
A Closer Look at PROC SQL’s FEEDBACK Option
Kenneth W. Borowiak, PPD, Inc., Morrisville, NC

ABSTRACT
The FEEDBACK option on the PROC SQL statement controls whether an expanded or transformed version of a
query using terse notations is written to the SAS R©log. This paper will review some of the documented features of
this option and provide additional programming conventions that are explicitly stated when the option is enabled.
It will be shown that the FEEDBACK option is an invaluable tool for understanding how PROC SQL processes a
query and how it can be used as a code generator.

Keywords: PROC SQL, feedback, select *, natural joins, macro variables, operator mnemonics.

INTRODUCTION
The FEEDBACK option on the PROC SQL statement controls whether an expanded or transformed version of a
query using concise notations is written to the SAS log. The simple query in Figure 1 demonstrates some of the
documented features of the FEEDBACK option, as per the SAS Online Doc dating back to at least Version 8.

Figure 1 - Some of the Documented Features of the FEEDBACK Option

option nosymbolgen ;
%let cutoff=12;
proc sql feedback ;

create table class1 as
select *
from Sashelp.Class /* No table alias specified */
where age < &cutoff.

or weight > 100
;
quit ;

Partial SAS Log:

NOTE: Statement transforms to:

select CLASS.Name, CLASS.Sex, CLASS.Age, CLASS.Height, CLASS.Weight
from SASHELP.CLASS
where (CLASS.Age<12) or (CLASS.Weight>100);

NOTE: Table WORK.CLASS1 created, with 11 rows and 5 columns.

Though not shown, the SAS log contains the code sent to the compiler. In addition, the FEEDBACK option requests
a rewritten version of the query to be written to the log, sans the CREATE TABLE statement of the query. The
example demonstrates some of these documented transformations by the option:

• The SELECT * short-cut to select all variables from the source tables are explicitly stated.

• Macro variable references are resolved, which was CUTOFF in this example, despite the fact that the system
option NOSYMBOLGEN was specified.

• Parentheses are shown around expressions to further indicate their order of evaluation, as shown in the
WHERE clause.

• Comments are removed.

1

SESUG 2012

You should start to see the value of invoking the FEEDBACK option, as an explicitly written query with logical
grouping of conditions can make debugging and reviewing queries easier. This can be especially helpful to SAS
users who are less experienced with PROC SQL. As the default setting for PROC SQL is NOFEEDBACK and there
is not a system option to set the FEEDBACK option, using a SAS Enhanced Editor abbreviation (2) to generate the
PROC SQL statement with the FEEDBACK option and your other preferred settings is an efficient way to proceed
1.

VIEWS
The last of the documented features of the FEEDBACK option is that any PROC SQL view is expanded into the
underlying query. Consider splitting of the SASHELP.CLASS data set into a table and view, as shown in Figure 2.

Figure 2 - Splitting SASHELP.CLASS into a Table and a View

proc sql ;
/* Keep all fields except WEIGHT */
create table part1 as
select *
from Sashelp.Class(drop=weight)
;

/* Keep only NAME and WEIGHT fields */
create view part2 as
select name, weight
from Sashelp.Class
;
quit ;

Now reconstructing the table by joining to the two pieces using the primary key field NAME with the FEEDBACK
option invoked is shown in Figure 3.

1The options I have set for my PROC SQL statement include FEEDBACK and method. See Lavery (3) for an excellent paper on the method
option.

2

A Closer Look at PROC SQL's FEEDBACK Option, continued SESUG 2012

Figure 3 - Referencing an SQL View

proc sql feedback ;
create table class2 as
select *
from part1 as T1

, part2 as V2
where T1.name=V2.name
;
quit ;

Partial SAS Log:
NOTE: Statement transforms to:

select T1.Name, T1.Sex, T1.Age, T1.Height, CLASS.Name, CLASS.Weight
from WORK.PART1 T1,

(select CLASS.Name, CLASS.Weight
from SASHELP.CLASS

)
where T1.Name=CLASS.Name;

WARNING: Variable Name already exists on file WORK.CLASS2.
NOTE: Table WORK.CLASS2 created, with 19 rows and 5 columns.

You can see that the rewritten version of the query replaces the view referenced by the V2 alias with it’s original
definition. In addition, the V2 view alias is replaced with the source table (i.e. CLASS) when referencing fields.

If the FEEDBACK option is used in queries that references a view whose definition is based on another SQL view,
the nested view is also expanded in the log. However, views created with a DATA step are not expanded. This is
demonstrated in Figure 4, where the view PART2 from the example in Figure 3 is defined with a DATA step and the
query is rerun.

3

A Closer Look at PROC SQL's FEEDBACK Option, continued SESUG 2012

Figure 4 - DATA Step Views Are Not Expanded with FEEDBACK

data part2 / view=part2 ;
set Sashelp.Class(keep=name weight) ;
run ;

Partial SAS Log:
NOTE: Statement transforms to:

select T1.Name, T1.Sex, T1.Age, T1.Height, V2.Name, V2.Weight
from WORK.PART1 T1, WORK.PART2 V2
where T1.Name=V2.Name;

WARNING: Variable Name already exists on file WORK.CLASS2.
NOTE: View WORK.PART2.VIEW used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: Table WORK.CLASS2 created, with 19 rows and 5 columns.

CODE GENERATION - EXPANDING SELECT *
You may have noticed the queries in Figure 3 and Figure 4 resulted in a WARNING in the SAS log due to a collision
in the variable namespace. This was caused by using the SELECT * variable list short-cut that was referencing
the primary key NAME from both of the data sources. Some programming environments require ’clean’ logs,
where certain NOTEs, WARNINGs, and ERRORs are strictly prohibited. If namespace collisions in SQL queries are
not permissible, then explicitly stating the relevant variables in the SELECT statement is a viable way to proceed.
However, this may be cumbersome if there are numerous fields to list. The FEEDBACK option, though, could be
used to generate the code for the query (except for the CREATE TABLE/VIEW statement) using terse conventions,
such as SELECT *. The programmer could then copy an explicit version of the query from the log, remove the
duplicate field reference(s), and then execute the query.

This two step process could be problematic if working with large amounts of data, as the query would need to
be executed twice. However, you can request PROC SQL to generate a tranformed version of the query using the
FEEDBACK without actually executing the query by using the VALIDATE statement. The VALIDATE statement in
PROC SQL serves to check the syntax of the query without executing it. Figure 5 shows the first step in the process,
continuing with the example from Figure 3.

4

A Closer Look at PROC SQL's FEEDBACK Option, continued SESUG 2012

Figure 5 - Using the FEEDBACK Option and VALIDATE Statement for Code Generation

proc sql feedback ;
validate
/* create table class2 as*/
select *
from part1 as T1

, part2 as V2
where T1.name=V2.name
;
quit ;

Partial SAS Log:
NOTE: Statement transforms to:
validate
select T1.Name, T1.Sex, T1.Age, T1.Height, CLASS.Name, CLASS.Weight

from WORK.PART1 T1,
(select CLASS.Name, CLASS.Weight

from SASHELP.CLASS
)

where T1.Name=CLASS.Name;

NOTE: PROC SQL statement has valid syntax.

In order to use the VALIDATE statement properly the CREATE TABLE/VIEW statement should be excluded, hence
the commented out line in the example. Now copy the expanded SELECT statement from the log into the editor
and remove the redundant reference to NAME (i.e. T1.Name or CLASS.Name). For subsequent execution of the
query, also remove or comment out the VALIDATE statement and add in the CREATE TABLE/VIEW statement.
The log should no longer contain the WARNING about the duplicate field reference.

UNDOCUMENTED TRANSFORMATIONS
There are other transformations invoked by the FEEDBACK option that are not documented in the SAS Online doc.
The query in Figure 6 demonstrates some of these:

• The ? short-cut for the CONTAINS operator is expanded in the first in-line view V1.

• The & character for the AND logical operator is expanded in V1.

• The comparison operator GE is translated to >= in V1. Other comparison operator mnemonics, such LE, LT,
GT, and EQ, are also translated.

• The |character for the OR logical operator is expanded in V2. The ! character would also be restated as OR.

• The join condition(s) involved with a natural join are explicitly written in the ON clause.

• The ORDER BY clause is augmented with the default ordering sequence, which is ascending. Despite the use
of column positions with integers in the ORDER BY clause, the column names are not explicitly mentioned in
the rewritten version of the query.

5

A Closer Look at PROC SQL's FEEDBACK Option, continued SESUG 2012

Figure 6 - Undocumented Transformations of the FEEDBACK Option

proc sql feedback ;
create table undoc1 as
select *
from (select name "First Name", weight, age

from Sashelp.Class
where name ? ’a’

& weight ge 10) as V1
natural left join
(select name "First Name", height, sex

from Sashelp.Class
where sex let ’G’

| height lt 50) as V2
order by 1, 2
;
quit ;

Partial SAS Log:
NOTE: Statement transforms to:

select COALESCE(CLASS.Name, CLASS.Name) as name, CLASS.Height, CLASS.Sex,
CLASS.Weight, CLASS.Age

from (select CLASS.Name label=’First Name’, CLASS.Weight, CLASS.Age
from SASHELP.CLASS

where CLASS.Name contains ’a’ and (CLASS.Weight>=10)
) as V1 left outer join
(select CLASS.Name label=’First Name’, CLASS.Height, CLASS.Sex

from SASHELP.CLASS
where (CLASS.Sex let ’G’) or (CLASS.Height<50)

) as V2 on CLASS.Name=CLASS.Name
order by 1 asc, 2 asc;

NOTE: Table WORK.UNDOC1 created, with 9 rows and 5 columns.

CODE GENERATION - NATURAL JOINS
Natural joins are another good candidate for using the FEEDBACK option for code generation. The SAS Online
doc defines natural joins as a join that ”selects rows from two tables that have equal values in columns that share
the same name and the same type”, where the join relation can be inner, outer, or if no common fields between the
source tables, a Cartesian product. The use of natural joins in a production environment can be problematic, as the
introduction of new fields into your queries can cause them to become part of the join conditions, which may not
be intended. This problem can be avoided if you use explicit join conditions in your queries, which the FEEDBACK
option can aid in generating. If you choose to use natural joins, then it is recommended you use the FEEDBACK
option so that the join conditions can be examined in the log.

If you use the FEEDBACK option as a code generator for queries employing natural joins, then you should be
aware of the attributes of the primary key fields in the resultant table. If you refer to Figure 6 in the previous
section, the field NAME was ostensibly recreated as COALESCE(V1.Name, V2.Name). Since a left join was used
in the query, the values of NAME can only be contributed from the in-line view V1. The use of the COALESCE
function is unnecessary, and more importantly, unfortunate, because it prevents the inheritance of the variable label
from V1.NAME. If this is not the desired outcome, then you will want to modify the generated code for the primary
key fields in the SELECT statement to meet your specifications.

6

A Closer Look at PROC SQL's FEEDBACK Option, continued SESUG 2012

CONCLUSION
The FEEDBACK option provides an explicit version of an SQL query that uses short-cuts and terse notations in the
SAS log. This provides valuable insight as to how SQL processes a query, as well as an aid for less experienced
SQL users who are required to maintain or modify the code. The FEEDBACK option can also be used as a code
generator so that an explicit version of the query is the body of the program, rather than in the log. This paper
reviewed some of the documented transformations of query by the FEEDBACK option and exposed some new
ones. Hopefully, curious readers who make this option a standard part of their PROC SQL queries will discover
new transformations.

REFERENCES

[1] Borowiak, Kenneth W., ”Variable List Short-Cuts in PROC SQL”, NESUG 2006
http://www.nesug.org/proceedings/nesug06/cc/cc05.pdf

[2] Grant, Paul, ”Creating Code Templates in the SAS Enhanced Editor using Abbreviations and User Defined
Keywords”
http://support.sas.com/resources/papers/proceedings09/077-2009.pdf

[3] Lavery, Russ, ”The SQL Optimizer Project: Method and Tree in SAS9.1”, SUGI 30
http://www2.sas.com/proceedings/sugi30/101-30.pdf

ACKNOWLEDGEMENTS
The author would like to thank Jenni Borowiak, Bill Deese, Jim Worley, Kipp Spanbauer, Mike Kwee and Ted
Cherico for their insightful comments in reviewing this paper.

The contents of this paper are the work of the author and do not necessarily represent the opinions, recommenda-
tions, or practices of PPD, Inc.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Insti-
tute Inc. in the USA and other countries. R© indicates USA registration.

This document was typeset with LATEX .

CONTACT INFORMATION
Your comments and questions are valued and encouraged.

Ken Borowiak
PPD, Inc.
3900 Paramount Parkway
Morrisville, NC 27560

Ken.Borowiak@ppdi.com
EvilPettingZoo97@aol.com
(919) 456-5373

7

A Closer Look at PROC SQL's FEEDBACK Option, continued SESUG 2012

http://www.nesug.org/proceedings/nesug06/cc/cc05.pdf
http://support.sas.com/resources/papers/proceedings09/077-2009.pdf
http://www2.sas.com/proceedings/sugi30/101-30.pdf
http://www.latex-project.org/

