
Array, Hurray, Array; Consolidate or Expand Your Input Data Stream Using Arrays, continued SESUG 2012

1

PO-18

Array, Hurray, Array; Consolidate or Expand Your Input Data Stream Using Arrays

William E Benjamin Jr – Owl computer Consultancy, LLC Phoenix AZ

Abstract

You have an input file with one record per month, but need an output file with one record per year. But

you cannot use PROC TRANSPOSE because other fields need to be retained or the input file is sparsely

populated. The techniques shown in this paper will enable you to be able to either consolidate or

expand your output stream of data by using arrays. Sorted files of data records can be processed as a

unit using "BY Variable" groups and building an array of records to process. This technique allows access

to all of the data records for a "BY Variable" group and gives the programmer access to the first, last and

all records in between at the same time. This will allow the selection of any data value for the final

output record.

Introduction

Arrays are everywhere, look no further than the pop machine in the nearest break room. It may have a

column of buttons, or several rows of buttons, or even a key pad that allows you to choose a drink from

row A and Column 5. Your Parking lot has lots of rows of spaces to park your car, and may even have

levels assigned to different groups or companies. So why don’t programmers use arrays more often?

Sometimes, because the first program they were assigned to modify or write did not have an array, and

they have been able to get along without them just fine, thank you! But look at their code again, and

you may see groups of variables like one for each month of a year, or age groups between 18 and 85.

Some will argue that it takes too much CPU time to process all of the empty slots in an array. However,

even that argument will fall by the wayside if the programmer uses a few simple counters to limit the

number of array entries that need to be cleared after they are no longer needed. Arrays have many uses

which include table look-up, consolidation of data, summing numbers, transposing data values and

many others. This paper will show examples from simple to complex to explain the use of arrays.

What is an Array?

An array is a concept first, then when applied it becomes a structure. I contend that the SAS® DATA Step,

Microsoft Excel, Microsoft Access, and many other software tools process “Arrays” by design. What

makes the concept of an array so universal is that an array is simple it has a name, a subscript, value or a

set of values. On a large scale a SAS dataset, an Excel spreadsheet, and an Access database table are all

arrays.

 They have a name.

 Each record can be referenced by an observation number, row number, or a database key.

 They have variables or columns.

Array, Hurray, Array; Consolidate or Expand Your Input Data Stream Using Arrays, continued SESUG 2012

2

Collectively these features of the file types listed above allow them to qualify as arrays. Most

programmers do not consider files to be arrays; this is easy to do because programmers rarely point to

specific records of a file for processing. But the SAS SET statement has a “POINT=” option that allows

just that for the selection of a specific data record within a random access file. SAS also has the options

OBS= and FIRSTOBS= which will restrict records used as input to SAS processing routines. SAS Also uses

Drop and Keep commands to limit variables. Excel files can have highlighted rows, columns, or ranges

that are processed, and Access Tables are frequently processed using the keys.

Arrays are not evil devices designed to confuse and befuddle programmers, they are structures we use

every day. Relational Database designers use small tables to store repeated data values to reduce the

overall size of the database. These small files are little more than arrays used to aid the processing and

storage requirements of the database. Microsoft Excel 2007 and beyond store arrays of repeated values

to conserve space, and a pop machine has an array of buttons to allow you to pick your favorite drink

today.

With this idea in mind, let’s just think smaller.

Array Definition Syntax

One of the simplest syntax forms for an array definition is the following:

SYNTAX -- ARRAY array_name {subscript_range} $ n variable_list (values);

Simple Arrays

One simple task an array can do is to convert a numeric month number into a character month value.

Many programs try to conserve space by using the fewest number of bytes or characters to represent

what would take more space. Appendix-A shows you how to use the array in example (1) to convert a

two digit month value to the name of the month. The code in Appendix-A reads a data file of months,

sales amounts and returns. After sorting by the month variable the code then summarizes the data file

for printing by using retained variables to store totals for each month of the year and outputting one

record for each month. The following is an array definition that could be used to perform that task.

Example (1)-- ARRAY months {12} $ 12

 mth1-mth12 ('January' 'February' 'March' 'April'

 'May' 'June' 'July' 'August'

 'September' 'October' 'November' 'December');

This definition has seven parts, other definitions can have more (or less when using numeric values).

1. The SAS Code statement “ARRAY” begins the definition of an array

2. Next a valid SAS name (“months”) defines the array name reference

3. The “{subscript_range}” is a numeric expression defining the number of array values.

4. This definition is a list of character variables (denoted by the “$”)

Array, Hurray, Array; Consolidate or Expand Your Input Data Stream Using Arrays, continued SESUG 2012

3

5. The length of each variable in this array is specified in bytes (12)

6. A list of 12 character variable names is provided (mth1-mth12). The number of variable names

must match the number of elements defined by the subscript range.

7. This definition also has an optional list of initial values that populate the array variables.

The SAS Array definition has other syntax parts that we will discuss later. The array used in Appendix-A

looks something like Figure 1. and was just used to replace one value with another.

 Figure 1. (to the left) Is a one dimensional array

of month names (the index values are not part

of the array) . The actual array definition above

shown as Example (1) would consist of the SAS

variables mth1, mth2, mth3, …, mth12.

Appendix –A uses this array to replace a month

number with the name of the month.

Additionally since the input file is sorted, the

“BY Variable” statement in the SAS program

and the “list.variable” reduce the output to one

line per month in the output file.

Using Arrays to Collect, Consolidate, and Summarize Data

Another use of arrays is to summarize data. Appendix-B shows an example of this use of arrays. The

SASHELP dataset “Stocks” is used as input for the example code in Appendix-B. The file has stock market

data for three companies listed at the beginning of the month for 19 years and 5 months, along with

high and low prices during the month. The program uses a “WHERE” clause on the set statement to read

only the full 19 years of data then keeps two variables (the high and low stock value for each month) in

the arrays defined below. The indices of the array are derived from the variables “STOCK” and “DATE” in

the source file. Two formats were used to allow the definition and order of the companies to be external

to the data step that reads the file. The year and the month were extracted from the “DATE” variable

and used as the other two indices. The following array definitions set up these data structures using

temporary variables. :

Example—2:
 Array monthly_high {3,19,12} _temporary_ ;

 Array monthly_low {3,19,12} _temporary_ ;

This array would be similar in structure to two Excel workbooks with 3 pages (one for each company)

any each page would have 19 rows with 12 columns. The rows would store data for each year and the

 SESUG 2012

4

columns would store data for each month. Each workbook would store the data for one variable (high

stock price or low stock price).

This definition has six parts.

1. The SAS Code statement “ARRAY” begins the definition of an array

2. Next a valid SAS name (“monthly_high” or “monthly_low”) defines the array name reference

3. The “{subscript_range}” is a numeric expression defining the number of values in the

array. This definition has three parts. The number three represents three companies, the 19 is

for each of the 19 full years of stock market data, and the 12 is for the 12 months in each year.

The total number of variable required for this definition is 3*19*12=684.

4. This definition is a list of numeric variables (denoted by the absence of a “$”)

5. The length of each variable in this array is the default of 8 bytes for a numeric variable

6. The SAS keyword “_temporary_” is used to define the array variables as a list of exactly as many

variables as are needed to fill all dimensions of the array. The variables are automatically

retained.

The output file from the code in Appendix-B is a file with 19 records for each of three companies. The

PROC PRINT output is shown listed by company. The records are shown in the newest to oldest order,

but could be output in the other order by using the alternate “DO loop” shown in the code.

Using Arrays to Expand Data

The next example is a little shorter and simpler. Example-3 (See Appendix-C for a listing of the code)

uses the SASHELP.PRICEDATA file with 17 variables that have different prices. A file like this would be

great for a back office accounting application but it might not be useful as a public price sheet. The code

that follows expands the file by creating one record for each different price. That file could then be

sorted and separated into public price sheets.

Example—3:
 Array prices {17} price1-price17;

This definition has six parts.

1. The SAS Code statement “ARRAY” begins the definition of an array

2. Next a valid SAS name (“prices”) defines the array name reference

3. The “{subscript_range}” is a numeric expression defining the number of array values.

4. This definition is a list of numeric variables (denoted by the absence of a “$”)

5. The length of each variable in this array is the default of 8 bytes for a numeric variable

6. The SAS variable name range “price1-price17” defines the list of array variables. These variables

are part of the input file, but are dropped from the output file.

 SESUG 2012

5

The output file produced by Example-3 is a file with 17,340 lines generated from the input file that had

1020 lines. The file changed from 28 variables to 13 variables (17 variables were dropped and two were

added). The code that follows will generate the new output file.

Conclusion

This paper has shown several techniques that use arrays to perform different tasks without using PROC

TRANSPOSE. The first task replaced a numeric month value for the name of the month, and summed

values to reduce a sparsely populated variable number of monthly records into a set of records with one

record per month. The second example read all of the data in a file into an array and then summarized

the records looking for the months with maximum and minimum stock prices. This example then wrote

out annual records for each annual set of values by company. The third job split one file with 17 price

values into a file with records that had only one price value per record. Arrays are powerful data

structures and have many uses. In fact many programmers use some form of an array without realizing

or calling the structure a formal array. This paper has attempted to point out some of the structure and

uses of an array in conjunction with other features of the SAS Language like “BY Variable” processing,

end of file processing, using the output statement to control the final datasets.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: William E Benjamin Jr
Enterprise: Owl Computer Consultancy, LLC
Address: P.O.Box 42434
City, State ZIP: Phoenix AZ, 85080
Work Phone: 623-337-0269
E-mail: William@owlcomputerconsultancy.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

 SESUG 2012

6

Appendix A – One Dimensional Array Example

This example uses a one dimensional array to convert a two digit month value into a text string that is
the month name. The data is sorted and summarized before being printed.

data monthly_sales;

infile cards;

input month 2. sales returns ;

datalines;

01 5678 9

04 27875 30

02 9078 75

05 29118 50

04 8634 32

07 4833 11

09 25644 270

03 5668 350

02 665 700

05 5673 90

06 10622 330

10 5615 120

05 5699 10

11 5676 50

08 674 50

09 8651 240

11 683 18

04 5845 490

03 16289 820

01 450 40

02 6647 280

12 4645 560

11 9672 920

;

run;

proc sort data=monthly_sales;

by month;

run;

data net_sales;

retain net_sales monthly_sales monthly_returns 0 this_month ' ';

* The array is defined here, initial values for each month name I defined here;

ARRAY month_names {12} $ 12 mth1-mth12

 ('January' 'February' 'March' 'April'

 'May' 'June' 'July' 'August'

 'September' 'October' 'November' 'December');

set monthly_sales;

by month;

if first.month then do;

 net_sales = 0; * Total sales less returns;

 monthly_sales = 0; * Total monthly sales;

 monthly_returns = 0; * Total monthly returns;

 record_count = 0; * Count of monthly records;

 SESUG 2012

7

end;

* The array is used here to convert the month number to the month name;

this_month = month_names(month); * Convert to Character month name;

net_sales = sum(net_sales,sales,(returns*-1)); * Total sales less returns;

monthly_sales = sum(monthly_sales,sales); * Total monthly sales;

monthly_returns = sum(monthly_returns ,returns); * Total monthly returns;

record_count + 1; * Count of monthly records;

if last.month then output;

drop mth:; * Drop all variables that begin with mth, this would be mth1-mth12;

run;

proc print data=net_sales noobs;

format monthly_sales monthly_returns net_sales Dollar10.;

var month record_count this_month monthly_sales monthly_returns net_sales;

sum monthly_sales monthly_returns net_sales;

run;

* Note then month numbers in the input dataset were converted to the values in the ‘this_month’

variable;

 The SAS System 1

 record_ this_ monthly_ monthly_

 month count month sales returns net_sales

 1 2 January $6,128 $49 $6,079

 2 3 February $16,390 $1,055 $15,335

 3 2 March $21,957 $1,170 $20,787

 4 3 April $42,354 $552 $41,802

 5 3 May $40,490 $150 $40,340

 6 1 June $10,622 $330 $10,292

 7 1 July $4,833 $11 $4,822

 8 1 August $674 $50 $624

 9 2 September $34,295 $510 $33,785

 10 1 October $5,615 $120 $5,495

 11 3 November $16,031 $988 $15,043

 12 1 December $4,645 $560 $4,085

 ========== ========== ==========

 $204,034 $5,545 $198,489

 SESUG 2012

8

Appendix B – Multi-Dimensional Array Example

proc format fmtlib;

value $comp_n

'IBM' = 1

'Intel' = 2

'Microsoft' = 3;

value comp_c

1 = 'IBM'

2 = 'Intel'

3 = 'Microsoft';

run;

data stocks;

 retain cmp1 cmp2 cmp3 ' ' Max_month Min_month ' ';

 * Array to store the text version of the company name;

 Array Company {3} $ 9 cmp1-cmp3;

 * array of month names;

 ARRAY months {12} $ 12

 mth1-mth12 ('January' 'February' 'March' 'April'

 'May' 'June' 'July' 'August'

 'September' 'October' 'November' 'December');

 **;

 ** Multi dimensional arrays for each variable **;

 ** All Companies, All years, All months **;

 ** _temporary_ variables were used to avoid **;

 ** a large number retained variables. **;

 ** These arrays would each use 684 variables **;

 **;

 Array monthly_high {3,19,12} _temporary_ ;

 Array monthly_low {3,19,12} _temporary_ ;

 format Annual_yearly_high Annual_yearly_low dollar16.2;

 * data in file for 1986 is Aug to Dec - only use full year's worth of data;

 set sashelp.stocks (where=(date gt mdy(12,31,1986))) end=eof;

 * calculate the array indices;

 company_index = input(put(stock,$comp_n.),3.); * IBM, Intel, and Microsoft;

 year_index = input(put(date,year.),4.) - 1986; * adjust to index value of 1;

 month_index = input(put(date,month.),2.); * index for month (1-12);

 *put the company names into an array;

 company(company_index) = put(company_index,comp_c.); * fill the company name array;

 * load the high and low monthly values into an array one record at a time;

 monthly_high (company_index,year_index,month_index) = high;

 monthly_low (company_index,year_index,month_index) = low;

 **;

 ** All data is read before processing any **;

 SESUG 2012

9

 ** information. The use of the output statement **;

 ** in the "end of file" do/end structure will **;

 ** suppress all automatic output to files. One **;

 ** record is output for each company, for each **;

 ** year with the stock highs and lows (and the **;

 ** month of the high or low). The commands: **;

 ** 1) Do yr = 1 to 19 **;

 ** 2) Do yr = 19 to 1 by -1 **;

 ** control the way records are output (ascending **;

 ** or descending by year) **;

 **;

 * when all data is in the arrays search for high and low months in each year by company;

 if eof then do;

 do comp = 1 to 3; * for each company;

 company_name = company(comp);

 *do yr = 1 to 19; * in each year - oldest year first;

 Do yr = 19 to 1 by -1; * in each year - newest year first;

 Annual_yearly_high = 0;

 Annual_yearly_low = 9999999;

 do mth = 1 to 12; * check every month;

 if Annual_yearly_high lt monthly_high(comp,yr,mth) then do;

 Annual_yearly_high = monthly_high(comp,yr,mth);

 Max_month = months(mth);

 end;

 if Annual_yearly_low gt monthly_low(comp,yr,mth) then do;

 Annual_yearly_low = monthly_low(comp,yr,mth);

 Min_month = months(mth);

 end;

 year = yr + 1986;

 end;

 output; * save the annual highs and lows;

 end;

 end;

 end;

 drop open close volume high low date stock cmp1 cmp2 cmp3 company_index

 year_index month_index AdjClose comp yr mth mth1-mth12;

run;

proc print data=stocks noobs;

by company_name;

var year annual_yearly_high max_month annual_yearly_low min_month;

run;

 The SAS System 1

 „ƒƒ†

 ‚ FORMAT NAME: COMP_C LENGTH: 9 NUMBER OF VALUES: 3 ‚

 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 9 FUZZ: STD ‚

 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰

 ‚START ‚END ‚LABEL (VER. V7|V8 31JUL2011:13:30:35)‚

 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰

 ‚ 1‚ 1‚IBM ‚

 ‚ 2‚ 2‚Intel ‚

 ‚ 3‚ 3‚Microsoft ‚

 SESUG 2012

10

 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

 „ƒƒ†

 ‚ FORMAT NAME: $COMP_N LENGTH: 1 NUMBER OF VALUES: 3 ‚

 ‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0 ‚

 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰

 ‚START ‚END ‚LABEL (VER. V7|V8 31JUL2011:13:30:35)‚

 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰

 ‚IBM ‚IBM ‚1 ‚

 ‚Intel ‚Intel ‚2 ‚

 ‚Microsoft ‚Microsoft ‚3 ‚

 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

 The SAS System 2

-- company_name=IBM ------------------------------------

 Annual_yearly_ Annual_yearly_ Min_

 year high Max_month low month

 2005 $99.10 January $71.85 April

 2004 $100.43 February $81.90 August

 2003 $94.54 October $73.17 March

 2002 $126.39 January $54.01 October

 2001 $124.70 December $83.75 January

 2000 $134.94 September $80.06 December

 1999 $246.00 May $89.00 October

 1998 $189.94 December $95.62 January

 1997 $179.25 May $81.75 June

 1996 $166.00 December $83.12 January

 1995 $114.62 August $70.25 January

 1994 $76.37 October $51.38 March

 1993 $59.88 December $40.63 August

 1992 $100.37 July $48.75 December

 1991 $139.75 February $83.50 December

 1990 $123.12 July $94.50 January

 1989 $130.88 January $93.37 December

 1988 $129.50 July $104.25 March

 1987 $175.88 August $100.00 October

--------------------------------------- company_name=Intel ---------------------------------

 Annual_yearly_ Annual_yearly_

 year high Max_month low Min_month

 2005 $28.84 July $21.89 January

 2004 $34.60 January $19.64 September

 2003 $34.51 November $14.88 February

 2002 $36.78 January $12.95 October

 2001 $38.59 January $18.96 September

 2000 $147.50 July $29.81 December

 1999 $143.69 January $50.13 June

 1998 $126.19 December $65.66 June

 1997 $169.75 May $67.37 December

 SESUG 2012

11

 1996 $141.50 December $49.81 January

 1995 $119.00 May $55.19 December

 1994 $73.50 March $56.00 April

 1993 $121.25 March $49.25 July

 1992 $91.50 December $46.50 May

 1991 $59.25 June $37.75 January

 1990 $52.00 July $28.00 October

 1989 $36.00 December $22.87 January

 1988 $37.25 June $19.25 November

 1987 $62.75 October $20.25 November

 The SAS System 3

------------------------------------- company_name=Microsoft --------------------------------

 Annual_yearly_ Annual_yearly_ Min_

 year high Max_month low month

 2005 $28.25 November $23.82 March

 2004 $30.20 November $24.01 March

 2003 $57.32 January $22.55 March

 2002 $70.62 January $41.41 July

 2001 $76.15 June $42.88 January

 2000 $118.62 January $40.31 December

 1999 $180.38 March $75.50 May

 1998 $160.06 February $79.25 March

 1997 $150.75 July $80.75 January

 1996 $159.50 December $76.37 December

 1995 $109.25 July $58.25 January

 1994 $99.25 May $46.88 July

 1993 $98.00 June $70.37 August

 1992 $133.25 January $65.50 July

 1991 $117.50 April $60.50 July

 1990 $122.00 April $50.75 August

 1989 $89.25 November $45.75 March

 1988 $70.50 July $45.25 November

 1987 $128.25 May $37.25 October

 SESUG 2012

12

Appendix C – One Dimensional Array Example Used to Expand a Data File

* output file, with the 17 variables of the original array dropped;

data pricedata (drop=price1-price17);

 * output file, with the 17 variables of the original array dropped;

 array prices {17} price1-price17;

 set sashelp.pricedata;

 * output 17 records for every rodord on the input file;

 do i = 1 to 17;

 price = prices(i);

 price_number = i;

 output;

 end;

 drop i;

run;

