record per case from which the programmer can compute the difference between the two dates.
This creates separate month, day, and year variables to use as input into the ‘INTCK’ function to compute the
difference. The last two lines of code deal with reserve codes for missing data.

data prog_b (keep = ID EARNBA);

merge first_attended (in=in1) prog_a (in=in2) ;

by ID ;

if in1 and in2; /* only cases that have degrees and a date to compare start */

/* reset recode since done with sorting */

if DEGMY = 999999 then DEGMY = -9;

/* Convert begin and end to mdy format */

length BEG END $ 6 ;

array orig FIRSTATTENDEDMY DEGMY;

array chvar BEG END ;

array mdyvar BEG2 END2 ;

array varYR begYR degYR ;

array varMN begMN degMN ;

array varDY begDY degDY ;

do over orig;

if orig=. then orig=-9;

end;

do over orig;

chvar =orig;

varYR = substr(chvar,1,4);

varMN = substr(chvar,5,2);

varDY = '01';

if varMN=-9 then varMN=.;

mdyvar = mdy(varMN, varDY, varYR);

end;

/* Number of full months between dates */

length EARNBA 8 ;

EARNBA = intck('month', BEG2, END2) - (day(END2) < day(BEG2));

if EARNBA < 0 then EARNBA = -6 ;

if FIRSTATTENDEDMY in (-9 -6) or DEGMY in (-9 -6) then EARNBA = -9 ;

run;

Set missing values codes

The last sort and datastep sets missing values (-9) to cases that do not have a Bachelor’s degree in the degrees
dataset, but are in the study.

proc sort data = cases ;

by ID ;

data prog_c ;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

8

merge prog_b (in=in1) cases (in=in2);

by ID ;

if not in1 and in2 then EARNBA = -9 ;

run ;

The programmer now has a working version of the composite variable and the analyst can begin the next step in the
review process.

STEP 3: ANALYST CREATES ALTERNATE VERSION OF COMPOSITE VARIABLE

Once the programmer completes the composite variable, the analyst programs an alternate version of the variable
using more basic SAS code than the programmer’s version. The analyst methodically breaks the specs down into
multiple, manageable data steps. While this may seem more cumbersome than the programmer’s composite
variable code, it allows the analyst to better identify issues when discrepancies are found in the review process.
Using this process, the analyst can better identify potential holes or issues in the variable specifications.

Create Bachelor’s degree indicator

Initially, the analyst creates a dataset, named analyst_a, which creates a bachelor’s degree indicator and formats the
missing values for sorting.

*Create BA Indicator;

data analyst_a (keep = ID DEGMY DEGPROGRAM DEGREC BA);

set degrees;

*To create the bachelor’s degree indicator;

if DEGPROGRAM = 1 and DEGREC = 1 then BA = 1;

else BA = 0;

*To get the missing values;

if DEGMY = -9 then DEGMY = 999999;

run;

Identify earliest Bachelor’s degree

Next, the analyst identifies which Bachelor’s degree is the earliest for each student.

*Create a variable for earliest BA;

data analyst_b;

set analyst_a;

where BA = 1;

run;

proc sort data = analyst_b;

by ID DEGMY;

run;

*This is identifying the earliest BA degree;

data analyst_c(rename = (DEGMY=first_BA));

set analyst_b;

by ID DEGMY;

if first.ID then output;

run;

Create Bachelor’s flag

Then the analyst creates a flag to indicate whether the student received a Bachelor’s degree. During this process, the
analyst merges the analyst_e dataset with the cases dataset to add all IDs to ensure that all students will have a

value for the final composite variable.

*Create a BA flag;

proc sort data = analyst_a out = analyst_d (keep = ID BA) nodupkey;

by ID BA;

run;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

9

data analyst_e;

set analyst_d;

by ID BA;

if last.ID then output;

run;

proc sort data = cases out = cases_all (keep = ID) nodupkey;

by ID;

run;

data analyst_f;

merge analyst_e (in=in1) cases_all (in=in2);

by ID;

if in2;

if BA = . then BA = 0;

run;

Merge with date first attended postsecondary education

Next the analyst merges the analyst_c and analyst_f datasets with the previously created composite variable
FIRSTATTENDEDMY, date first attended any postsecondary institution.

*Merge with date first attended Postsecondary Education (FIRSTATTENDEDMY);

proc sort data = analyst_c;

by ID;

run;

data FIRSTATTENDEDMY (keep = ID FIRSTATTENDEDMY);

set first_attended;

if FIRSTATTENDEDMY = -9 then FIRSTATTENDEDMY = 999999;

run;

proc sort data = analyst_f;

by ID;

run;

proc sort data = FIRSTATTENDEDMY;

by ID;

run;

data analyst_g;

merge FIRSTATTENDEDMY analyst_c analyst_f;

by ID;

run;

Create Analyst Version

The analyst can now calculate a version of EARNBA, ANALYST_VERSION, using the datasets and flags created in
the steps above. Both first attended date and degree date variables are presented in YYYYMM format, so they must
first be broken into year and month variables in order to calculate the elapsed time. Two interim variables are created
in this step, START_MON_JAN03 and BA_MON_JAN03. The elapsed time between the student’s start date and
bachelor’s degree award date is calculated by subtracting START_MON_JAN03 from BA_MON_JAN03.

*Create Analyst version;

data analyst_h;

set analyst_g;

if BA = 0 then TEMP1 = -3;

else if FIRSTATTENDEDMY = 999999 then TEMP1 = -9;

else if FIRST_BA = 999999 then TEMP1 = -9;

if FIRSTATTENDEDMY = 999999 then START_MONTH = .;

else START_MONTH = substr(put(FIRSTATTENDEDMY, 6.), 5, 2);

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

10

if FIRSTATTENDEDMY = 999999 then START_YEAR = .;

else START_YEAR = substr(put(FIRSTATTENDEDMY, 6.), 1, 4);

if FIRST_BA = 999999 then BA_MONTH = .;

else BA_MONTH = substr(put(FIRST_BA, 6.), 5, 2);

if FIRST_BA = 999999 then BA_year = .;

else BA_YEAR = substr(put(FIRST_BA, 6.), 1, 4) ;

run;

data analyst_i;

set analyst_h;

if START_YEAR = . then START_MON_JAN03 = .;

else START_MON_JAN03 =((START_YEAR - 2003) * 12) + START_MONTH;

if BA_YEAR = . then BA_MON_JAN03 = .;

else BA_MON_JAN03 = ((BA_YEAR - 2003) * 12) + BA_MONTH;

run;

data analyst_j(drop = start_month start_year BA_month BA_year);

set analyst_i;

if TEMP1 = -3 then ANALYST_VERSION = -3;

else if TEMP1 = -6 then ANALYST_VERSION = -6;

else if TEMP1 = -9 then ANALYST_VERSION = -9;

else if START_MON_JAN03 gt BA_MON_JAN03 then ANALYST_VERSION = -6;

else ANALYST_VERSION = BA_MON_JAN03-START_MON_JAN03;

run;

Add Programmer’s Version

Now that the analyst’s alternate version of the composite variable, ANALYST_VERSION, is created, the analyst
merges the programmer’s version of EARNBA onto the analyst dataset to allow for comparisons.

*Add programmer's version;

proc sort data = prog_c;

by ID;

run;

proc sort data = analyst_j ;

by ID;

run;

data prog_analyst_compare (drop = temp1);

merge prog_c (in=in1) analyst_j (in=in2);

by ID;

if EARNBA = ANALYST_VERSION then DIFFERENCE = 0;

else DIFFERENCE = 1;

run;

STEP 4: COMPARE PROGRAMMER’S VARIABLE AND ANALYST’S VARIABLES

After the analyst has created their alternate version of the variable, the two versions are compared. The best way to
check this is to look at a crosstab of both versions where differences are present.

proc freq data = prog_analyst_compare;

tables EARNBA*ANALYST_VERSION/list missing;

where DIFFERENCE = 1;

run;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

11

Output 2. Output from PROC FREQ Statement showing 5 discrepancies between the programmer’s version
and the analyst’s version.

STEP 5: INVESTIGATE DISCREPANCIES

If the analyst finds discrepancies between the programmer’s and analyst’s versions of the variable, then they must
investigate the nature of the discrepancy. The best place to look first is in the analyst’s code for the alternate version
of the composite variable. The detailed, multi-step approach lends itself well to investigating discrepancies. By
reviewing the discrepancies within the analyst’s code, the analyst is able to find potential problems in their own code
or isolate the nature of the problem in the programmer’s variable. First, find a case where the values disagree.

proc print data = prog_analyst_compare (obs = 1);

where DIFFERENCE = 1;

var ID EARNBA ANALYST_VERSION FIRSTATTENDEDMY BA DEGPROGRAM FIRST_BA DEGREC;

run;

Output 3. Output from PROC PRINT Statement showing case-level detail for one case that has discrepant
values between the programmer’s version (EARNBA) and the analyst’s version.

Investigate the discrepant case in each dataset used in the analyst’s data steps to ensure that the data are doing
what is expected from one data step to the next.

proc print data = analyst_a ;

title ‘analyst_a’;

where ID = 1;

proc print data = analyst_b;

title ‘analyst_b’;

where ID = 1;

proc print data = analyst_c;

title ‘analyst_c’;

where ID = 1;

proc print data = analyst_d;

title ‘analyst_d’;

where ID = 1;

proc print data = analyst_e;

title ‘analyst_e’;

where ID = 1;

proc print data = cases_all ;

title ‘cases_all’;

where ID = 1;

proc print data = analyst_f;

title ‘analyst_f’;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

12

where ID = 1;

proc print data = FIRSTATTENDEDMY ;

title ‘FIRSTATTENDEDMY’;

where ID = 1;

proc print data = analyst_g;

title ‘analyst_g’;

where ID = 1;

proc print data = analyst_h;

title ‘analyst_h’;

where ID = 1;

proc print data =analyst_i;

title ‘analyst_i’;

where ID = 1;

proc print data = analyst_j;

title ‘analyst_j’;

where ID = 1;

proc print data = prog_c ;

title ‘prog_c’;

where ID = 1;

proc print data = prog_analyst_compare;

title ‘prog_analyst_compare’;

where ID = 1;

run;

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

13

Output 4 . Output generated when reviewing case ID=1 in each dataset.

In the process of reviewing this one specific ID in each dataset, the analyst is able to see how the case is coded at
each step and identify where potential problems are occurring with the spec or programming of the variable. If an
error is found in the variable spec, return to Step 1 of this review process. If an error is discovered in the analyst’s

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

14

version, return to Step 3 of the review process and revise the code. If the analyst version of the variable is correct, the
discrepancy is most likely occurring in the programmer’s code. After going through these steps, the analyst can see
that the discrepancy shown in output 2 (in prog_analyst_compare) is caused by an additional condition needed in the

specs. The analyst must modify the specs to add the line highlighted below.

EARNBA = Number of months from FIRSTATTENDEDMY to earliest DEGMY(degrees)

 where DEGPROGRAM (degrees) = 1 and DEGREC = 1;

 /*Set negative values*/

 If FIRSTATTENDEDMY or DEGMY (-6 -9), then EARNBA = -9.

 If DEGPROGRAM never 1 or (DEGPROGRAM = 1 and DEGREC = 0), then EARNBA = -3.

 If EARNBA is negative, then EARNBA = -6.

Figure 3. Modified specs for EARNBA

Next, the programmer adds the new condition to the code. In this case, the code in the “Set missing values codes”
step needs a change. Instead of setting EARNBA to a -9, the variable will be set to a -3.

data prog_c ;

merge prog_b (in=in1) cases (in=in2);

by ID ;

if not in1 and in2 then EARNBA = -3 ;

run ;

CONDUCT REVIEW AGAIN

After the programmer has made changes to the composite variable, the variable is ready to be reviewed again by the
analyst. The analyst re-runs their program that creates the alternate version of the variable. If discrepancies remain,
the analyst should perform the investigation steps (“Investigate Discrepancies”) again and discuss any remaining
discrepancies with the programmer.

STEP 7: COMPOSITE VARIABLE REVIEW IS COMPLETE

When no discrepancies remain, there will not be any output, only this message in the log:

Figure 4. Display of the log when there are no discrepancies between the programmer’s version and the
analyst’s version.

Review That You Can Do: A Guide for Systematic Review of Complex Data, continued SESUG 2012

15

CONCLUSION

Data review is a critical process in the creation of composite variables. It ensures that the variable values are created
as intended and that the programming is correct. Even with complex datasets, the analyst can methodically review
composite variables easily by following the steps detailed above. Breaking the variable down into small and
manageable steps gives the analyst a way to trace through the creation of the composite variable and systematically
review the variable specification, input values, code, and resulting values. This process can be applied to any data
review task, whether it be composite variables, internally used variables, or dataset creation.

ACKNOWLEDGMENTS

The authors would like to thank the following coworkers for their generous assistance in the creation of this paper:
Melissa Cominole, Kristin Dudley, Annaliza Nunnery, John Riccobono, Jim Rogers, Milorad Stojanovic, Nicole Tate,
and Jennifer Wine.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Lesa Caves
RTI International
3040 Cornwallis Rd
Durham, NC 27709
919-990-8312
919-541-7014
lcaves@rti.org

Nicole Williams
RTI International
3040 Cornwallis Rd
Durham, NC 27709
919-541-1245
919-541-7014
njwilliams@rti.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:lcaves@rti.org
mailto:njwilliams@rti.org

