
SESUG 2012

1

 Paper BB-03

Leveraging SQL Return Codes When Querying Relational Databases
 John E. Bentley, Wells Fargo Bank, Charlotte, North Carolina

ABSTRACT

When querying a relational database, each PROC SQL query automatically produces macro variables that contain
return codes and messages from the relational database, and the PROC SQL itself produces two more that can be of
great help. This paper will explain how and when these macro variables are generated, what they represent, and
how to use them to make your programs more dynamic, robust, and error-proof. For real-world examples we will look
at using SQL return codes to (1) cleanly halt execution when a database query fails and send an email with the error
message, and (2) get the number of records written to a table without running SELECT COUNT(*). The presentation
will be useful to all levels of SAS

®
 users not familiar with SQL return codes.

INTRODUCTION

Good news and bad news. The good news is that, generally speaking, the number of coding problems from logic and
syntax goes down as a programmer becomes more experienced with the particular language they‟re working with.
We control the level and magnitude of these problems and over time learns how to anticipate and avoid them.

The bad news is that problems beyond our control never go away. Data quality is usually out of a programmer‟s
control, and we also have to deal with things like delayed production schedules, failed loads, missing files, and
changes to ETL rules that we never hear about.

But there‟s more good news. We can take steps to anticipate and deal with some of the problems out of our control.
We can‟t “fix” these problems, but we can write code that anticipates them and lessens their impact. When querying
relational databases, for example, SQL return codes are a powerful tool to help us do that.

RETURN CODES AND ERROR MESSAGES

In SAS, a return code, also known as an „rc‟, is a numeric code produced by a processing step (PROC or DATA step)
that for our purposes provides a quick yes or no answer to the question “was the task successful”. By itself it‟s not
much help in figuring out what went wrong but we can use it to identify if there is a problem and as a pointer to the
course of action we want to take. As a general rule, for SAS return codes a value of zero means that yes, the task
successfully completed.

An error message is a text string that explains the return code. Some messages are more user friendly than others,
but an error message almost always does a better job than the return code at pointing you in the direction of where
the problem lies. “Bad command or file name” is not much help, but “Lp0 on fire” is unambiguous. This author would
argue that compared to others, SAS error messages overall are actually pretty good.

Figure 1. The root cause of many errors

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

2

SAS AUTOMATIC MACRO VARIABLES

As soon as a SAS starts, the macro processor creates a number of macro variables that capture information about
the session and are available to the user. With the exception of one (SYSPBUFF), automatic macro variables are
global in scope.

To use an automatic macro variable, reference it in the same way a user-defined macro variable is referenced—with
an ampersand followed by the macro variable name. In an example from the SAS on-line documentation, this is
FOOTNOTE statement contains references to the automatic macro variables SYSDAY and SYSDATE:

FOOTNOTE "Report for &sysday, &sysdate";

If the current SAS session was invoked on August 7
th

, 2012 the macro variable resolution produces this SAS

statement:

FOOTNOTE "Report for Tuesday, 07AUG2012";

SAS procedures and the DATA step also return a couple automatic macro variables.

 SYSCC holds the overall session return code to that point.

 SYSERR stores the return code of a PROC or DATA step and are reset at each step boundary. Carpenter
(2004) notes that the SYSERR values can differ between steps—the value assigned to SYSERR is
dependent on both the type of step and the type of error.

To see the return code for a step, use %PUT:

<PROC or a DATA step code>

%put SYSERR= &SYSERR;

The documentation for every version of SAS has a table listing the automatic macro variables and detailed
descriptions of what they represent, the data they contain, and whether or not the user can change the value. To
learn more, definitely read the documentation. Just search for „automatic macro variables‟.

You can easily see the current values of your session‟s automatic macro variables. %PUT _AUTOMATIC_; dumps a

list of all the automatic macro variables and their values to the log. You can also see the system and user-defined
macro variables by using %PUT _SYS_; and %PUT _USER_;. The command %PUT _ALL_; writes all macro

variable values to the log.

PROC SQL AUTOMATIC MACRO VARIABLES

Every query in PROC SQL generates four automatic macro variables: SQLRC, SQLOBS, SQLOOPS, and
SQLEXITCODE. For a PROC SQL that runs multiple queries the value of the first three changes with each query. At
the end of the PROC, the final values will be those for the last query. The value of SQLEXITCODE is set only at the
end of the PROC.

SQLRC contains a numeric value that provides the completion status of the query. These are straight-forward values

which show the success or failure of a query, but the UNDO_POLICY= option and the SQLUNDOPOLICY system
option can affect the value assigned. If you use either of these two options, read the documentation for the
implications on SQLRC.

RC Definition

0 PROC SQL statement completed successfully with no errors.

4
PROC SQL statement encountered a situation for which it issued a warning. The
statement continued to execute.

8
PROC SQL statement encountered an error. The statement stopped execution at this
point.

12
PROC SQL statement encountered an internal error, indicating a bug in PROC SQL
that should be reported to SAS Technical Support. These errors can occur only during
compile time.

16
PROC SQL statement encountered a user error. For example, this error code is used,
when a subquery (that can return only a single value) evaluates to more than one row.
These errors can be detected only during run time.

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

3

RC Definition

24
PROC SQL statement encountered a system error. For example, this error is used, if
the system cannot write to a PROC SQL table because the disk is full. These errors can
occur only during run time.

28
PROC SQL statement encountered an internal error, indicating a bug in PROC SQL
that should be reported to SAS Technical Support. These errors can occur only during
run time.

Table 1. PROC SQL Return Codes—SQLRC

SQLOBS is the number of rows that were output by the query. The documentation says it “contains the number of

rows that were processed by a SQL procedure statement” but this is a bit misleading. It is not always the number of
rows „processed‟ to get the results set. This query illustrates the issue.

libname prod oracle path='STAGE' user="&_hemidbuser" pass="&_hemidbpwd"

 schema='HM_LOAD' readbuff=10000 multi_datasrc_opt=in_clause;

proc sql threads;

 select count(*)

 from prod.phone_data;

quit;

%put sqlobs= &sqlobs;

The SQLOBS value is assigned after the SELECT statement executes. In this case the number of records read to
get the count total is over 9 million but the value of SQLOBS is 1 because only 1 record was output. More on
SQLOBS later.

The documentation provides some important considerations about how SQLOBS is affected by the NOPRINT option.
With NOPRINT the value of the SQLOBS macro variable depends on whether an output table, single macro variable,
macro variable list, or macro variable range is created:

 If an output table is created, then SQLOBS contains the number of rows in the output table.

 If no data set or table, macro variable list, or macro variable range is created, then SQLOBS contains the
value 1.

 If a single macro variable is created, then SQLOBS contains the value 1.

 If a macro variable list or macro variable range is created, then SQLOBS contains the number of rows that
are processed to create the macro variable list or range.

 If an SQL view is created, then SQLOBS contains the value 0.

SQLOOPS contains the number of iterations that the inner loop of PROC SQL processes. The number of iterations

increases proportionally with the complexity of the query. This value can be used to somewhat control inefficient
processing when it is used to set a value for the PROC SQL LOOPS= option. Details though are beyond the scope
of this paper.

SQLEXITCODE contains the highest return code that occurred from SQL insert operations. This return code is

written to the SYSERR macro variable when PROC SQL terminates. The default value is 0 when there are no insert
operations.

AUTOMATIC MACRO VARIABLES FOR RELATIONAL DATABASES

PROC SQL produces two more automatic macro variables when SAS queries a relational database such as Oracle
or Teradata—SQLXRC, and SQLXMSG. It is important to remember that both are available only with the Pass-
Through Facility—they are not produced when the DMBS is queried via a LIBNAME engine. If you‟re not using a
CONNECT TO statement, they‟re not available.

SQLXRC contains a database-specific return code for the query. An Oracle code of 43568 is probably not the same

as the Teradata 43568.

SQLXMSG provides descriptive information for the DBMS-specific return code. Again, each DBMS has its own

idiosyncrasies and some messages are better than others. But because each DBMS has a „format‟ for their
messages you can scan or parse them to find specific information, such as the phrase „invalid identifier‟. This lets
your error trapping routines be a bit more robust and database agnostic.

The value of the SQLXMSG macro variable can contain special characters such as &, %, /, *, and ; so SAS

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

4

recommends using the %SUPERQ macro function when working with SQLXMSG content.

%let dbErrorMsg=%superq(sqlxmsg);

PUTTING SQL RETURN CODES TO WORK

CAPTURING RETURN CODES

Return codes and error messages are reset after each query so it‟s important to capture them with %LET to create a

user-defined macro variable each time you might want to use the value. In some cases you might want to recycle the
user-defined macro variable name to simplify error handling routines or you can create a set of uniquely named
variables with each query.

In the example below, we‟re working with a LIBREF that uses the Oracle engine and we have a PROC SQL with two
queries and the second query fails. For each query we‟re capturing the SQLRC value it returns and we‟re writing the
values to the log so we see the query failed with rc=8, a non-specific error.

115 libname userTabs oracle path='STAGE' schema='JBENT' user="&_hemiDbUser"

pass="&_hemiDbPwd" readbuff=5000;

117 proc sql noprint threads;

118 select count(*) as numRecs

119 from userTabs.dqf_results;

120

121 %let _sql_rc_rec_count=&sqlrc;

122

123 select avg(col_recrd_ct) as avg

124 from userTabs.dqf_results;

ERROR: The AVG summary function requires a numeric argument.

ERROR: The following columns were not found in the contributing tables:

col_recrd_ct.

NOTE: PROC SQL set option NOEXEC and will continue to check the syntax of

statements.

125

126 %let _sql_rc_avg_cols=&sqlrc;

127 quit;

NOTE: The SAS System stopped processing this step because of errors. <snip>

128 %put _sql_rc_rec_count= &_sql_rc_rec_count;

_sql_rc_rec_count= 0

131 %put _sql_rc_avg_cols= &_sql_rc_avg_cols;

_sql_rc_avg_cols= 8

This next example is the same query as above but we‟re using SQL Pass-Through to query an Oracle table. Notice
that even though the log shows a message from Oracle the SQLRC remains the same. Why? Because it‟s the SAS
return code. We don‟t yet see the Oracle return code, but notice how nice the Oracle message is? So how do we
capture the Oracle return code and error message so we can put them to work?

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

5

272 proc sql threads;

273 connect to oracle as orc (path='STAGE' user="&_hemiDbUser" pass="&_hemiDbPwd"

readbuff=5000);

275 select * from connection to orc

276 (select count(*) as numRecs from jbent.dqf_results);

277 %let _sqlrc_rec_count=&sqlrc;

278

279 select * from connection to orc

280 (select avg(col_recrd_ct) as avg from jbent.dqf_results);

ERROR: ORACLE prepare error: ORA-00904: "COL_RECRD_CT": invalid identifier. SQL

statement: select avg(col_recrd_ct) as avg from

 jbent.dqf_results.

NOTE: PROC SQL set option NOEXEC and will continue to check the syntax of

statements.

281 %let _sqlrc_avg_cols=&sqlrc;

282 disconnect from orc;

283 quit;

NOTE: The SAS System stopped processing this step because of errors. <snip>

284

285 %put _sql_rc_rec_count= &_sqlrc_rec_count;

_sql_rc_rec_count= 0

286 %put _sql_rc_avg_cols= &_sqlrc_avg_cols;

_sql_rc_avg_cols= 8

Here we capture and display the Oracle return code and error message contained in SQLXRC and SQLXMSG.
Notice that the Oracle error message starts with the return code—it always starts in column position 4 and if there are
no errors the value is zero. That makes it easy to substring out the error message itself, and if you don‟t mind
substringing you don‟t might not need the SQLXRC.

322 proc sql threads;

323 connect to oracle as orc (path='STAGE' user="&_hemiDbUser"

pass="&_hemiDbPwd" readbuff=5000);

324

325 select * from connection to orc

326 (select count(*) as numRecs from jbent.dqf_results);

327

328 select * from connection to orc

329 (select avg(col_recrd_ct) as avg from jbent.dqf_results);

ERROR: ORACLE prepare error: ORA-00904: "COL_RECRD_CT": invalid identifier. SQL

statement: select avg(col_recrd_ct) as avg from

 jbent.dqf_results.

NOTE: PROC SQL set option NOEXEC and will continue to check the syntax of

statements.

330

331 %let _sqlrc_avg_cols=&sqlrc;

332 %let _sql_xrc_avg_cols=&sqlxrc;

333 %let _sql_xmsg_avg_cols=%nrbquote(&sqlxmsg);

334 quit;

NOTE: The SAS System stopped processing this step because of errors. <snip>

335

336 %put _sql_rc_avg_cols= &_sqlrc_avg_cols;

_sql_rc_avg_cols= 8

337 %put _sql_xrc_avg_cols=&_sql_xrc_avg_cols;

_sql_xrc_avg_cols=-904

338 %put _sql_xmsg_avg_cols=&_sql_xmsg_avg_cols;

_sql_xmsg_avg_cols=ORA-00904: "COL_RECRD_CT": invalid identifier

LEVERAGING RETURN CODES AND ERROR MESSAGES

Now that we know how to capture the SQL return code and error message from the database, using them is simply a
matter of deciding what to do when an a query fails and then coding it up. It‟s easy to create a dummy table that
contains a few good records and a bad record for each condition you want to test.

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

6

In production jobs, it‟s we often want to stop processing when an error or exception is encountered so we don‟t
generate a log full of cascading errors, create a bunch of bad data sets or tables, or just waste computer resources.
The macro %abort_if_error uses the ABORT statement to check and maybe kill a SAS job running on a UNIX

server. If it kills the job it also sends an email alert that something bad happened.

%macro abort_if_error();

 %if &_sql_xrc ne 0 %then %do;

 %if &_testRun=Y %then %do;

 X mailx -r DONOTREPLY@ECOMM.COM -s "3 AM Load Processing Error, TEST Run,

&_tabSchema..&_tabName, cycle &_cycle" &_emailDeveloper <

%lowcase(&_reportDir/dqf_processing_error_&_tabSchema._&_tabName._&_cycle..txt);

 %end;

 %else %do;

 X mailx -r DONOTREPLY@ECOMM.COM -s "3 AM Load Processing Error,

&_tabSchema..&_tabName, cycle &_cycle" &_emailRecipientList <

%lowcase(&_reportDir/dqf_processing_error_&_tabSchema._&_tabName._&_cycle..txt);

 %** Dump all the macro variables to the log, if needs restart.;

 data dataDir.dump_macro_vars_&_timeStamp; set sashelp.vmacro;

 run;

 %** Now kill the job. ;

 data _null_;

 ABORT RETURN;

 run;

 %end;

 %end;

%mend;

At the start of processing, macro variables are assigned that contain the directory holding a log produced by Oracle
and a list of people to be emailed. &CYCLE is a macro variable derived from the calendar date. During processing
two more macro variables are assigned that hold the names of the schema and table being processed.

In this particular job, each query we want to monitor is a separate PROC SQL and we place the macro immediately
after each query. In every query the names of the user-assigned macro variables are recycled.

proc SQL threads cpucount=4;

 connect to oracle …

 create table name as

 select … from … where… ;

 %let _sql_xrc= &sqlxrc;

 %let _sql_xmsg= %nrbquote(&sqlxmsg);

quit;

%abort_if_error;

Instead of simply killing the job, a more robust option might be to write a macro that parses SQLXMSG and then uses
conditional execution based on the message content to implement an immediate work-around. If the work-around is
implemented you‟ll still want to also send an email alerting people what happened.

 if SQLXMSG contains is „table not available‟, use a different table.
 if SQLXMSG contains is „table locked‟, use the SLEEP function to wait and try again later.

USING SQLOBS

As with most things SAS, there are multiple ways to accomplish a task. Everyone knows a couple different ways to
find the number of records in a data set. Here‟s another way… use SQLOBS. But remember that there are a few
considerations for using it.

Here we are using SQL Pass-Through to create a SAS dataset. At the same time we write the value of SQLOBS to a
user-defined macro variable using the same technique as with capturing the rc and error message. Notice that
because SQLXRC=0 (no error) the value of SQLXMSG is blank.

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

7

51 proc sql threads;

52 connect to oracle as orc (path='STAGE' user="&_hemiDbUser"

pass="&_hemiDbPwd" readbuff=5000);

54 create table current_cycle as

55 select * from connection to orc

 (select * from jbent.dqf_results where cycle_cd='W201');

NOTE: Table WORK.W201 created, with 465 rows and 11 columns.

60 %let _nrecs_w201= &sqlobs;

61 %let _sql_xrc_w201=&sqlxrc;

62 %let _sql_xmsg_w201=%nrbquote(&sqlxmsg);

63 disconnect from orc;

64 quit;

NOTE: PROCEDURE SQL used (Total process time): <snip>

65

66 %put _sql_xrc_w201=&_sql_xrc_w201;

_sql_xrc_w201=0

67 %put _sql_xmsg_w201=&_sql_xmsg_w201;

_sql_xmsg_w201=

68 %put _nrecs_w201= &_nrecs_w201;

_nrecs_w201= 465

SQLOBS will be zero 0 whenever an empty data set is created, even when there‟s no error. But so will SQLXRC so
that‟s an easy start for writing code to check for empty data sets if that‟s a concern during processing.

35 proc sql threads;

36 connect to oracle as orc (path='WFPROD' user="&_hemiDbUser"

pass="&_hemiDbPwd" readbuff=5000);

38 create table w201 as

39 select * from connection to orc

40 (select * from jbent.dqf_results where cycle_cd='W210');

NOTE: Table WORK.W201 created, with 0 rows and 11 columns.

44 %let _nrecs_w210= &sqlobs;

45 %let _sql_xrc_w210=&sqlxrc;

46 %let _sql_xmsg_w210=%nrbquote(&sqlxmsg);

47 disconnect from orc;

48 quit;

NOTE: PROCEDURE SQL used (Total process time): <snip>

49

50 %put _sql_xrc_w210=&_sql_xrc_w210;

_sql_xrc_w210=0

51 %put _sql_xmsg_w210=&_sql_xmsg_w210;

_sql_xmsg_w210=

52 %put _nrecs_w210= &_nrecs_w210;

_nrecs_w210= 0

SQLOBS is SAS-generated so it works great when creating a SAS dataset or printing output. But using SQL Pass-
Through changes SQLOBS‟s behavior. When we use explicit pass-through to pass code directly to the database for
execution, SQLOBS is always zero. SAS doesn‟t touch the results set so it doesn‟t have an opportunity to count the
number of rows.

In this code sample we see that SQLOBS=0 even though SQLXRC=0. Is the dataset really empty? Maybe the

WHERE criteria returned zero rows but we don‟t know that. How do we find out?

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

8

117 proc sql threads;

 connect to oracle as orc (path='STAGE' user="&_hemiDbUser" pass="&_hemiDbPwd"

readbuff=5000);

 execute (

121 create table current_cycle as

122 select * from jbent.dqf_results where cycle_cd='W210'

123) by orc;

125 %let _nrecs_w210= &sqlobs;

126 %let _sql_xrc_w210=&sqlxrc;

127 %let _sql_xmsg_w210=%nrbquote(&sqlxmsg);

128 disconnect from orc;

129 quit;

NOTE: PROCEDURE SQL used (Total process time):<snip>

130

131 %put _sql_xrc_w210=&_sql_xrc_w210;

_sql_xrc_w210=0

132 %put _sql_xmsg_w210=&_sql_xmsg_w210;

_sql_xmsg_w210=

133 %put _nrecs_w210= &_nrecs_w210;

_nrecs_w210= 0

As with all things SAS, there‟s more than one way to solve the problem. The most obvious work-around is to go back

to the old faithful select count(*) in an implicit SQL Pass-Through construct. Then we write the number of

records to a user-defined macro variable so we can do something with it.

117 proc sql threads;

 connect to oracle as orc (path='STAGE' user="&_hemiDbUser" pass="&_hemiDbPwd"

readbuff=5000);

 execute (

121 create table current_cycle as

122 select * from jbent.dqf_results where cycle_cd='W210'

123) by orc;

125

126 %let _sql_xrc_w210=&sqlxrc;

127 %let _sql_xmsg_w210=%nrbquote(&sqlxmsg);

128

129 Select numrecs

130 into : _nrecs_w210

131 from connection to oracle

132 (select count(*) as numRecs

133 from current_cycle);

134

135 disconnect from orc;

136 quit;

NOTE: PROCEDURE SQL used (Total process time):<snip>

137

138 %put _sql_xrc_w210=&_sql_xrc_w210;

_sql_xrc_w210=0

139 %put _sql_xmsg_w210=&_sql_xmsg_w210;

_sql_xmsg_w210=

140 %put _nrecs_w210= &_nrecs_w210;

_nrecs_w210= 465

CONCLUSION

The return codes and error messages produced when PROC SQL queries a relational database can be powerful
tools. With just a little bit of work you can leverage them to make a program respond to errors by stopping a failed
program immediately or implementing an automatic work-around when an error is thrown. They‟re not silver bullets,
but with proper planning they can help you lessen the impact caused by problems whose solutions are out of your
control.

Leveraging SQL Return Codes When Querying Relational Databases, continued SESUG 2012

9

REFERENCES

SAS 9.2 Macro Language Reference. Cary, NC: SAS Institute, Inc

http://support.sas.com/documentation/cdl/en/mcrolref/61885/PDF/default/mcrolref.pdf

SAS/ACCESS
®
 9.2 for Relational Databases: Reference, Fourth Edition. Cary, NC: SAS Institute, Inc.

http://support.sas.com/documentation/cdl/en/acreldb/63647/HTML/default/viewer.htm#a000386105.htm

Carpenter, Art. 2004. Carpenter’s Complete Guide to the SAS
®
 Macro Language, 2nd Ed. Cary, NC: SAS Institute,

Inc.

Lafler, Kirk. 2004. PROC SQL: Beyond the Basics Using SAS
®
. Cary, NC: SAS Institute, Inc.

CONTACT INFORMATION

John E. Bentley
Wells Fargo Bank
John.bentley@wellsfargo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The opinions expressed here are the view of the author and do not necessarily reflect the views and opinions of Wells
Fargo Bank. Wells Fargo Bank is not, by means of this article, providing technical, business, or other professional
advice or services and is not endorsing any of the software, techniques, approaches, or solutions presented herein.
This article is not a substitute for professional advice or services and should not be used as a basis for decisions that
could impact your business.

http://support.sas.com/documentation/cdl/en/mcrolref/61885/PDF/default/mcrolref.pdf
http://support.sas.com/documentation/cdl/en/acreldb/63647/HTML/default/viewer.htm%23a000386105.htm

	Abstract
	Introduction
	Return Codes and Error Messages
	SAS Automatic Macro Variables
	PROC SQL Automatic Macro Variables
	Automatic Macro Variables for Relational Databases

	Putting SQL Return Codes to Work
	Capturing Return Codes
	Leveraging Return Codes and Error Messages
	Using SQLOBS

	Conclusion
	References
	Contact Information

