
PO-07

A SAS® Users Guide to Regular Expressions When the Data Resides in
Oracle

Kunal Agnihotri, PPD, Inc., Morrisville, NC
Kenneth W. Borowiak, PPD, Inc., Morrisville, NC

Abstract

The popularity of the PRX functions and call routines has grown since they were introduced
in SAS Version 9 due to the tremendous power they provide for matching patterns of text.
Since the implementation of the regular expressions within these functions is rooted in the
Perl-style syntax, there is portability outside of a SAS environment. It is not uncommon for
SAS users to access data residing in an Oracle database. This paper explores the Oracle
implementation of regular expressions by highlighting similarities and differences to the PRX
implementation in series of queries using the PROC SQL Pass-Through facility against Oracle
system tables.

Introduction

A regular expression is a string that characterizes a pattern for matching and subsequent
manipulation of text fields. The popularity of the PRX functions and call routines has grown
since they were introduced in SAS Version 9 due to the tremendous power they provide for
matching patterns of text. Those unfamiliar with PRX should refer to introductory papers by
Borowiak [2008] and Cassell [2007], as concepts discussed there are used throughout this
paper.

SAS users who want leverage the power of the Perl-style regular expressions via the PRX
functions and call routines in their SAS environment have options when the data they want
to access resides in an Oracle database1. They can access the data by establishing a pointer
to the tables with a LIBNAME statement and using familiar PRX code. However, this results
in pulling some, if not all, of the tables and records into the local SAS workspace so it can
process the PRX statements. Another option is to the use the PROC SQL Pass-Through
facility, where statements are processed in the Oracle space in its native language, and the
resulting records brought into the SAS environment. While the syntax of the Oracle regular
expressions is similar to that of PRX, there are differences in the way they are invoked. This
paper explores the Oracle implementation of regular expressions, drawing on the similarities
and differences to PRX using queries written against the Oracle system tables2.
The implementation of regular expressions in Oracle began with their 10g release and can
be characterized as following the POSIX Extended Regular Expressions (ERE) standard. To
determine if your Oracle connection meets this requirement you can issue the SQL Pass-
Through query in Figure 1.

1 This requires licensing SAS/ACCESS to Oracle.
2 Oracle system tables store metadata and are analogous to the SAS Dictionary tables and SASHELP
views.

SESUG 2012

 Figure 1 - Query to confirm version of the Oracle client

proc sql _method feedback ;
 connect to oracle(path=&lesstaken. user=&me. pw=&myob.) ;
 select *
 from connection to oracle
 (select *
 from v$version
 where regexp_like(banner, 'oracle', 'i'))
 ;
 disconnect from oracle ;
 quit ;

BANNER

Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - 64bit Production

The values of the user id, password and path needed to make the connection to the Oracle
tables will be embedded in the macro variables me, myob, and lesstaken, respectively. The
actual query passed to the Oracle environment is found in the subquery embedded in the
FROM clause of the PROC SQL statement.

REGEXP_LIKE

The query in Figure 1 makes use of a regular expression to do a case-insensitive static
string search via the REGEXP_LIKE function. This function is most closely related to the
PRXMATCH function in SAS. The REGEXP_LIKE function returns a Boolean indicating
whether the pattern matched in a given source string or not and takes the following form:

REGEXP_LIKE (source_string , pattern , modifier)

• source_string - the source where the pattern is to be searched.
• pattern – the regular expression.
• modifier – this changes the default behavior of the function while trying to match the
pattern.

The arguments in the REGEXP_LIKE function will be common to all of the remaining REGEXP
functions examined in this paper, although the location of the MODIFIER may vary due to
the other functions having more arguments.

You may notice the following differences of REGEXP_LIKE vis-a-vis PRXMATCH:

● The source is listed in the first argument
● The pattern matching regular expression is in the second argument, rather than in

the first argument.
● The regular expression is not embedded within a pair of delimiters.
● The regular expression modifiers are specified in the third argument, rather than

directly following the delimiters that encapsulate the pattern.
● It does not provide information on where the match occurred.

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

Much of the regular expression syntax of PRX familiar to the SAS user is valid in
REGEXP_LIKE and the other REGEXP functions. This will be demonstrated in the query in
Figure 2 and throughout the paper.

 Figure 2 - Portability of regular expression syntax between SAS and Oracle
implementations

proc sql _method feedback ;
 connect to oracle(path=&lesstaken. user=&me. pw=&myob.) ;

 select *
 from connection to oracle
 (select column_name

 from sys.all_ind_columns
 where regexp_like(column_name, '^COORD_(AXIS|SYS)','c'))

 ;
 disconnect from oracle ;

 quit ;

COLUMN_NAME

COORD_SYS_ID

COORD_AXIS_NAME

COORD_AXIS_NAME_ID

COORD_SYS_TYPE

COORD_SYS_NAME

COORD_SYS_ID

The beginning of the string anchor ^ is used to match the text COORD_. This is followed by
a pair of grouping parentheses containing uses a pipe separator for alternation, which acts
like an OR logical operator, to match the text AXIS or SYS. Although the default setting
is for the regex to be case-sensitive, this modifier argument can be explicitly set to c.
This modifier value is not valid in PRX statements. In the event that both of the i and c
modifiers are specified in the call then the one that appears last will be honored.

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

REGEXP_INSTR

The Oracle function that is most closely related to the PRXMATCH function is
REGEXP_INSTR, where the default behavior is to return the location of the match. It
can give information on the beginning or ending position of the match depending on
the return_option argument. The syntax for this function is similar to the REGEXP_LIKE
function, but has three additional optional arguments:

REGEXP_INSTR (source_string,pattern , position , occurrence,return_option,
modifier)

● position - Location in the string to begin the pattern search. The default value is 1
and can be omitted if the match is to performed from position 1.

● occurrence - Identify which occurrence of the pattern in the source to match. The
default value is 1 and can be omitted if the match is looking for the first occurrence.

● Return_option - Determines if it should return the position of the first character in
the match or the last character. The default value is 0 which gives the position of the
first character of the occurrence. A value of 1 returns the position that follows the
last character in the occurrence.

The example in Figure 3 returns the starting position where the TABLE_NAME field ends with
an underscore followed by one or more digits.

Figure 3 - Find location where the pattern match begins

proc sql _method feedback ;
 connect to oracle(path=&lesstaken. user=&me. pw=&myob.) ;
 select *
 from connection to oracle
 (select table_name
 , regexp_instr(table_name, '_\d+$') match_pos
 from sys.all_tables
 where regexp_like(table_name, '_\d+$'))
 ;
 disconnect from oracle ;
 quit ;

TABLE_NAME MATCH_POS

KU$_LIST_FILTER_TEMP_2 21

KU$_DATAPUMP_MASTER_11_2 23

KU$_DATAPUMP_MASTER_11_1_0_7 27

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

KU$_DATAPUMP_MASTER_11_1 23

KU$_DATAPUMP_MASTER_10_1 23

The end of the string anchor $ in Oracle can be used to match the last non-whitespace
character. This differs from PRXMATCH, where a functionally equivalent regular expression
would need to account for any whitespace to fill up the allotted character bytes (e.g.
prxmatch(‘m/_\d+\s*$’, table_name)).

The query in Figure 4 below is similar to that in Figure 3, except the ending position of the
first occurrence is sought. Since the fifth argument controls this behavior with a value of
1, the optional third and fourth arguments must also be provided in the function call. Since
the function will return the position following the end of the match the result will need to be
decremented by 1.

Figure 4 - Find location where the pattern match ends

proc sql _method feedback ;
 connect to oracle(path=&lesstaken. user=&me. pw=&myob.) ;
 select *
 from connection to oracle
 (select table_name
 , regexp_instr(table_name, '_\d+$', 1, 1, 1)-1

 end_match_pos
 from sys.all_tables
 where regexp_like(table_name, '_\d+$'))
 disconnect from oracle
 ;
 quit ;

TABLE_NAME
END_MATCH_PO

S

KU$_LIST_FILTER_TEMP_2 22

KU$_DATAPUMP_MASTER_11_2 24

KU$_DATAPUMP_MASTER_11_1_0_7 28

KU$_DATAPUMP_MASTER_11_1 24

KU$_DATAPUMP_MASTER_10_1 24

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

REGEXP_SUBSTR

Another powerful function available to SAS programmers from the regexp arsenal is
REGEXP_SUBSTR. This goes a step further from REGEXP_LIKE and gives the user a
substring from the given source string. Apart from the arguments present in REGEXP_LIKE,
two more arguments make up REGEXP_SUBSTR:

REGEXP_SUBSTR(source_string , pattern , position, occurrence , modifier)

• position - A positive integer indicating where the operator should begin the search. The
default is 1.
• occurrence – This indicates which occurrence the operator should look for in the source
string. The function looks for the regular expression from the first position in the source
string. The default is 1.

The example in Figure 5 returns the third occurrence of a substring where the
COLUMN_NAME field has text embedded in a pair of quotation marks.

 Figure 5 - Query to extract a substring from a source

proc sql _method feedback ;
 connect to oracle(path=&lesstaken. user=&me. pw=&myob.) ;
 select *
 from connection to oracle

 (select column_name
 , regexp_substr(column_name, '"[^"]+"' ,1 ,3 ,'i')
 match_str

 from sys.all_ind_columns
where regexp_like(column_name,'"[^"]+"', 'i'))

;
 disconnect from oracle ;
 quit ;

COLUMN_NAME MATCH_STR

"XMLDATA"."SCHEMA_URL"

"XMLDATA"."PROPERTY"."GLOBAL" "GLOBAL"

"XMLDATA"."PROPERTY"."NAME" "NAME"

"XMLDATA"."PROPERTY"."PROP_NUMBER" "PROP_NUMBER"

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

The regular expression in this function call looks for “ in the source string followed by a
non-double quote, defined by the negated character class [^”], then followed by a ” .
The + quantifier is used to search for multiple non-quote occurrences of the character class
in the source string. Also take notice that the first result for MATCH_STR is blank as there
is no third occurrence of the regular expression in the source string. The ability to extract
the nth occurrence in the string with a single call to REGEXP_SUBSTR is an advantage over
PRX, which usually takes 2 or 3 functions call (e.g PRXPARSE-PRXMATCH-PRXPOSN3, CALL
PRXSUBSTR-SUBSTR, or PRXPARSE-CALL PRXNEXT-SUBSTR in a DO loop).

REGEXP_REPLACE

The last function in the REGEXP family is REGEXP_REPLACE, which is analogous to
PRXCHANGE. This function looks for the occurrence of a regular expression in the
source string and replaced with literal text or text from a capture buffer. The form of the
REGEXP_REPLACE is:

REGEXP_REPLACE (source_string, pattern, replacement, position, occurrence,
modifier)

In the example in Figure 6 the REGEXP_REPLACE function is used to replace digits and the $
sign at the end of the source string with literal text.

Figure 6 - Query to replace a regular expression with literal text

proc sql _method feedback ;

connect to oracle(path=&lesstaken. user=&me. pw=&myob.) ;
 select *
 from connection to oracle
 (select column_name

 , regexp_replace(column_name, '\d{3,4}\$$','_TABLE')
 mat_replace

 from sys.all_ind_columns
 where regexp_like(column_name,'\d{3,4}\$$','i')

)
 ;
disconnect from oracle ;

 quit ;

\d in the above example is used to match any digits characters (0 through 9) in the source
string. The quantifier {3,4} succeeding \d indicates the function to look for at least 3 digits
but to a maximum of 4. This is followed by \$, an escaped reference made to match the $
as literal text in the source. And finally the $ which asks the function to look for the regular
expression at the end of the source. The \ differentiates between the 2 $ signs - one as
literal text and the other as the match the end of line character. The matched digits followed

3 An ambitious PRXer could create a user-defined function with PROC FCMP to encapsulate these calls,
which would then mimic the functionality REGEXP_SUBSTR.

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

by the $ are then replaced by the string _TABLE in the new variable MAT_REPLACE.

COLUMN_NAME MAT_REPLACE

SYS_NC00004$ SYS_NC0_TABLE

SYS_NC00007$ SYS_NC0_TABLE

SYS_NC00006$ SYS_NC0_TABLE

SYS_NC00075$ SYS_NC0_TABLE

SYS_NC00179$ SYS_NC0_TABLE

Metacharacters and Character Classes

Figure 7 below shows some of the other common syntax for character classes and
metacharacters between the PRX or Oracle implementation of regular expressions that were
not used any of the previous examples.

 Figure 7 - Other Common Character Classes and Metacharacter

Operator Description

* Matches 0 or more occurrences of the preceding expression

? Matches 0 or 1 occurrences of the preceding expression

\d Digit characters, equivalent to [0-9]. There appears to be a bug where \d
is not honored when used within a user-defined character class.

\D Non-digit characters

[:digit:] POSIX bracketed expression for matching digit characters - equivalent
to \d

[:alpha:] POSIX bracketed expression for matching alphabet characters -
equivalent to [a-zA-Z]

\b Word boundary

\B Non-word boundary

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

 \s Any whitespace character, including tabs

(?:) Non-capturing buffers are not supported in REGEXP functions

(?=), (?!), (?<=), (?
<!)

Positive and negative look-arounds are not supported in REGEXP
functions

Conclusion

The queries written in this paper use very basic and simple examples of the REGEXP
functions in Oracle with PROC SQL Pass-Through facility. The user is encouraged to mix
and match these functions and make use of the plethora of combinations that can be
made up with the use of metacharacters at their disposal. It does take some time to
familiarize oneself with the various options at hand, but is more efficient than other options
available when querying for data residing in Oracle. PRX users will definitely recognize the
similarities and differences with the REGEXP functions and welcome this new addition to
their knowledge base.

References

Borowiak, Kenneth W. (2004), “Effectively Using the Indices in an Oracle® Database with
SAS®”. Proceedings of the Seventeenth Annual Northeast SAS Users Group Conference,
USA.
http:/www.nesug.org/proceedings/nesug04/po/po12.pdf

Borowiak, Kenneth W. (2012), “PRXCHANGE: Accept No Substitutions”. Proceedings of the
21st Annual Southeast SAS Users Group Conference, USA.

Borowiak, Kenneth W. (2008), “PRX Functions and Call Routines: There is Hardly Anything
Regular About Them!”. Proceedings of the Twenty First Annual Northeast SAS Users Group
Conference, USA.
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf

Cassell, David L., ”The Basics of the PRX Functions” SAS Global Forum 2007
http://www2.sas.com/proceedings/forum2007/223-2007.pdf

Friedl, Jeffrey E.F., Mastering Regular Expressions 3rd Edition

Introducing Oracle Regular Expressions. An Oracle White Paper. ORACLE. September 2003.
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-
regular-expressions-133133.pdf

Acknowledgements

The authors would like to thank Jenni Borowiak and Jim Worley for their insightful
comments on this paper.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration. Oracle is a Registered Trademark of Oracle Corporation.

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.google.com/url?q=http%3A%2F%2Fwww.nesug.org%2Fproceedings%2Fnesug04%2Fpo%2Fpo12.pdf&sa=D&sntz=1&usg=AFQjCNEJdPPDeCT8MaQ5WE1FekNKvV-cIA
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf

Disclaimer

The content of this paper are the works of the authors and do not necessarily represent the
opinions, recommendations, or practices of PPD, Inc.

Contact Information

Your comments and questions are valued and encouraged.
Contact the authors at:

Kunal Agnihotri Ken Borowiak
3900 Paramount Parkway 3900 Paramount Parkway
Morrisville NC 27560 Morrisville NC 27560

kunal.agnihotri@ppdi.com ken.borowiak@ppdi.com
agnihotrikunal@gmail.com ken.borowiak@gmail.com

A SAS Users Guide to Regular Expressions When the Data Resides in Oracle, continued SESUG 2012

mailto:kunal.agnihotri@ppdi.com
mailto:kunal.agnihotri@ppdi.com
mailto:kunal.agnihotri@ppdi.com
mailto:kunal.agnihotri@ppdi.com
mailto:kunal.agnihotri@ppdi.com
mailto:kunal.agnihotri@ppdi.com
mailto:kunal.agnihotri@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:ken.borowiak@ppdi.com
mailto:agnihotrikunal@gmail.com
mailto:agnihotrikunal@gmail.com
mailto:agnihotrikunal@gmail.com
mailto:agnihotrikunal@gmail.com
mailto:agnihotrikunal@gmail.com
mailto:ken.borowiak@gmail.com
mailto:ken.borowiak@gmail.com
mailto:ken.borowiak@gmail.com
mailto:ken.borowiak@gmail.com
mailto:ken.borowiak@gmail.com
mailto:ken.borowiak@gmail.com
mailto:ken.borowiak@gmail.com

