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ABSTRACT 

The paper illustrates how to use the MCMC procedure to fit a hierarchical, multinomial logit model for a nominal 
response variable with correlated responses in a Bayesian framework.  In particular, the paper illustrates how to 
perform three important parts of Bayesian model fitting.  First, to make sure appropriate prior distributions are 
selected, the paper shows how to simulate draws directly from the prior distribution.  Second, since the reference 
category and random effects may require special attention, the paper shows how to code the sampling model into 
PROC MCMC using the RANDOM statement, new to SAS

®
 9.3.  Finally, the paper demonstrates how to run two 

chains simultaneously on a multi-core processor, and how to use those two chains to check convergence of the 
MCMC chain using the Gelman-Rubin diagnostic test.  By following these steps, many common pitfalls associated 
with fitting complicated models in PROC MCMC may be avoided.  The target audience for this paper is people with 
some knowledge of Bayesian methods and a moderate level of SAS experience, but who may not be familiar with 
PROC MCMC or multinomial logit models. 

INTRODUCTION 

Nominal response variables with correlated observations are common in social science research.  One approach to 
modeling nominal response variables is the multicategory (also called multinomial) logit model (Agresti, 2007).  With 
a multinomial logit model, the log odds of a response falling into a particular category, j, relative to a baseline 
category, J, are modeled by separate equations for each of the J – 1 comparisons.   This generalized linear model 
can be extended to include random effects to account for the correlated observations which may arise in clustered or 
panel data.   The MCMC procedure, and particularly the RANDOM statement new to SAS 9.3, greatly simplifies fitting 
such hierarchical, multinomial logit models within a Bayesian framework. 

This paper will illustrate how to construct and assess the convergence of a Bayesian multinomial logit model with 
random effects for households using panel data on yogurt purchases.  The yogurt data, analyzed previously by Jain, 
Vilcassim, and Chintagunta (1994) and Chen and Kuo (2001), describes purchases of yogurt over approximately two 
years by a panel of 100 households in Springfield, MO.  The data are freely available from the mlogit package in R; 
syntax to import the data from R into SAS appears in the appendix. 

DESCRIPTION OF EXAMPLE & MODEL 

YOGURT DATA 

The data set used for this example contains information from optical scanner records about yogurt purchases by a 
panel of 100 households, as well as information about the price of each type of yogurt and information about the 
marketing of each type of yogurt (namely whether or not the yogurt was featured in a newspaper advertisement).  
Table 1 displays the first few lines of the data set, to illustrate the data structure. 

id yoplait dannon weight hiland 
price_ 
yoplait 

price_ 
dannon 

price_ 
hiland 

price_ 
weight 

feat_ 
yoplait 

feat_ 
dannon 

feat_ 
hiland 

feat_ 
weight 

1 0 0 1 0 0.11 0.08 0.06 0.08 0 0 0 0 

1 0 1 0 0 0.11 0.10 0.06 0.08 0 0 0 0 

1 0 1 0 0 0.11 0.10 0.06 0.09 0 0 0 0 

1 0 1 0 0 0.11 0.10 0.06 0.09 0 0 0 0 

1 0 1 0 0 0.13 0.10 0.05 0.08 0 0 0 0 

1 0 1 0 0 0.11 0.09 0.05 0.08 0 0 0 0 

1 0 1 0 0 0.10 0.08 0.05 0.08 0 0 0 0 

1 0 0 1 0 0.11 0.09 0.05 0.08 0 0 0 0 

2 1 0 0 0 0.11 0.10 0.05 0.08 0 0 0 0 

2 1 0 0 0 0.11 0.10 0.05 0.08 0 0 0 0 

Table 1: First ten lines of the yogurt data 

The variable id lists the household ID.  The variables yoplait, dannon, weight, and hiland are indicator variables, 
denotes which brand of yogurt, Yoplait, Dannon, Weight Watchers, or Hiland, respectively, the household purchased 
on that occasion.  The price in dollars of each brand of yogurt at the time of purchase is given by the four variables 
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beginning with “price_,” and whether each brand of yogurt was featured in a newspaper advertisement at the time of 
purchase is given by the indicator variables whose names begin with “feat_”. 

MODEL 

From these data, the model described in Chen and Kuo (2001) can be constructed.  The model predicts brand choice 
as a function of whether the yogurt was featured in an advertisement, the price of the yogurt, and a random intercept 
for each household.  Let   index the 4 brands of yogurt, and let         denote the brand chosen by the  th 

household at the  th purchase.  Then 
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The random intercepts    are distributed according to a multivariate normal distribution. 
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where    (           ) , which represents the household-specific preference effects for Yoplait, Dannon, and 

Weight Watchers yogurt, respectively, and   (        ) , which represents the population averages for each of the 

three brands.  Hiland yogurt is the reference category and therefore      .  Diffuse priors reflect our lack of specific 

prior beliefs about the values of the parameters. 
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Once written, the model can be coded into PROC MCMC. 

SETTING UP PROC MCMC 

The easiest way to construct a model in PROC MCMC is to construct it in pieces.  First, the prior can be coded and 
tested, then the sampling model with random effects can be incorporated. 

PRIOR DISTRIBUTIONS 

When constructing a Bayesian model, it is always advisable to begin by double-checking that the priors chosen 
accurately represent one’s prior beliefs.  The easiest way to accomplish this in PROC MCMC is to program the priors, 
and then have PROC MCMC simulate draws from the prior distribution.  By setting the likelihood function to a 
constant, PROC MCMC will draw directly from the prior distributions.  The following code illustrates generating 
samples from the prior distributions for the model above. 

/* Prior predictive checks */ 

PROC MCMC 

 DATA = yogurt /* must specify a valid input data set, even though no data will be 

used from it */ 

 NMC = 5000 /* Size of the sample */ 

 NBI = 0; /* No need to generate burn-in samples, because the draws are taken 

directly from the prior */ 

 ODS SELECT PostSummaries; 

 

 /* Parameters for the prior distribution */ 

 ARRAY mu[3]; 

 ARRAY sigma[3,3]; 

 PARMS beta1 beta2; 

 PARMS mu; 

 PARMS sigma; 
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 /* Hyperprior constants */ 

 ARRAY mu0[3] (0 0 0); 

 ARRAY sigma0[3,3] (625, 200, 200, 200, 625, 200, 200, 200, 625); 

 ARRAY S[3,3] (500, 50, 50, 50, 500, 50, 50, 50, 500); 

 

 /* Prior distributions */ 

 PRIOR beta: ~ NORM(0, var = 10000); /* Note that since the prior distributions for 

beta1 and beta2 are independent, they can be programmed without a multivariate 

distribution. */ 

 PRIOR sigma ~ IWISH(5, S); 

 PRIOR mu ~ MVN(mu0, sigma0); 

  

 /* Constant likelihood function */ 

 MODEL GENERAL(0); 

RUN; 

 

Running the code above generates the following output 

Posterior Summaries 

Parameter N Mean Standard 
Deviation 

Percentiles 

    25% 50% 75% 

beta1 5000 3.0855 102.3 -73.7626 9.2271 73.0170 

beta2 5000 5.7560 93.1207 -53.3014 4.6455 66.8533 

mu1 5000 0.1098 24.1076 -17.0237 -1.4396 16.4542 

mu2 5000 1.0608 24.7808 -14.5453 -0.3585 19.1437 

mu3 5000 -1.0792 24.9704 -17.3001 -0.3479 16.2052 

sigma1 5000 521.1 3352.1 124.1 217.1 429.1 

sigma2 5000 47.5459 1591.2 -52.4282 18.8079 105.4 

sigma3 5000 56.6791 1284.7 -54.0974 18.6658 112.2 

sigma4 5000 47.5459 1591.2 -52.4282 18.8079 105.4 

sigma5 5000 499.8 1935.3 121.3 211.6 419.8 

sigma6 5000 32.3706 1369.2 -56.1831 17.0032 104.2 

sigma7 5000 56.6791 1284.7 -54.0974 18.6658 112.2 

sigma8 5000 32.3706 1369.2 -56.1831 17.0032 104.2 

sigma9 5000 482.1 1411.2 124.6 219.1 429.1 

Table 2. Simulated Draws from Prior Distributions 

The results show that    and    are centered at 0 with wide variances.     -    are also centered at 0 with standard 

deviations of 25.  The variances for the random effects (represented by sigma1, sigma 5, and sigma9) are also wide 
with relatively small covariances (represented by the other values of the sigma matrix), indicating our belief that the 
means of the random effects are largely uncorrelated.  The values of the hyperprior parameters can be tuned and this 
process can be repeated until the prior distributions accurately represent one’s prior beliefs.  Once the prior 
distributions have been tuned appropriately, the rest of the model may be programmed in to PROC MCMC. 

DATA AND SAMPLING MODEL 

Following the tuning of the prior distributions, the next step in fitting the multinomial model is to program the likelihood 
function.  When fitting this model with PROC NLMIXED, Chen and Kuo (2001) offer an alternative specification of the 
model, a Poisson non-linear model.  To fit the Poisson non-linear model, the authors transpose the data set so that, 
within every purchase occasion, t, every brand has its own row.  Transforming the data and the model is unnecessary 
to fit the model in PROC MCMC.  As of SAS 9.3 (Stokes, 2011), PROC MCMC supports multivariate distributions 
such as the multinomial distribution.  Therefore the model can be programmed directly as it appears above. 

The following code illustrates the PROC MCMC statement within a macro, which will allow running multiple chains 
more easily.  Multiple chains are necessary for Gelman-Rubin convergence diagnostics, which will be discussed in a 
later section. 
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%MACRO mcmc_model (iter, burnin, thin, indata, outdata); 

PROC MCMC 

 DATA = &indata 

 NMC = &iter NBI = &burnin THIN = &thin 

 INIT = RANDOM /* Random initial values allow Gelman-Rubin diagnostics */ 

 OUTPOST = &outdata; /* Save draws from the posterior distribution */ 

 

 ARRAY mu[3]; 

 ARRAY sigma[3,3]; 

 PARMS beta1 beta2 mu sigma; /* Since this model uses conjugate sampling, the 

parameters can all be included in the same PARMS statement without being proposed 

together. */ 

 

 /* Hyperprior constants */ 

 ARRAY mu0[3] (0 0 0); 

 ARRAY sigma0[3,3] (625, 200, 200, 200, 625, 200, 200, 200, 625); 

 ARRAY S[3,3] (500, 50, 50, 50, 500, 50, 50, 50, 500); 

 

 /* Prior distributions */ 

 PRIOR beta: ~ NORM(0, VAR = 10000);  

 PRIOR sigma ~ IWISH(5, S); 

 PRIOR mu ~ MVN(mu0, sigma0); 

 

 /* Data */ 

 ARRAY brand[4] yoplait dannon weight hiland; 

 ARRAY feature[4] feat_yoplait feat_dannon feat_weight feat_hiland; 

 ARRAY price[4] price_yoplait price_dannon price_weight price_hiland; 

 

 ARRAY p[4];       /* Vector of probabilities */ 

 ARRAY exp_eta[4]; /* Vector of linear predictor */ 

 ARRAY alpha[3];   /* Random effects */ 

  

 /* Sampling model */ 

 RANDOM alpha ~ MVN(mu, sigma) SUBJECT = id MONITOR = (alpha); 

 

 /* Calculate exponentiated linear predictor */ 

 DO j = 1 TO 3; 

  exp_eta[j] = exp(alpha[j] + beta1 * feature[j] + beta2 * price[j]); 

 END; 

 

 /* Calculate baseline category, where alpha4 = 0 */ 

 exp_eta[4] = exp(beta1 * feature[4] + beta2 * price[4]); 

 

 /* Calculate the denominator by summing over exp_eta. */ 

 denom = exp_eta[1] + exp_eta[2] + exp_eta[3] + exp_eta[4]; 

 

 /* Convert to probabilities */ 

 DO j = 1 TO 4; 

  p[j] = exp_eta[j]/denom; 

 END; 

 

 MODEL brand ~ MULTINOM(p); 

RUN; 

%MEND mcmc_model; 

 

The updated code includes statements for the likelihood function.  A loop is used to calculate the values for the 
numerator, exp_eta, for categories        .  For the baseline category, the intercept    is constrained to equal  , 

and the formula to calculate the numerator is changed accordingly.  If, for example, the effect of price and advertising 
had been allowed to vary by brand as well, then the coefficients for price and advertising would also have to be 
constrained to equal 0 in the baseline category.  A second loop is used to create the vector of probabilities, p, by 
dividing each of the numerators by their sum, denom.  Finally, brand is modeled as a multinomial distribution using 
the vector of probabilities. 
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To incorporate random effects for households, a RANDOM statement is used.  The RANDOM statement in PROC 
MCMC is new to SAS 9.3, and simplifies including random effects considerably.  The RANDOM statement in the 
code above includes a separate intercept term for each household/brand combination.  Including the MONITOR 
option displays diagnostics for each of the random effect parameters included.  Monitoring all of the random effect 
parameters in a multinomial model produces a large amount of output – 300 extra parameters in this case. If any of 
the random effects have not converged, however, then the chain as a whole may not have converged.  Therefore, for 
completeness, the code above monitors each of the random effects.  At minimum, some parameters from each of the 
three categories should be examined for convergence. 

With the model coded into a macro, we are ready to “turn the Bayesian crank!”  The following section discusses 
running and assessing convergence of the Markov chain. 

ASSESSING CONVERGENCE 

A wide variety of options exist for checking the convergence of an MCMC chain.  SAS includes many of those options 
by default.  For the sake of brevity, this paper will focus on producing one diagnostic which requires a bit of extra 
effort in SAS, the Gelman-Rubin diagnostic test.  The Gelman-Rubin diagnostic compares the results from two or 
more chains.  Once the chains converge, in principle draws from both chains should be indistinguishable.  As such, 
the Gelman-Rubin diagnostic compares the variance within one chain to the variance between the two chains.  If the 
ratio of the variances – called the potential scale reduction factor – is close to 1, then the chains are indistinguishable, 
meaning they may have converged on the target distribution. 

Figure 1 illustrates this graphically.  In the traceplot to the left, both chains are taking draws from the same target 
distribution, and appear to be indistinguishable.  These chains may have converged, and the potential scale reduction 
factor is approximately 1.  By contrast, in the traceplot to the right, the chains do not appear to be covering the same 
range of the parameter space.  As such, these chains have not yet converged, and the potential scale reduction 
factor is approximately 12, which is much larger than 1. 

 

Figure 1. Gelman-Rubin Convergence Diagnostic Tests. 

Gelman-Rubin diagnostics are included in the SAS autocall macro %gelman.  Given more than one chain to 
compare, and a list of variables, the %gelman macro will calculate the potential scale reduction factor and its upper 
bound for each of the variables in the list.  Running several MCMC chains can be very time consuming, however, and 
creating a list of all of the random effects to be tested can require quite a bit of macro coding.  The following sections 
will illustrate how to speed processing by taking advantage of the multiple core processors that most modern 
computers have, and how to efficiently calculate diagnostics for all of the variables. 

RUNNING MULTIPLE MCMC CHAINS 

Running a single MCMC chain to convergence can take over thirty minutes on even a high-end PC.  Running multiple 
chains in succession multiplies the amount of running time by the number of chains which are run.  Fortunately, since 
each chain does not depend on the others, the chains can be run simultaneously on computers which have multi-core 
CPUs, which greatly reduces the amount of time needed.  To use multiple cores simultaneously, a new session of 
SAS must be opened for each chain to be run. 

The RSUBMIT command can be used to open additional SAS sessions from within a single SAS program.  When 
invoking separate SAS sessions, however, library locations and macros must be passed to each of the sessions.  
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Saving the %mcmc_model macro to a separate program file and bringing it in using the %INCLUDE statement 
simplifies the process of submitting two chains simultaneously. 

/* First MCMC chain */ 

SIGNON chain1 SASCMD = "!SASCMD" INHERITLIB=(work=work1); 

RSUBMIT chain1 WAIT = NO; 

 %INCLUDE "C:\SESUG\mcmc.sas"; 

 %mcmc_model(5000, 2500, 1, work1.yogurt, work1.posterior1); 

ENDRSUBMIT; 

 

/* Second MCMC chain */ 

SIGNON chain2 SASCMD = "!SASCMD" INHERITLIB=(work=work1); 

RSUBMIT chain2 WAIT = NO; 

 %INCLUDE "C:\SESUG\mcmc.sas"; 

 %mcmc_model(5000, 2500, 1, work1.yogurt, work1.posterior2); 

ENDRSUBMIT; 

 

/* After both chains have finished running, concatenate the results */ 

WAITFOR _ALL_ chain1 chain2; 

DATA chains; 

 SET posterior1 posterior2 (IN = a) NOBS = nmc; 

 IF a THEN chain = 2; 

 ELSE chain = 1; 

 /* Create a variable for the number of draws, required for %gelman macro */ 

 CALL SYMPUT('nsim', nmc/2); 

RUN; 

 

Note that the INHERITLIB= option allows the statements in each session to read from and write to the original 
session’s WORK library.    For additional information on and methods for using multiple CPU cores simultaneously, 
see Dilts (2011).  Once the chains have completed running, all that remains is to construct the list of variables to be 
tested. 

PREPARING VARIABLE LISTS FOR THE %GELMAN MACRO 

Ideally, all the parameters should be tested for convergence.  The model constructed above, however, estimates 315 
parameters.  Fortunately, a small amount of additional programming, suggested by Carpenter (2004), allows us to 
create macro variables which will form the inputs for the %gelman macro. 

/* Note that we exclude the automatically created variables Iteration, LogPrior, 

LogLike, and LogPost and the variable chain */ 

PROC CONTENTS DATA = chains (DROP = Iteration Log: chain) OUT = vars NOPRINT; 

RUN; 

 

/* Create macro variables for the number of parameters to be tested, and a list of 

the names of the parameters to be tested. */ 

DATA _NULL_; 

 LENGTH allvars $32767; 

 RETAIN allvars ' '; 

 SET vars END = eof NOBS = nvar; 

 allvars = TRIM(LEFT(allvars))||' '||LEFT(name); 

 IF eof THEN DO; 

  CALL SYMPUT('varlist', allvars); 

  CALL SYMPUT('nparm', nvar); 

 END; 

RUN; 

 

%GELMAN(chains, &nparm, &varlist, &nsim, nc = 2); 

 

The %gelman macro creates two data sets, _gelman_ests and _gelman_parms, which can be inspected for signs of 
non-convergence among the parameters.  In general, values that are much larger than 1 indicate parameters whose 
simulated values have not yet converged on the target distribution. 
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CONCLUSION 

This paper demonstrates how to construct and test a hierarchical, multinomial logit model in PROC MCMC.  It 
illustrates three aspects of fitting a Bayesian model, setting the prior distributions, coding the sampling model, and 
checking convergence of the MCMC chains.  In particular, it provides advice for areas where pitfalls commonly occur: 
testing the prior distributions, writing the full PROC MCMC syntax including the reference category, running several 
chains simultaneously, and testing many parameters for non-convergence. 

In general, the solution to most problems of non-convergence is to run the chain longer.  In principle, since the next 
value for any parameter only depends on the immediately previous value, a chain could be continued by using the 
previous chain’s final values as the new chain’s initial values.  Extending existing chains, as well as a full treatment of 
non-convergence, are unfortunately beyond the scope of this paper. 

By walking through the steps involved in setting up a hierarchical, multinomial model, this paper illustrates tips for 
fitting complicated models in a Bayesian framework using SAS 9.3.  With a little bit of extra attention, many of the 
challenges which commonly arise while constructing complicated models in PROC MCMC can be overcome.  

APPENDIX: SYNTAX TO IMPORT YOGURT DATA INTO SAS 

/* Loads yogurt data from the mlogit package in R */ 

PROC IML; 

 SUBMIT / R; 

  # Load required libraries for mlogit to work 

  library(zoo) 

  library(MASS) 

  library(miscTools) # maxLik dependency 

  library(maxLik) 

  library(lmtest) 

  library(statmod) 

  library(Formula) 

 

  # Load mlogit & yogurt data 

  library(mlogit) 

  data(Yogurt) 

 ENDSUBMIT; 

 

 /* Send to data set in SAS */ 

 CALL ImportDataSetFromR("yogurt", "Yogurt"); 

QUIT; 

 

/* Prepare the yogurt data for PROC MCMC */ 

DATA yogurt; 

 SET yogurt; 

 

 /* Construct dummy variables for dependent variable */ 

 yoplait = (choice = "yoplait"); 

 dannon = (choice = "dannon"); 

 hiland = (choice = "hiland"); 

 weight = (choice = "weight"); 

 

 /* Change scale of prices to be in dollars, rather than cents */ 

 ARRAY prices price:; 

 DO OVER prices; 

  prices = prices/100; 

 END; 

RUN; 
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