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ABSTRACT 
Billions and billions of observations now fall within the scope of SAS® data Libraries; that is, should you 
happen to have an HP Blade server or equivalent at your disposal. Those of us getting along with more 
ordinary workstations and servers have to resort to various strategies for reducing the scale of datasets to 
manageable proportions. In this presentation we explore methods for the scale of datasets without losing 
significant information: specifically, blocking, indexing, summarization, streaming, views, restructuring, 
and normalization. Base SAS happily supports all of these methods. 
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INTRODUCTION 
I enjoy the complexities and nuances of old vintages of noble wines with haute cuisine, but I also 
appreciate the pleasures of a fresh and clean vin de pays with a simple meal. So too, some thorny 
programming problems require elaborate solutions that take a long time to develop in the first place, and 
at first to understand. Other programming problems arise on what seems to be a daily basis, and these 
often require only a few basic methods, applied consistently. In what follows, I assure you that I will stick 
to the ordinary and usual solutions to the problems that programmers encounter daily when dealing with 
big data. By “big data”, I mean whatever size of dataset seems big to you. For some it might be tens of 
thousands of observations (obs, rows, records, tuples, take your choice) that, when read over and over 
again to generate different summaries, run for an hour, instead of the fifteen minutes that would give you 
more time to check the results. For others, it might be billions of rows of weather, stock market 
transaction, or census data that may require a substantial investment in new servers. In what follows, 
we’ll see programming methods that we can use to reduce the volume of data while keeping essential 
information intact. Changing at least some habits of fledgling programmers can painlessly make programs 
run faster and reduce disk and memory usage. Changing some of the perspectives of experienced 
programmers will do the same. Though specific in some instances to programming in the SAS System, 
these habits and perspectives have value in all other programming environments as well. 

DEFLATING AND COMPRESSING DATA 
A few fundamental ideas help us understand conditions under which we can reduce data volume while at 
the same time preserving essential information. How can we reduce the size of a balloon prior to storing 
it? We let the air out; that is, we deflate it. A database management system can do the same to a column 
of names of variable length, for example, by trimming trailing blanks after shorter names and padding 
these names with blanks when displaying them. The DBMS has to keep track of the appropriate column 
widths so that the repadding of names will work as required.For example, the table below has more than 
twice the number of characters as the listing below it: 

Jones                             Sue                   Ann 
Li                                    Harrison            P 
Benevides-Montenegra  Lu 
Livingston                       J                        Paul 

Jones,Sue,Ann;Li,Harrison,P;Benevides-Montenegra,Lu,;Livingston,J,Paul  
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Simply letting commas represent 
tabs and semi-colons end-of-line 
markers preserves the information 
in the table in a much smaller 
space.We can also compress data 
further by recoding them in ways 
that use less storage space on 
average per character. For 
instance, the Huffman coding 
algorithm computes the 
frequencies of characters in a 
sample and assigns the character 
codes that occur more frequently 
to shorter bit stings. So a single bit 
might represent an “e” in word in 
the English language, and a longer 
bit string a “z”. The savings of 
storage space used by the more 
frequent “e”s more than offset the 
greater space given to the much 
less frequent “z”s. Computing 
devices as basic as smartphones 
have even more sophisticated data 
reduction programs built into their 
little chips. The SAS System on a 
basic tablet or desktop supports 
dynamic compression as they are 
being read from a source. 

 

The SAS System also provides LIBNAME and FILENAME “pipes” for decompressing and filtering data 
compressed by standard file compression packages. The excellent UCLA Web site, 

http://www.ats.ucla.edu/stat/census/census2000/tips_reading_sas.htm, 

documents step-by-step how to read compressed comma-separated variable (csv) files that anyone can 
download from the US Census 2000 Web site (see Tip#5 for Unix/Linux SAS or Tip#6 for Windows SAS). 
A really fast way to filter really big data takes advantage of a FILENAME pipe to decompress and stream 
data from compressed text files. An INFILE statement in a  Data step view [e.g., DATA 

vwDSN(VIEW=vwDSN); INFILE PIPE "UNZIP -P /HOME/MYFILE.ZIP" FIRSTOBS=2 OBS=11; …]  

streams records into a SAS SQL query [ … SELECT <variables> FROM vwDSN WHERE <conditions>]. 
The view vwDSN actually executes the Data step within the SQL query. The Data step executes the 
UNZIP command within the Data step. The variable list and the WHERE conditions subset columns and 
rows respectively as they are being read from the compressed text file. The referenced articles by Cohen 
and Llano describe in generous detail the fine points of reading uncompressed and compresssed text 
files. 

SUMMARIZATION 
Moving beyond the bits and bytes levels, we find analogs to tabs that represent patterns of blanks in a 
summary of repetitive information. In database tables parsed from an xml representation of an electronic 
health record (eHR), a visit to a doctor’s office may generate multiple diagnosis, procedure, and other 
codes. The database table has not only visit date and coded outcome columns, but also columns with 

SAS Solution: Data Deflation and Compression  

Dataset option: (compress=yes) 
syntax 

Data DSN (compress=yes) …. 

Proc SQL; Create table DSN (compress=yes) as …. 
examples 

datatest1;settest0; 

2705558 obs  WORK.TEST0...11 variables. 

real time  39.48 secs  cpu time 4.10 secs 

datatest2(compress=yes);settest1; 

2705558 obs WORK.TEST1...11 variables. 

NOTE: Compressing data set WORK.TEST2 decreased size by 

60.93 percent. 

Compressed 22981 pp; un-compressed 58817 pp. 

real time 12.84 secs  cpu time 7.17 secs 

datatest3(compress=yes);settest2; 

real time 7.90 secs  cpu time 7.45 secs 

caveats 

Data step point=, PROC FREQ column frequencies, and  other SAS programs 
that depend on direct access to binary SAS datasets may generate errors. 
extensions: 
configV9.cfg file    -options compress=yes 
autoexec.sas file  options compress = yes ; 
start of a SAS program  options compress = yes ; 
dataset level    Data BigFile (compress=yes) 

http://www.ats.ucla.edu/stat/census/census2000/tips_reading_sas.htm
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thecoding system used for each code along with the version of the coding system and its name. Data for 
brand of medication also includes a brand name: 
 

 
brand_code nvarchar(255) 
brand_code_display_name nvarchar(255) 
brand_code_system nvarchar(255) 
brand_code_system_name nvarchar(255) 
brand_code_system_version nvarchar(255) 
brand_freetext nvarchar(4000) 

While residing in a MS SQL Server database system, the Medication table in the example has variable 
length columns; the system automatically trims off trailing blanks. When read into a SAS dataset, with 
fixed column widths, the brand table devotes 5,275 characters in each row to the brand code, coding 
system, and name columns. Compressing the SAS dataset trims it down substantially, but why (as in 
some object-oriented databases) must each observation of a coded value have to have its properties 
stored with it? Since the same brand codes will appear repetitively in eHR’s of a large group of patients, 
reducing the coding system and name data to one row per brand in a SAS format or an indexed look-up 

table preserves information while reducing the 
sizes of datasets: The SAS System supports 
both of these methods. 

The distinct modifier instructs the SAS SQL 
compiler to delete all but one instance of any 
identical rows. It modifies a SELECT clause 
that, in turn, operates on a variable list. The 
variable list defines each row in a table. 

Although a summary table has value in its own 
right, it has special value as a look-up table. If 
we can link each row in the Medications table 
(above) to the brandCodeSystems look-up 
table, we can greatly reduce data redundancy in 
the Medications table.  

The SAS SQL join operator links two tables on 
equal key values. Simply by putting equal 
values in key column(s) of two tables, we can 
link them. In effect, we are reducing redundancy 
in a database by splitting out columns with 
repeating values into a separate reference table 

of distinct rows. The SAS System gives us the tools we need to create look-up tables and link them. 

Note that in the linkedview, vwMedsw_bcs below, the SQL JOIN reconstructs the original Medications 
table (except for the truncated free text variable). We call this data reduction method “lossless” in that it 
does not sacrifice information for the sake of data reduction. “Lossy” methods trade off some loss of 
information for data reduction. 

Summary tables with counts or sums in some instances preserve all information while dramatically 
reducing data volume. Cross-frequencies serve as good examples. We use them in reports and as 
descriptive statistics, so why not use them as data sources for report-writing and when computing 
inferential statistics such as relative risk, Chi-Sq tests, and linear regression? The same goes for 
preparing data for delivery to an analyst or client.  

This election year inspires a case in point. A campaign analyst asks for data and sketches out this 
structure: 

SAS Solution: Summarization 

SAS SQL distinct query: SELECT distinct 
syntax 

procsql; createtable DSN as select distinct … 

 
examples 

procsql; 

createtablebrandCodeSystemsas 

selectdistinct 

brand_code_system, 

brand_code_system_name, 

brand_code_system_version 

fromMedications; 

quit; 

 

caveats 

The SAS keyword DISTINCT tells the SAS SQL 
compiler to delete any rows that have the same 
attribute values as a row already in the dataset.  
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Zip_9 media adcost votes 

1 208160001 Television 28245.35 45283 
2 208160002 FM Radio 2195.68 45283 

Here we can make a good case for a lossy 
summary. Including details such as the last 
four digits of a zip-code, and costs down to 
cents seem unlikely to contribute to analytic 
results. Repeating the vote count by media 
actually leads to double-counting of votes. 
For a simple analysis of votes given costs by 
Zip_5, we can restructure the dataset, restrict 
the zip-code to five digits, and round costs to 
the nearest hundred: e.g., 

Zip_5 TVcost Radiocost Vote 

20816 28200 2200 45283 

Summing costs and votes to the Zip_5 level 
will reduce data complexity and volume. If a 
programmer maintains an archive of the 
original data source and the programs that 
created the summary dataset, it will be easy 
to generate additional analytic datasets. 
Remember the rule “Read only what you 
need” and you will save time as well as 
reduce the burden of data storage. 

DATABASE NORMALIZATION 
Splitting out repeating values of the 
brand_code_system columns into a separate 
table, as we have seen, reduces data 
redundancy. Database “normalization” builds 
on this idea. Database architects normalize 
databases to support quick and accurate 
databases searches and updates. Lossless 
data reduction comes about as a fringe 
benefit of good database design. 

In the Medications table, the brand_code 
attribute has realistically a maximum number 
of characters not much greater than the 
number of distinct codes needed to represent 
all brands of medications in all potential 
coding systems; that is, twenty characters. 
The display name attribute may have the 255 
characters allocated to it in the data 
dictionary. We assume here that the brand_freetext attribute contains descriptive data that goes beyond 
what a name for display would include, more what we would expect to see in a comment, but that the 
freetext as well as the display name remain the same for the same brand_code value (have a “functional 
dependence” on brand_code). If tests show that to be true, the SAS System supports normalizing of the 
medications table with respect to brand codes. We can shift the attributes brand_code_display_name and 
brand_freetext from the Medications table to a brandCodes table and use the attribute brand_code to link 
the two tables.Even though some database architects insist on creating artificial reference keys for each 
and every table link, the brand_code serves just as well as a key to the code display name and freetext. 
By the terms of this small instance of data architecture, the number of rows in the brand_code table will 
be limited to the number of distinct values of the brand_code attribute. Further assuming a functional 

SAS Solution: Link Reference Table  

SAS SQL JOIN: ON refKey 
syntax 

SAS Proc SQL and SAS Data step 
 

examples 

procsql; 

createtablebrandCodeSysas 

selectdistinct brand_code_system as 

bcs, 

brand_code_system_name as bcs_name, 

brand_code_system_version as bcs_ver 

from tmp1.Medications; 

quit; 

databrandCodeSystems; 

set brandCodeSys; 

      refKey=_N_; 

run; 

procsql; 

createtable Meds as 

select brand_code, <etc.>, 

brand_code_display_name, 

         trim(brand_freetext) as 

brand_text length=100, r2.refKey 

from tmp1.Medicationsas r1 innerjoin 

brandCodeSystemsas r2 

on  r1.brand_code_system=r2.bcs  

and r1.brand_code_system_name = 

r2.bcs_name    

  and r1.brand_code_system_version 

=r2.bcs_ver; 

quit; 

procsql; /* Reconstruct in view. */ 
createview vwMedsw_bcs as 

selectr1.*,r2.bcs as    

brand_code_system, <etc.> 

from Meds as r1 innerjoin 

ProviderTaxonomy as r2 

on r1.refKey=r2.refKey; 

quit; 
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dependency of brand_code_systems on brand code, we can use the basic normalization method to split 
out first all attributes related to brand_code, including those related to brand_code_system, and then split 

out the attributes related to 
brand_code_system. Once split into 
three tables, we can use first the 
brand_code_system key and then the 
brand_code key to reconstruct the 
original Medications table. Higher forms 
of normalization reduce still further 
remaining data redundanies. 

 

SAMPLING 
Often we need really big data to lend 
enough statistical power to a study of a 
rare event. Because high frequency 
events tend to repeat the same patterns, 
lossy summarization, if well planned, 
increases the information/data ratio. In 
the data mining world, and especially in 
SAS’s vision of data mining, sampling 
has a major role. Under certain 
conditions, alarge enough sample of big 
data will serve the same purpose as 
those big data and greatly reduce data 
volume. 
 
Random sampling to reduce big data fits 

easily into SAS SQL and Data step programs (see inset below). The first example illustrates how to select 
at random from amillion row dataset, test, about 1 row per 10,000 rows into the dataset,sampleMean. 
Because we selected the sample randomly using a distribution function, we find that the sample mean 
comes close to the population mean that we compute using all rows of data: population mean=0.500021 
vs. sample mean = 0.49439, or less than 1% difference. The accuracy of the estimate depends largely on 
the size of the sample and the proportion of the population sampled. 
 
We can just as easily illustrate a downside of simple random sampling. A sample of big data containing a 
few needles in a enormous haystack may have all hay and no needles. The second example shows that 
after replacing the last hundred of a million values from one distribution with values from another 
distribution (class=1), the sample mean (0.495662) and population mean (0.500062) look no different 
than what we saw in the earlier example. If, based on what we know about these big data, we could 
distinguish observations from the two distributions, the difference between the sample mean and the 
mean narrows (class=0 and sample mean=0.500057) while the “needles” stand out clearly (class=1 and 
mean=0.988058). These basic examples underscore the importance of understanding a data source and 
recognizing its characteristics prior to using samples to compute estimates. 
 
The SAS System provides many tools that support stratified sampling (e.g., sampling class=0 at a rate of 
1 per 10,000 and class=2 at a rate of 1 per 1 as shown in the last example) as well as summarization or 
skewness/kurtosis statistics using PROC SUMMARY/MEANS or PROC SQL, and least/ greatest 
observations and the median using PROC UNIVARIATE. With the help of these tools, we can reduce 
data through sampling while retaining essential information. 

SAS Solution: Normalization 

SAS Database Restructuring: SQL Queries  
syntax 

SAS Proc SQL 

 
examples 

procsql; 

createtable brandCodes as 

selectdistinct 

brand_code, 

brand_code_display_name, 

brand_freetext 

from tmp1.Medications; 

 

createtableMedicationsas 

selectdistinct 

<all attributes except 

brand_display_name,brand_freetext> 

from tmp1.Medications; 

quit; 
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CONCLUSIONS 

A few basic methods applied consistently will usually reduce big data to manageable proportions. File 
deflation and compression built into SAS and other database programming environments support lossless 
data reduction. Lossless and lossy summarization not only reduce data volume, but often make patterns 
in data easier to see. Normalization builds data reduction into the architecture of a database. Sampling 
from repetitive data, properly implemented, may scale down data collection, processing, and storage 
costs to minimal levels.  
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SAS Solution: Sampling to Reduce Big Data 

SAS SQL:  Random Number Functions 
syntax 

SELECT …. WHERE random function< x 

 
examples 

data test; do i=1to (1E7); 

    class=0; x = ranuni(1223471); 

 output; end; 

procsql;  

createtable mean as 

select mean(x) as estx from test; 

 

createtablesampleMeanas 

select mean(x) as  estx 

from (select x from test 

where ranuni(123453)<=0.0001); 

------------------------------------ 

data testS; 

do i=1to (1E7 - 100); 

    class=0; x = ranuni(1223459); 

 output;  end; 

do i=1to100; class=1;  

x = min(0.9999,0.1*ranuni(1223467)+ 0.95);  

output; 

end; 

procsql; 

createtable meanM as 

select mean(x) as estx from testS; 

 

createtablesampleMeanMas 

select mean(x) as  estx 

from (select x from testS 

where ranuni(123461)<=0.0001); 

 

createtablesampleClassMeanas 

select class, mean(x) as estx 

from testS groupby class; 
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