
- 1 -

Paper RI-03

Let the Data Paint the Picture

Data-Driven, Interactive and Animated Visualizations Using SAS®, Java and the
Processing Graphics Library

Patrick Hall, SAS Institute, Cary, N.C.

Ryan Snyder, IBM, Washington, D.C.

ABSTRACT

This paper introduces a scalable technique that combines the data manipulation capabilities of Base SAS® 9.2 with
the Java Processing graphics library to generate customizable visualizations. With an instructive example, the reader
is guided through connecting to the sashelp.iris sample data using a SAS/SHARE® server to build a visualization
applet. The explanation includes details for adding animation and simple mouse and keyboard interactions into the
visualization. A basic understanding of Object Oriented (OO) programming is assumed. The included example was
designed for the Windows platform; however, Java and Processing are designed to support many other operating
systems. Additional reference material, including an online code repository, and sample visualizations are also
included.

INTRODUCTION

By considering audience and purpose, harnessing the procedural efficiency of SAS, and drawing with Processing,
effective visual representations of data can be produced for a broad array of subject matter through the creation of
data-driven static images, animations, or interactive Java applications and applets (apps). Utilizing SAS to organize
the data behind a complicated visualization can reduce both the time spent writing data manipulation code and the
time required to render the image or animation. SAS also provides a myriad of techniques to classify data, while
Processing offers a wide-ranging, high-level interface for 2-D and 3-D graphics. Moreover, the Processing
methodology encourages animation, user-interaction and the creation of web applets.

WHAT IS PROCESSING?
Processing is an open source programming language and environment designed to create interactive images and
animations. It was originally developed to be an intuitive tool for novice programmers and non-technical users.
Processing has since grown into a complete graphics Application Programming Interface (API), while still retaining
much of its accessibility. Throughout its evolution, the on-line Processing community has published in-depth
documentation and detailed tutorials available freely on the web at http://www.processing.org.

Processing is available as a Java library, allowing Processing classes and methods to be used in any standard Java
construct or Java app. Because they are Java objects, Processing classes can be instantiated directly in a SAS data
step using the Base SAS® Javaobj construct, and SAS data can be accessed by Processing classes locally or over
the web using Java Database Connectivity (JDBC) and data base servers such as SAS/SHARE or MySQL.

BEFORE BEGINNING

A fundamental consideration for any visualization is the target audience, specifically what they already know about
the topic to be visualized, and what they want to know. Having a clear understanding of these two notions will assist
in creating a visual analysis that is interesting, comprehensible and free of bias. To ensure the visualization is
understandable for the audience, consider whether the data and message of the visualization are better suited for a
more immediately recognizable form of static chart or graph, or a more complex, interactive or animated visualization.
For many types of quantitative visual communications, a line graph, bar chart, scatter plot or pie chart is preferable.
When choosing to forgo the familiarity of these standards, there must be a significant reward for the audience.

Knowing the purpose of the visualization can be immensely helpful in resolving the accessibility versus complexity
tradeoff. Generally, visualizations meant for presentation should be more directly recognizable, with only a small
number of highlighted visual narratives. Conversely, visualizations and visual apps meant for exploration and
discovery may be highly complex, interactive, animated or any combination thereof. When choosing to construct an
interactive visual app, the interactive functionality should support the audience’s analytic goals. Common interactive
capabilities the audience may expect include: selecting data, reorganizing data, zooming and data filtering. Animation
in visualization is typically used for multi-dimensional analyses involving time, to increase audience engagement, or
to emphasize trends, patterns or outliers. Two dimensional problem domains with time as the independent variable
can typically be expressed clearly using a static line chart. The method of Small Multiples, or a series of small charts

../../../../Documents%20and%20Settings/2PatrickZZ/Desktop/http
../../../../Documents%20and%20Settings/2PatrickZZ/Desktop/http
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/

Let the Data Paint the Picture, continued

2

having similar axes within the same larger graphic, is often employed for multi-dimensional analysis where animation
may be inappropriate.

Accuracy and engagement are also important aspects of purpose. If the infographic is meant to display the analyzed
data as accurately as possible, care should be taken to ensure all graphic attributes are to scale, that aesthetic
complexity is uniform throughout the image(s), and that all information contained in the data, or an explicitly defined
subset, is displayed. If the purpose of the visualization is to increase or motivate the audience’s engagement with the
portrayed data or topic, then a less rigorous and more aesthetically focused approach may be warranted, provided
any artistic distortions to the character of the data are noted. While many enhancement techniques and effects can
be applied to digital images at an analyst’s discretion, simply dropping less critical information from a visualization
and increasing the aesthetic detail of more critical information can suffice to increase audience engagement.

GUIDELINES FOR COMPLEX VISUALIZATIONS

In creating complex visualizations the authors have found several guidelines useful:

 Keep dimensionality as low as possible. Keep dimensionality low, both in terms of audience perspective

and data dimensions. Avoid 3-D plots except when natural or intuitive to the data, and do not attempt to
display more than seven variables within the same visualization. Even when displaying a smaller number of
variables, the combination of hue, luminance, and texture (size, orientation or dot density) for attributes must
be carefully chosen to maximize visual differences between dissimilar data records. The small multiples
technique can aid in clearly displaying several variables in the same image.

 Keep axes honest. In an already complex visualization, tampering with audience expectations of scale is

typically undesirable. Inconsistent ranges for the axes of small multiples are a common source of data
misinterpretation.

 Color and texture are easily recognizable for most audience members. When choosing how to

communicate different types of information about a given attribute in an image, the easiest variations for
most audience members to recognize visually are, in order:

1. Color Hue

2. Color Luminance

3. Texture (e.g. Size, Orientation or Dot Density)

Although color hue attribute differences tend to be the most immediately distinguishable, certain schemes
may cause difficulty for color blind audience members.

 Avoid Common Visual Pratfalls. Both audience members and analysts are susceptible to limited memory

for visual detail and limited attentional focus, known as Change Blindness and Inattentional Blindness
respectively. Change Blindness can occur when users experience difficulty in making analytical decisions
based on graphics on separate pages or in separate windows. Inattentional Blindness can occur when a
user’s full attention is completely deployed on a demanding task within a visualization, and they fail to notice
other important features.

EXAMPLE VISUALIZATION

The basic framework followed by the authors to create visualizations is divided into three phases:

1. Consider the audience and purpose.

2. Organize and format the data to be visualized using SAS.

3. Build the visualization applet using Java and the Processing library.

This technique combines the strengths of both SAS and Java, while saving development time and processor time.

PRELIMINARY DESIGN CONSIDERATIONS

The presented example will begin by using SAS 9.2 to explore the iris data set, located in the sashelp library. Before
constructing the final product, it is important to consider audience and purpose, and to understand basic aspects of
the data that will shape the size and dimensionality of the visualization. The audience for the example is expected to
be somewhat technical and interested in creating more complex graphics. The purpose of the visualization is
assumed to be exploring the iris data, and encouraging engagement with the proposed technique. Hence, the authors
will attempt to create an infographic that will have an easily recognizable form to a technical audience, which will

Let the Data Paint the Picture, continued

3

incorporate interactive functionality to foster exploration, and which will be aesthetically engaging while remaining true
to the character of the iris data.

ORGANIZING AND FORMATTING SAMPLE DATA USING SAS

The iris data set contains measurements of petal and sepal length and width for three species. As the iris data set is

small and pre-sorted proc means will be used to explore the data.

/* basic data exploration */

proc means data = sashelp.iris max min mean std;

 by species;

run;

------------------------------------- Iris Species=Setosa ------------------------------------

 Variable Label Maximum Minimum Mean Std Dev

--

 SepalLength Sepal Length (mm) 58.0000000 43.0000000 50.0600000 3.5248969

 SepalWidth Sepal Width (mm) 44.0000000 23.0000000 34.1800000 3.8102440

 PetalLength Petal Length (mm) 19.0000000 10.0000000 14.6400000 1.7351116

 PetalWidth Petal Width (mm) 6.0000000 1.0000000 2.4400000 1.0720950

----------------------------------- Iris Species=Versicolor ----------------------------------

 Variable Label Maximum Minimum Mean Std Dev

--

 SepalLength Sepal Length (mm) 70.0000000 49.0000000 59.3600000 5.1617115

 SepalWidth Sepal Width (mm) 34.0000000 20.0000000 27.7000000 3.1379832

 PetalLength Petal Length (mm) 51.0000000 30.0000000 42.6000000 4.6991098

 PetalWidth Petal Width (mm) 18.0000000 10.0000000 13.2600000 1.9775268

----------------------------------- Iris Species=Virginica -----------------------------------

 Variable Label Maximum Minimum Mean Std Dev

--

 SepalLength Sepal Length (mm) 79.0000000 49.0000000 65.8800000 6.3587959

 SepalWidth Sepal Width (mm) 38.0000000 22.0000000 29.7400000 3.2249664

 PetalLength Petal Length (mm) 70.0000000 45.0000000 55.5400000 5.5703662

 PetalWidth Petal Width (mm) 25.0000000 14.0000000 20.2600000 2.7465006

Output 1. Output from a proc means statement.

For most audiences, petal width and length will be the most accessible measurements in the data set. Width and
length measurements also lend themselves to intuitive visualization on the two dimensional x- and y- plane. Since the
standard deviation values for both petal length and width constitute a fairly sizeable proportion of each variables
respective mean, the spread of the values will yield an informative two-dimensional visualization on the original unit
scale. Records that are tightly distributed around a single value must often be transformed or visualized from the
perspective of another variable’s dimension to create an informative graphic.

Data must also be rescaled to fit the dimensions of the monitor or the final applet. From proc means output it can be

seen that petal width values range from 1 mm to 25 mm, and that petal length values range from 10 mm to 70 mm.
Since the dimensions of the visualization will be defined in pixels, it is a good idea to establish the size of the finished
product and then use SAS to format the data to this size. Given that the petal width and length variables are known to
roughly follow a normal distribution with no obvious outliers, any standard, screen-size applet such as 600 x 800
pixels (px), will suffice to display the data.

To build an easily understandable visualization, petal width will be displayed on the horizontal x-axis and petal length
will be displayed on the vertical y-axis. Given the largest value of the petal width is 25mm, a multiplicative factor of 30
(25 X 30 = 750) can be used to rescale the width values to fit on the 800 px x-axis with a buffer between the minimum
and maximum values on either horizontal edge of applet. By the same logic, a multiplicative factor of seven can be
applied to fit the petal length variable (70 X 7 = 483) values to the 600 px y-axis. If a higher resolution is required, a
much larger applet size should be utilized, and data values should be formatted accordingly.

Let the Data Paint the Picture, continued

4

/* scale and create variables to display */

data iris_draw;

 set sashelp.iris;

 pWidthX = petalWidth * 30;

 pLengthY = petalLength * 7;

 pLengthXSize = petalWidth;

 pWidthYSize = petalLength;

run;

With the dimensionality and size of the visualization established, the type of chart to display can be chosen. Though a
simple scatter plot would adequately convey the petal width and length values, a bubble plot could utilize attribute
size and color to add supplemental visual information and aesthetic appeal. Thus, the end product of this example will
be an interactive bubble plot, with the petal width as the horizontal x-axis variable, and petal length as the vertical y-
axis variable. Additionally, as in Figure 1, each bubble will correspond to a record with its color representing iris
species. Each bubble will be further embellished using the original petal width and length values to define the
horizontal and vertical size of the bubble. Although bubble size will be inconsistent with the x- and y- axes, this
aesthetic enhancement should give audience members a relative, visual scale to compare the size of each iris
species.

Figure 1. Fisher’s Iris data set plotted with petal width on the x-axis and petal length on the y-axis. The red
text and highlighted selection at upper right illustrates a mouse-click interaction to display additional
information.

SERVING FORMATTED DATA TO A PROCESSING APPLET
As the data has been organized and formatted for easy visualization, it now must be made available to Java apps. A
SAS/Share Server supports database-like read and write access to shared SAS data sets through JDBC. Once a
SAS library has been shared using the SAS/SHARE server it can be easily accessed locally, over Local Area
Network (LAN) or over the web.

Let the Data Paint the Picture, continued

5

/* move formatted iris set into SAS/SHARE server library */

libname sasshare 'C:\Path\To\Shared\SAS\Libraries';

data sasshare.iris_draw;

 set iris_draw;

run;

/* share all info within the library over SAS/SHARE server */

proc operate serverid=__8551;

 allocate library sasshare 'C:\Path\To\Shared\SAS\Libraries';

quit;

Although a SAS/SHARE server is probably the most convenient and stable way to share SAS data sets with other
applications, several other mechanisms are available. For instance, using SAS/ACCESS

®
 to write data sets to a third-

party database and using JDBC to retrieve that data, or instantiating Java Objects directly from SAS data set records
using the Javaobj construct in Base SAS 9.2. (See Snyder, Ryan and Hall, Patrick. “A Guide for Connecting Java to
SAS® Data Sets.” SAS Global Forum 2012. Cary, NC: SAS Institute, for a more thorough discussion of moving data
between Java and SAS.)

CONSTRUCTING THE PROCESSING APPLET (PApplet)

Before proceeding with further details of the example, it should be mentioned that the authors use the Eclipse
Integrated Development Environment (IDE) for creating Java classes. Eclipse is popular, highly functional, and
available free of charge from the Eclipse foundation at http://www.eclipse.org. Detailed instructions for using the
Processing library in Eclipse are available at http://www.processing.org. Also, the context of this white paper only
allows for discussion of example Java code snippets. In the presented samples, many necessary blocks of code are
omitted and some underlying complexities are masked by using a ShareConnection class written by the authors. The
full code for the example class, along with the ShareConnection class, is available online at
https://sites.google.com/site/stamb2012/.

STRUCTURE OF THE PApplet

The example Java class built to display the SAS data draws its functionality from the Processing library and the Java
SQL package. This Java class will be referred to as the painter class. The painter class must extend the Processing
PApplet class and import the Java packages java.sql and processing.core.papplet to have access to the shared data
and the Processing graphics methods. All JDBC connections require a client driver Java Archive (jar) to be available
in the Java project classpath. Connecting to a SAS/SHARE server requires at least the sas.intrnet.javatools.jar and
sas.core.jar client driver jars. These jars may be found in your local SASHOME directory or downloaded from SAS.
The binary Processing core.jar must be added to the painter class Java Build Path as well. The core.jar archive is
included in the Processing download. Instructions for adding core.jar to the painter class build path in Eclipse are
available on Processing’s website.

The painter class is required to have two methods, setup() and draw() that are called by the executable

Processing core library once the applet is started. The setup() method is called only once upon starting the applet.

In this example, setup() is used to set the size of the applet, set several Processing options, connect to the

SAS/SHARE server, and query necessary information from the sasshare.iris_draw and sashelp.iris data sets. The

draw() method is called a default rate of 30 times per second after setup() is called initially. It is used to write data

and other objects to the screen or file rendering. Since draw() is called constantly during the execution of the applet,

it is easy to create animation with the Processing apps. The basic form of the example painter class will follow the
code snippet below:

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
http://www.processing.org/
https://sites.google.com/site/stamb2012/

Let the Data Paint the Picture, continued

6

package processing.sample;

import processing.core.PApplet;

import java.sql.*;

public class IrisPainter extends PApplet {

…

public void setup() {

…

}

public void draw() {

…

}

}

THE setup() METHOD

In the example painter class, the setup() method is used to set the size of the applet, set several Processing

options, and connect to the SAS/SHARE server. The size of the PApplet display is set using the Processing
size(int, int) method. The size(int, int) method takes two integer arguments, a horizontal and vertical

pixel measure in that order. The size(int, int) method should generally be called before any other methods in

setup().Two additional Processing options are set in the example setup() method. The smooth() method

invokes Processing’s anti-aliasing capabilities, but can decrease performance. The frameRate(int) method

changes the number of times draw() is called per second.

The connection to the SAS/SHARE server is also established in the setup() method. The SAS/SHARE connection

requires four basic pieces information, passed to it as Java Strings: the address of the server, the port of the server, a
username, and a password. Using SQL-like queries, pertinent information is retrieved from the sasshare.iris_draw
and sashelp.iris data sets and stored into Java ArrayLists and Vectors, which are similar to standard arrays. Java
Strings comprised of information from the sashelp.iris data set that are used for interactive selection of the three

species groups are also created at this time. The Java try/catch statements are necessary for applet compilation.

They also allow the applet to fail gracefully and display pertinent information in the case of a failed connection. Note

that all necessary information is gathered from the data set only once at the beginning of execution in the setup()

method, and connections are closed directly after data retrieval.

…

//setup method - called once prior to draw when applet is executed

public void setup() {

size(xSize, ySize);//define screen size

 smooth(); //anti-aliasing

 frameRate(frameRate); //set animation speed

 //gather information from database resources into strings and collections

 //calls to database made only once at beginning of applet execution

 try {

shareConnection = ShareConnection.makeConnection("localhost", "8551",

"username", "p@$$w0rd");

//collect information regarding petal length in width into collections

displayed

 stmtDraw = shareConnection.createStatement();

rsDraw = stmtDraw.executeQuery("select species, pwidthx, plengthy,

plengthxsize, pwidthysize from sasshare.iris_draw");

 while (rsDraw.next()) {

 speciesList.add(rsDraw.getString("species"));

 petalWidthXs.add(rsDraw.getFloat("pwidthx"));

 petalLengthYs.add(rsDraw.getFloat("plengthy"));

 petalLengths.add(rsDraw.getFloat("plengthxsize"));

 petalWidths.add(rsDraw.getFloat("pwidthysize"));

Let the Data Paint the Picture, continued

7

 }

 rsDraw.close();

 //gather information for Setosa species into string for use later

 stmtMouseSetosa = ShareConnection.createStatement();

rsMouseSetosa = stmtMouseSetosa.executeQuery("select avg(PetalWidth) as

avg_p_width, avg(PetalLength) as avg_p_length, avg(SepalWidth) as

avg_s_width, avg(SepalLength) as avg_s_length from sashelp.iris where

species = 'Setosa'");

 setosaText = generateMouseText(rsMouseSetosa);

 rsMouseSetosa.close();

…

}

 catch (Exception e) {//if database is unavailable, just close

 e.printStackTrace();

 System.exit(-1);

 }

}

…

THE draw() METHOD
The draw() method is called after the setup() method and is called multiple times per second, as determined by

the frameRate(int) method throughout the duration of applet execution. It is typically used to set image-specific

Processing options and to write data and other objects to the screen or rendering file. In the painter class, draw() is

used as a central switch for the user interaction functionality and calls one of several methods to ensure the
visualization appears with the correct selection at all times. Regardless of user data selection, the author-defined
drawFlowerBubble(String, int, int, int, int) method draws each visual data attribute to the screen.

In drawFlowerBubble(String, int, int, int, int), data is moved from the Java Collections initiated in

setup() into Java Iterators, to allow the applet to cycle through and display data records. Color is assigned to each

visible bubble representing a data record according to the value of the SAS species variable using the

fill(float, float, float, float) method with three ordered RGB arguments followed by an opacity

argument. The Processing ellipse(float, float, float, float) method sets the x- and y- coordinates,

length, and width respectively for each bubble. Bubble x- and y- coordinates are set by the pre-scaled SAS pWidthX
and pLengthY variables, and bubble size is set by the raw petal length and width SAS variables, pWidthXSize and

pLengthYSize. The y-coordinate variable, pLengthY, is subtracted from the ySize variable within the

ellipse(int, int, int, int) method call to ensure that the y-coordinate of the bubble corresponds to the

intuitive notion of the y-axis increasing from the bottom left, as opposed to the Processing convention of the y-axis
increasing from the top left. An intermediate method sets the background applet shade and greyscale shade of
shape outlines prior to calling drawFlowerBubble(String, int, int, int, int).

…

//central method for drawing, allows each group species to be drawn separately

public void drawFlowerBubble(String species, int r, int g, int b, int alpha) {

 StringBuffer s = new StringBuffer("");

 //pull collections into iterators

 Iterator<String> speciesIter = speciesList.iterator();

 Iterator<Float> petalWidthXsIter = petalWidthXs.iterator();

 Iterator<Float> petalLengthYsIter = petalLengthYs.iterator();

 Iterator<Float> petalLengthsIter = petalLengths.iterator();

 Iterator<Float> petalWidthsIter = petalWidths.iterator();

 //cycle through iterators and draw when s matches species from method call

 while(speciesIter.hasNext()) {

Let the Data Paint the Picture, continued

8

 s.append(speciesIter.next());

 if (species.equalsIgnoreCase(s.toString().trim())) {

 fill(r, g, b, alpha); //color and opacity for Setosa species

ellipse(petalWidthXsIter.next(), ySize - petalLengthYsIter.next(),

petalLengthsIter.next(), petalWidthsIter.next()); //draw ellipse

at intuitive y value instead of screen y value

 }

 else {

 petalWidthXsIter.next();

 petalLengthYsIter.next();

 petalLengthsIter.next();

 petalWidthsIter.next();

 }

 s.setLength(0); //reset s to blank

 }

}

…

INCLUDING USER INTERACTION
One of the more exciting aspects of using Processing to display SAS data is the ease of adding user interaction
features into visualization apps. It provides methods to easily register user input from either the mouse or keyboard,
and the object-oriented (OO) nature of the Java and Processing environment allows the developer to craft fitting
responses. In this example, the keyPressed() and mousePressed() methods are used to save a static image file

and highlight a selected species.

The keyPressed() method is invoked whenever a user presses a key during the execution of a Processing applet

and records the actual key pressed by the user. A simple logical test can be performed to determine this key, and the
developer can design a suitable response. Here the s key is used to save a static frame from the animated

visualization. When the user strikes the s key, the keyPressed() method calls the save(String) method directly.

The save(String) method saves a file whose path, name and type are defined by the String argument. Processing

supports TIFF, TARGA, JPEG, and PNG image formats.

The mousePressed() method is called whenever a mouse button is clicked. When Processing detects input from a

mouse button, mousePressed() checks whether the click occurred within one of three specified species x- y-

ranges or outside of all ranges. If a click is registered within a species range, the value of a global Java Enum
DrawMode is set accordingly. draw() then recognizes the changed value of DrawMode, and alters the

visualization’s appearance to reflect user selection of a given species group. A selected group will be highlighted by
decreasing the transparency of its bubbles’ RGB colors, assigning all other species’ bubbles a grey hue, outlining the
group in bold red and displaying additional textual information about the species. In Figure 1 above, the Virginica
species is highlighted. If the user clicks outside of the three species ranges, mousePressed() and draw() reset

the applet to display no selected species groups.

…

//called whenever a key is pressed

public void keyPressed() {

 if (key == 's')

 save(outFileName); //save when "s" is pressed

}

//called whenever a mouse button is pressed

public void mousePressed() {

//if a mouse click is within a certain range, change the draw mode, i.e. bring

a certain species group into focus

if((mouseX >= mouseXRangeMinSetosa && mouseX <= mouseXRangeMaxSetosa) &&

(mouseY >= mouseYRangeMinSetosa && mouseY <= mouseYRangeMaxSetosa)) {

 drawMode = DrawMode.SETOSA;

}

else if((mouseX >= mouseXRangeMinVersicolor && mouseX <=

Let the Data Paint the Picture, continued

9

mouseXRangeMaxVersicolor) && (mouseY >= mouseYRangeMinVersicolor && mouseY <=

mouseYRangeMaxVersicolor)) {

 drawMode = DrawMode.VERSICOLOR;

}

else if((mouseX >= mouseXRangeMinVirginica && mouseX <=

mouseXRangeMaxVirginica) && (mouseY >= mouseYRangeMinVirginica && mouseY <=

mouseYRangeMaxVirginica)) {

 drawMode = DrawMode.VIRGINICA;

 }

else

 drawMode = DrawMode.NORMAL;

}

…

Processing provides the additional methods keyReleased() and keyTyped() to register, process and respond to

keyboard input. Further methods and functionality to record mouse input are available as well. Processing can easily
distinguish between left, middle, and right mouse clicks. The library also allows for mouse drags, enabling data-
generated objects to be moved on-screen by the user.

SAMPLE VISUALIZATIONS

The authors have developed several visualizations for use in analysis and to showcase the capabilities of the
presented technique. Further examples with SAS and Java code are provided at
https://sites.google.com/site/stamb2012/ for interested readers.

Figure 2. Most popular female names at birth from 1980 to 2000. Size and opacity are proportional to
popularity.

https://sites.google.com/site/stamb2012/

Let the Data Paint the Picture, continued

10

Figure 3. Approximately 100,000 simulated transactional sales records compiled into a bubble map by
customer ZIP code, with ellipses representing the aggregate revenue, proportion of online sales,
predominate gender, and average age of customers. Rectangular data attributes represent the aggregate
sales, proportion of online sales, and profit contribution of the top three selling products in each ZIP code.

Figure 4. Output from a k-means clustering of Southern Hemisphere constellations. Cluster centroids are
drawn as large colored cubes, with colored lines drawn to each clustered star. k-means clustering was
implemented with proc fastclus in SAS 9.2.

Let the Data Paint the Picture, continued

11

CONCLUSION

The presented example utilizes a small, sorted and well understood data set. While the iris data provides a

convenient platform from which to convey the idea of leveraging the complementary strengths of SAS and Java to
create an interactive infographic app, the true benefits of integrating Processing with SAS 9.2 are realized when
confronting large, noisy data sets. When combined with judicious consideration of a given visualization’s audience
and purpose, the customizability and scalability of this technique allow it to be applied in circumstances that push the
limits of pre-packaged software.

REFERENCES

 Wikimedia Foundation, Inc. “List of information graphics software.” Wikipedia. February 15, 2012. Available
at http://en.wikipedia.org/wiki/List_of_information_graphics_software.

 Wikimedia Foundation, Inc. “Iris flower data set.” Wikipedia. February 26, 2012. Available at
http://en.wikipedia.org/wiki/Iris_flower_data_set.

 Healey, Christopher. “Introduction to Graphs, Maps, and Visualization.” July 15, 2011. Available at
http://www.csc.ncsu.edu/faculty/healey/iaa-11/IAA-Graphs-Maps.pdf.

 Pirrelo, Chuck. "Effective Visualization Techniques for Data Discovery and Analysis." SAS Global Forum
2010. Cary, NC: SAS Institute. Available at http://support.sas.com/resources/papers/proceedings10/235-
2010.pdf.

 Fry, Ben and Reas, Casey et al. “Processing”. Processing. September 1, 2011. Available at
http://processing.org.

ACKNOWLEDGMENTS

 Ryan Snyder for continuing to hammer out the technical details of this technique, and spearheading
development of the website.

 Institute for Advanced Analytics Faculty and Staff for encouraging the authors to pursue this paper and
providing advice, resources and proofreading.

 Associate Professor Christopher Healey, NCSU Department of Computer Science, for conducting several
workshops on visual perception and visualizations.

 Professor Emeritus Henry E. Schaffer, NCSU Department of Genetics, instructor for the IAA courses AA 500
and AA 501, for providing the simulated transactional sales data used to build Figures 3.

RECOMMENDED READING

 Snyder, Ryan and Hall, Patrick. “A Guide for Connecting Java to SAS® Data Sets.” SAS Global Forum
2012. Cary, NC: SAS Institute.

 Snyder, Ryan and Hall, Patrick. "Data Visualization Using SAS® Processing." March 7, 2012. Available at
https://sites.google.com/site/stamb2012/.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Patrick Hall
S5003C
SAS Institute Inc.
100 SAS Campus Drive
Cary, NC 27513-2414
jpatrickhall@gmail.com

Ryan Snyder
ryancsnyder@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/List_of_information_graphics_software
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://support.sas.com/resources/papers/proceedings10/235-2010.pdf
http://support.sas.com/resources/papers/proceedings10/235-2010.pdf
http://processing.org/learning/
http://processing.org/learning/
http://processing.org/learning/
http://processing.org/learning/
https://sites.google.com/site/stamb2012/
mailto:jpatrickhall@gmail.com
mailto:ryancsnyder@gmail.com

