
 SESUG 2012

1

Paper IT-02

Reducing Big Data to Manageable Proportions
Sigurd W. Hermansen, Westat, Rockville, MD, USA

ABSTRACT
Billions and billions of observations now fall within the scope of SAS® data Libraries; that is, should you
happen to have an HP Blade server or equivalent at your disposal. Those of us getting along with more
ordinary workstations and servers have to resort to various strategies for reducing the scale of datasets to
manageable proportions. In this presentation we explore methods for the scale of datasets without losing
significant information: specifically, blocking, indexing, summarization, streaming, views, restructuring,
and normalization. Base SAS happily supports all of these methods.

KEYWORDS
deflate, compress, pad, pipes, filters, connection strings,SAS/Access I/O Engine, summary, redundancy,
signal-to-noise ratio, SAS FORMAT, joins, views, structure, restructure, normalization, sufficient statistics,
sampling.

INTRODUCTION
I enjoy the complexities and nuances of old vintages of noble wines with haute cuisine, but I also
appreciate the pleasures of a fresh and clean vin de pays with a simple meal. So too, some thorny
programming problems require elaborate solutions that take a long time to develop in the first place, and
at first to understand. Other programming problems arise on what seems to be a daily basis, and these
often require only a few basic methods, applied consistently. In what follows, I assure you that I will stick
to the ordinary and usual solutions to the problems that programmers encounter daily when dealing with
big data. By “big data”, I mean whatever size of dataset seems big to you. For some it might be tens of
thousands of observations (obs, rows, records, tuples, take your choice) that, when read over and over
again to generate different summaries, run for an hour, instead of the fifteen minutes that would give you
more time to check the results. For others, it might be billions of rows of weather, stock market
transaction, or census data that may require a substantial investment in new servers. In what follows,
we’ll see programming methods that we can use to reduce the volume of data while keeping essential
information intact. Changing at least some habits of fledgling programmers can painlessly make programs
run faster and reduce disk and memory usage. Changing some of the perspectives of experienced
programmers will do the same. Though specific in some instances to programming in the SAS System,
these habits and perspectives have value in all other programming environments as well.

DEFLATING AND COMPRESSING DATA
A few fundamental ideas help us understand conditions under which we can reduce data volume while at
the same time preserving essential information. How can we reduce the size of a balloon prior to storing
it? We let the air out; that is, we deflate it. A database management system can do the same to a column
of names of variable length, for example, by trimming trailing blanks after shorter names and padding
these names with blanks when displaying them. The DBMS has to keep track of the appropriate column
widths so that the repadding of names will work as required.For example, the table below has more than
twice the number of characters as the listing below it:

Jones Sue Ann
Li Harrison P
Benevides-Montenegra Lu
Livingston J Paul

Jones,Sue,Ann;Li,Harrison,P;Benevides-Montenegra,Lu,;Livingston,J,Paul

 SESUG 2012

2

Simply letting commas represent
tabs and semi-colons end-of-line
markers preserves the information
in the table in a much smaller
space.We can also compress data
further by recoding them in ways
that use less storage space on
average per character. For
instance, the Huffman coding
algorithm computes the
frequencies of characters in a
sample and assigns the character
codes that occur more frequently
to shorter bit stings. So a single bit
might represent an “e” in word in
the English language, and a longer
bit string a “z”. The savings of
storage space used by the more
frequent “e”s more than offset the
greater space given to the much
less frequent “z”s. Computing
devices as basic as smartphones
have even more sophisticated data
reduction programs built into their
little chips. The SAS System on a
basic tablet or desktop supports
dynamic compression as they are
being read from a source.

The SAS System also provides LIBNAME and FILENAME “pipes” for decompressing and filtering data
compressed by standard file compression packages. The excellent UCLA Web site,

http://www.ats.ucla.edu/stat/census/census2000/tips_reading_sas.htm,

documents step-by-step how to read compressed comma-separated variable (csv) files that anyone can
download from the US Census 2000 Web site (see Tip#5 for Unix/Linux SAS or Tip#6 for Windows SAS).
A really fast way to filter really big data takes advantage of a FILENAME pipe to decompress and stream
data from compressed text files. An INFILE statement in a Data step view [e.g., DATA

vwDSN(VIEW=vwDSN); INFILE PIPE "UNZIP -P /HOME/MYFILE.ZIP" FIRSTOBS=2 OBS=11; …]

streams records into a SAS SQL query [… SELECT <variables> FROM vwDSN WHERE <conditions>].
The view vwDSN actually executes the Data step within the SQL query. The Data step executes the
UNZIP command within the Data step. The variable list and the WHERE conditions subset columns and
rows respectively as they are being read from the compressed text file. The referenced articles by Cohen
and Llano describe in generous detail the fine points of reading uncompressed and compresssed text
files.

SUMMARIZATION
Moving beyond the bits and bytes levels, we find analogs to tabs that represent patterns of blanks in a
summary of repetitive information. In database tables parsed from an xml representation of an electronic
health record (eHR), a visit to a doctor’s office may generate multiple diagnosis, procedure, and other
codes. The database table has not only visit date and coded outcome columns, but also columns with

SAS Solution: Data Deflation and Compression

Dataset option: (compress=yes)
syntax

Data DSN (compress=yes) ….

Proc SQL; Create table DSN (compress=yes) as ….
examples

datatest1;settest0;

2705558 obs WORK.TEST0...11 variables.

real time 39.48 secs cpu time 4.10 secs

datatest2(compress=yes);settest1;

2705558 obs WORK.TEST1...11 variables.

NOTE: Compressing data set WORK.TEST2 decreased size by

60.93 percent.

Compressed 22981 pp; un-compressed 58817 pp.

real time 12.84 secs cpu time 7.17 secs

datatest3(compress=yes);settest2;

real time 7.90 secs cpu time 7.45 secs

caveats

Data step point=, PROC FREQ column frequencies, and other SAS programs
that depend on direct access to binary SAS datasets may generate errors.
extensions:
configV9.cfg file -options compress=yes
autoexec.sas file options compress = yes ;
start of a SAS program options compress = yes ;
dataset level Data BigFile (compress=yes)

http://www.ats.ucla.edu/stat/census/census2000/tips_reading_sas.htm

 SESUG 2012

3

thecoding system used for each code along with the version of the coding system and its name. Data for
brand of medication also includes a brand name:

brand_code nvarchar(255)
brand_code_display_name nvarchar(255)
brand_code_system nvarchar(255)
brand_code_system_name nvarchar(255)
brand_code_system_version nvarchar(255)
brand_freetext nvarchar(4000)

While residing in a MS SQL Server database system, the Medication table in the example has variable
length columns; the system automatically trims off trailing blanks. When read into a SAS dataset, with
fixed column widths, the brand table devotes 5,275 characters in each row to the brand code, coding
system, and name columns. Compressing the SAS dataset trims it down substantially, but why (as in
some object-oriented databases) must each observation of a coded value have to have its properties
stored with it? Since the same brand codes will appear repetitively in eHR’s of a large group of patients,
reducing the coding system and name data to one row per brand in a SAS format or an indexed look-up

table preserves information while reducing the
sizes of datasets: The SAS System supports
both of these methods.

The distinct modifier instructs the SAS SQL
compiler to delete all but one instance of any
identical rows. It modifies a SELECT clause
that, in turn, operates on a variable list. The
variable list defines each row in a table.

Although a summary table has value in its own
right, it has special value as a look-up table. If
we can link each row in the Medications table
(above) to the brandCodeSystems look-up
table, we can greatly reduce data redundancy in
the Medications table.

The SAS SQL join operator links two tables on
equal key values. Simply by putting equal
values in key column(s) of two tables, we can
link them. In effect, we are reducing redundancy
in a database by splitting out columns with
repeating values into a separate reference table

of distinct rows. The SAS System gives us the tools we need to create look-up tables and link them.

Note that in the linkedview, vwMedsw_bcs below, the SQL JOIN reconstructs the original Medications
table (except for the truncated free text variable). We call this data reduction method “lossless” in that it
does not sacrifice information for the sake of data reduction. “Lossy” methods trade off some loss of
information for data reduction.

Summary tables with counts or sums in some instances preserve all information while dramatically
reducing data volume. Cross-frequencies serve as good examples. We use them in reports and as
descriptive statistics, so why not use them as data sources for report-writing and when computing
inferential statistics such as relative risk, Chi-Sq tests, and linear regression? The same goes for
preparing data for delivery to an analyst or client.

This election year inspires a case in point. A campaign analyst asks for data and sketches out this
structure:

SAS Solution: Summarization

SAS SQL distinct query: SELECT distinct
syntax

procsql; createtable DSN as select distinct …

examples

procsql;

createtablebrandCodeSystemsas

selectdistinct

brand_code_system,

brand_code_system_name,

brand_code_system_version

fromMedications;

quit;

caveats

The SAS keyword DISTINCT tells the SAS SQL
compiler to delete any rows that have the same
attribute values as a row already in the dataset.

 SESUG 2012

4

Zip_9 media adcost votes

1 208160001 Television 28245.35 45283
2 208160002 FM Radio 2195.68 45283

Here we can make a good case for a lossy
summary. Including details such as the last
four digits of a zip-code, and costs down to
cents seem unlikely to contribute to analytic
results. Repeating the vote count by media
actually leads to double-counting of votes.
For a simple analysis of votes given costs by
Zip_5, we can restructure the dataset, restrict
the zip-code to five digits, and round costs to
the nearest hundred: e.g.,

Zip_5 TVcost Radiocost Vote

20816 28200 2200 45283

Summing costs and votes to the Zip_5 level
will reduce data complexity and volume. If a
programmer maintains an archive of the
original data source and the programs that
created the summary dataset, it will be easy
to generate additional analytic datasets.
Remember the rule “Read only what you
need” and you will save time as well as
reduce the burden of data storage.

DATABASE NORMALIZATION
Splitting out repeating values of the
brand_code_system columns into a separate
table, as we have seen, reduces data
redundancy. Database “normalization” builds
on this idea. Database architects normalize
databases to support quick and accurate
databases searches and updates. Lossless
data reduction comes about as a fringe
benefit of good database design.

In the Medications table, the brand_code
attribute has realistically a maximum number
of characters not much greater than the
number of distinct codes needed to represent
all brands of medications in all potential
coding systems; that is, twenty characters.
The display name attribute may have the 255
characters allocated to it in the data
dictionary. We assume here that the brand_freetext attribute contains descriptive data that goes beyond
what a name for display would include, more what we would expect to see in a comment, but that the
freetext as well as the display name remain the same for the same brand_code value (have a “functional
dependence” on brand_code). If tests show that to be true, the SAS System supports normalizing of the
medications table with respect to brand codes. We can shift the attributes brand_code_display_name and
brand_freetext from the Medications table to a brandCodes table and use the attribute brand_code to link
the two tables.Even though some database architects insist on creating artificial reference keys for each
and every table link, the brand_code serves just as well as a key to the code display name and freetext.
By the terms of this small instance of data architecture, the number of rows in the brand_code table will
be limited to the number of distinct values of the brand_code attribute. Further assuming a functional

SAS Solution: Link Reference Table

SAS SQL JOIN: ON refKey
syntax

SAS Proc SQL and SAS Data step

examples

procsql;

createtablebrandCodeSysas

selectdistinct brand_code_system as

bcs,

brand_code_system_name as bcs_name,

brand_code_system_version as bcs_ver

from tmp1.Medications;

quit;

databrandCodeSystems;

set brandCodeSys;

 refKey=_N_;

run;

procsql;

createtable Meds as

select brand_code, <etc.>,

brand_code_display_name,

 trim(brand_freetext) as

brand_text length=100, r2.refKey

from tmp1.Medicationsas r1 innerjoin

brandCodeSystemsas r2

on r1.brand_code_system=r2.bcs

and r1.brand_code_system_name =

r2.bcs_name

 and r1.brand_code_system_version

=r2.bcs_ver;

quit;

procsql; /* Reconstruct in view. */
createview vwMedsw_bcs as

selectr1.*,r2.bcs as

brand_code_system, <etc.>

from Meds as r1 innerjoin

ProviderTaxonomy as r2

on r1.refKey=r2.refKey;

quit;

 SESUG 2012

5

dependency of brand_code_systems on brand code, we can use the basic normalization method to split
out first all attributes related to brand_code, including those related to brand_code_system, and then split

out the attributes related to
brand_code_system. Once split into
three tables, we can use first the
brand_code_system key and then the
brand_code key to reconstruct the
original Medications table. Higher forms
of normalization reduce still further
remaining data redundanies.

SAMPLING
Often we need really big data to lend
enough statistical power to a study of a
rare event. Because high frequency
events tend to repeat the same patterns,
lossy summarization, if well planned,
increases the information/data ratio. In
the data mining world, and especially in
SAS’s vision of data mining, sampling
has a major role. Under certain
conditions, alarge enough sample of big
data will serve the same purpose as
those big data and greatly reduce data
volume.

Random sampling to reduce big data fits

easily into SAS SQL and Data step programs (see inset below). The first example illustrates how to select
at random from amillion row dataset, test, about 1 row per 10,000 rows into the dataset,sampleMean.
Because we selected the sample randomly using a distribution function, we find that the sample mean
comes close to the population mean that we compute using all rows of data: population mean=0.500021
vs. sample mean = 0.49439, or less than 1% difference. The accuracy of the estimate depends largely on
the size of the sample and the proportion of the population sampled.

We can just as easily illustrate a downside of simple random sampling. A sample of big data containing a
few needles in a enormous haystack may have all hay and no needles. The second example shows that
after replacing the last hundred of a million values from one distribution with values from another
distribution (class=1), the sample mean (0.495662) and population mean (0.500062) look no different
than what we saw in the earlier example. If, based on what we know about these big data, we could
distinguish observations from the two distributions, the difference between the sample mean and the
mean narrows (class=0 and sample mean=0.500057) while the “needles” stand out clearly (class=1 and
mean=0.988058). These basic examples underscore the importance of understanding a data source and
recognizing its characteristics prior to using samples to compute estimates.

The SAS System provides many tools that support stratified sampling (e.g., sampling class=0 at a rate of
1 per 10,000 and class=2 at a rate of 1 per 1 as shown in the last example) as well as summarization or
skewness/kurtosis statistics using PROC SUMMARY/MEANS or PROC SQL, and least/ greatest
observations and the median using PROC UNIVARIATE. With the help of these tools, we can reduce
data through sampling while retaining essential information.

SAS Solution: Normalization

SAS Database Restructuring: SQL Queries
syntax

SAS Proc SQL

examples

procsql;

createtable brandCodes as

selectdistinct

brand_code,

brand_code_display_name,

brand_freetext

from tmp1.Medications;

createtableMedicationsas

selectdistinct

<all attributes except

brand_display_name,brand_freetext>

from tmp1.Medications;

quit;

 SESUG 2012

6

CONCLUSIONS

A few basic methods applied consistently will usually reduce big data to manageable proportions. File
deflation and compression built into SAS and other database programming environments support lossless
data reduction. Lossless and lossy summarization not only reduce data volume, but often make patterns
in data easier to see. Normalization builds data reduction into the architecture of a database. Sampling
from repetitive data, properly implemented, may scale down data collection, processing, and storage
costs to minimal levels.

REFERENCES
J. Llano Reading Compressed Text Files Using SAS® Software SUGI 31, San Francisco 2006,

Paper 155-31.
M. CohenReading Difficult Raw DataNESUG 2008, Pittsburg 2008.

SAS Solution: Sampling to Reduce Big Data

SAS SQL: Random Number Functions
syntax

SELECT …. WHERE random function< x

examples

data test; do i=1to (1E7);

 class=0; x = ranuni(1223471);

 output; end;

procsql;

createtable mean as

select mean(x) as estx from test;

createtablesampleMeanas

select mean(x) as estx

from (select x from test

where ranuni(123453)<=0.0001);

data testS;

do i=1to (1E7 - 100);

 class=0; x = ranuni(1223459);

 output; end;

do i=1to100; class=1;

x = min(0.9999,0.1*ranuni(1223467)+ 0.95);

output;

end;

procsql;

createtable meanM as

select mean(x) as estx from testS;

createtablesampleMeanMas

select mean(x) as estx

from (select x from testS

where ranuni(123461)<=0.0001);

createtablesampleClassMeanas

select class, mean(x) as estx

from testS groupby class;

 SESUG 2012

7

ACKNOWLEDGMENTS
Mark Friedman contributed a valuable list of options for invoking SAS compression of datasets. Stan Legum
andMichael Raithelsuggested improvements of content and presentation; despite their best efforts, the author retains
sole responsibility for any errors or oversights.

DISCLAIMERS
The contents of this paper are the work of the author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Sigurd W. Hermansen

Westat

1650 Research Blvd.

Rockville, MD 20850

Work Phone: 301.251.4268

E-mail: hermans1@westat.com

