
SESUG 2012

1

Paper CT-20

Learning PROC SQL the DATA Step Way

Meghal Parikh, University of Central Florida, Orlando, FL
Elayne Reiss, University of Central Florida, Orlando, FL

ABSTRACT

As evidenced by some dissenting opinions within our own office, the use of PROC SQL for dataset manipulations
may be considered dreadful by those who learned their way around Base SAS® with only the DATA step. For many
tasks, there are few better routes to successful completion than a well-designed DATA step. However, PROC SQL
can serve as an efficient replacement to many tasks. This paper illustrates where replacing DATA step code with
PROC SQL-based code might be a smart decision for any Base SAS programmer. Additionally, it draws simple
analogies to DATA step syntax, reducing the possible intimidation associated with learning the complexities of PROC
SQL. With knowledge of both techniques, programmers will always be able to select the best technique for each data
manipulation scenario.

INTRODUCTION

As many SAS users have previously suggested, PROC SQL can sometimes be rather intimidating for those who
have learned data manipulation techniques solely through the use of DATA step programming. In our office, the
primary analysts are relatively new users to SAS and enjoy exploring diverse SAS data management techniques.
However, when working in an environment led by some seasoned SAS users who happen to be set in the ways of
the DATA step, analysts who code in a diverse fashion must have very specific reasons for coding with PROC SQL
or risk having to recode their work. With PROC SQL, as is the case with many SAS procedures, it is always possible
to accomplish more tasks by increasing the complexity of the syntax.

Creating harmony between these two schools of thought is not an impossible feat. When PROC SQL syntax reads
similarly to DATA step syntax as well as the code of other SAS procedures, it can be easy for other SAS
programmers in your team to understand your PROC SQL code. Conversely, if you are a hybrid user of Base SAS
and SAS Enterprise Guide, understanding complex PROC SQL code becomes gradually easier, since PROC SQL is
the underlying data manipulation procedure used by SAS Enterprise Guide 4.3.

The main goal for this paper is to find ways of coding that can be similar in both DATA step and PROC SQL. The
following list outlines some of the basic underlying terminology differences between the DATA step and PROC SQL
code:

 observations in DATA step are equivalent to “rows” in a SQL table

 variables in the DATA step are equivalent to “columns” in the SQL table

 set or merge statements in DATA step are equivalent to the from statement in SQL code

 the select statement syntax in SQL code can be used as a substitute for the keep, drop, or rename statements

in DATA step

This paper will explore the equivalencies of these statements between DATA step and PROC SQL, providing
examples along the way to aid in understanding and potential adaptation into any type of coding application.

BASIC SYNTAX

Before addressing the comparisons associated with more complex code, it is important to first establish basic
similarities and differences in the simplest code.

First, consider these few lines of code that almost any DATA step programmer likely has committed to memory:

/**DATA Step Syntax**/

data work.student_data_file;

 set project.student_data_file;

run;

After the comment line, you’ll notice an invocation statement that tells SAS that the DATA step is to be used to create
a table, student_data_file in the temporary work library. The set statement provides SAS with the source dataset,
student_data_file in the library called “project.” Finally, the statement is executed with the use of the run statement.

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

2

Now examine another few lines of code:

/**PROC SQL Syntax**/

proc sql;

 create table work.student_data_file as

 select *

 from project.student_data_file;

quit;

This PROC SQL statement achieves the identical result as the DATA step code previously displayed. Again, the first
line after the comment provides an invocation of the procedure to SAS. Create table provides the destination table
name and library location. The from statement takes the place of the DATA step’s set statement. Finally, the
invocation ends with quit rather than run.

Some functional differences exist, however. Unlike the DATA step’s set statement, PROC SQL’s from statement

cannot append two similar data sets separated in code by a space. Additionally, the DATA step will bring all of the
variables from the input data set into the output data set by default with no additional statements or options. PROC
SQL, on the other hand, requires the use of select followed by an asterisk, as shown in the above PROC SQL code,

in order to output all of the input dataset variables into the output dataset.

APPENDING DATASETS

The set statement is the simplest form of allocating and appending data sets in the DATA step. PROC SQL uses the
from statement to bring records from an input dataset to the output dataset. However, if two or more datasets with
overlapping or identical layouts need to be appended, from cannot be used in the same fashion as the DATA step’s
set statement. In this case, the outer union statement in PROC SQL needs to be used. The following example

demonstrates how this statement looks in PROC SQL:

proc sql;

 create table work.student_data_all as

 select *

 from work.student_freshmen

 outer union

 select *

 from work.student_seniors;

quit;

Outer union is PROC SQL’s method of simply concatenating two datasets (adding records, not merging on a

variable). This statement does not necessarily have the same intuitive syntax for a longtime DATA step programmer,
but using outer union does the same job. However, because it is combined with a select statement, using this

approach may be more intuitive when you want to concatenate another dataset but only want to select a few
variables from your dataset for the addition of extra observations. When using DATA step, you would need to utilize
an extra keep statement within your set declaration, whereas in the case of PROC SQL the select statement is

always ready and waiting for more specific variable selection.

THE SELECT STATEMENT SUBSTITUTES

The select statement syntax in PROC SQL can be one of the most intimidating features for new PROC SQL users.
Unlike in DATA step, which by default assumes that the user would like to keep all variables in the dataset unless
otherwise specified, PROC SQL requires the user to specify in the select statement the desired output variables
(columns) to retain from the input datasets. Using the asterisk operator after select allows the coder to keep all the

columns in the input dataset. An easier way for a DATA STEP traditionalist to learn PROC SQL is to use the data set
options in the from statement. This method provides the flexibility of intuitive syntax and shorter, more organized

code of PROC SQL. The following section will explore the use of these PROC SQL options.

KEEP, DROP AND RENAME VARIABLES (COLUMNS) IN PROC SQL

Most SAS coders have found themselves in the situation of having an input dataset with many variables and wanting
to create an output dataset that features all of the same variables…except for one. In such scenarios, many coders
would avoid using PROC SQL in fear of having to explicitly declare so many variable names in the select statement.
However, by using the ‘drop=’ option with the from statement, you only have to specify the variables that you don’t
want to retain. Similarly, the ‘keep=’ option is a better choice over listing many individual variables in the select

statement to specify which variables you want to bring into the output dataset.

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

3

Datasets for Examples

The datasets as displayed in Figure 1 and Figure 2 will serve as examples for data manipulations throughout the rest
of this paper.

Figure 1. Dataset, student_data

Figure 2: Dataset, student_course_data

Example

As an example of how dataset options can be used with PROC SQL to make the syntax more intuitive for those who
usually write code with DATA step, we will perform two coding tasks. First, we will rename the “student_id” column as
“emplid” in the output dataset (table) student_data. Secondly, we will drop the “academic_level” column.

First, for reference, the following code outlines these activities using DATA step. The “student_id” column is renamed
as of the output data set, while “academic_level” is dropped as the dataset is entered.

/**DATA Step Syntax**/

data work.student_data_new (rename=(student_id=emplid));

 set work.student_data (drop=academic_level);

run;

Next, we provide an example of this same technique using PROC SQL syntax. Note how the identical rename and
drop options are used on the output and input tables, respectively. These statements are not only more intuitive to

understand for the DATA step programmer, but save coding time over alternative PROC SQL methods for achieving
the same result.

/**PROC SQL Syntax**/

proc sql;

 create table work.student_data_newsql (rename=(student_id=emplid)) as

 select *

 from work.student_data (drop=academic_level);

quit;

As seen from these code snippets, PROC SQL manipulation can be made as simple as the corresponding DATA
step version. These coding shortcuts are not limited simply to rename and drop. Other statements commonly found
in DATA step can also be used with PROC SQL, including keep, label, compress, rename, and where, amongst

many others. We recommend consulting Borowiak’s paper, “Using Data Set Options in PROC SQL” (SUGI 31) for
more detailed information on this topic.

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

4

SUBSETTING IF, RECODING VARIABLES AND WHERE CONDITIONS

Both the subsetting if and where statements can be used in the DATA step to remove unwanted records from a
dataset based on a specified condition. In PROC SQL, the where statement allows the use of functions, just as the
subsetting if and where clause does in DATA step. Recoding in PROC SQL, on the other hand, may appear more

confusing for those accustomed to the use of the DATA step.

For the purposes of explaining this concept, we will present an example from the student_data table (Figure 1). Our
goal is to recode a new gender variable (“gender_new”) that presents this value as a whole word instead of the
original variable (“gender”) that only presents a single-character indicator. Additionally, we only wish to select a
subset of data containing students pursuing a PhD.

First, the DATA step version.

/**DATA Step Syntax**/

data work.student_data_recode

 set work.student_data

 /**Gender Recode**/

 if gender = ‘F’ then gender_new = ‘Female’;

else if gender = ‘M’ then gender_new = ‘Male’;

/**Subsetting if to keep PhD students only**/

if substr(Academic_Level,1,8) = "Doctoral";

run;

The recode is handled by an if-then-else construct, while the data subsetting is addressed with a short if statement.

Next, we present the PROC SQL version.

/**PROC SQL Syntax**/

proc sql;

 create table work.student_data_recode as

 select *,

 case when gender = ‘F’ then ‘Female’

 else ‘Male’

 end as gender_new

 from work.student_data

 where substr(Academic_Level,1,8) = "Doctoral";

quit;

In the PROC SQL case, the subsetting if, covered by the where statement, is nearly equivalent. However, the
recoding syntax is a little less familiar, necessitating the use of a case statement. This equivalency to the DATA step

version, while not overly complicated, will require a little more familiarizing oneself than some of the other techniques.

MERGING TABLES (DATASETS) USING WHERE STATEMENT

One of the most intimidating tasks that a DATA step user can find in using PROC SQL involves the complexity of
learning and understanding the use of join statements to merge datasets. On the other hand, someone who uses

PROC SQL recognizes its benefits over DATA step in merging datasets; namely, in the areas of efficiency and
speed. The major benefits a SAS programmer will find in using PROC SQL for merging data sets that we would like
to highlight include the following:

 no necessity to sort datasets prior to merging;

 no necessity to ensure that the names of matching variables are identical prior to merging; and

 one dataset can be subsetted during the merge using a condition on a variable in the other dataset.

One of the more straightforward ways to handle merging is through the use of the where statement of PROC SQL.
Understanding this technique can assist in the ease of learning the use of join statements at a later time. The where

statement can handle most types of merges and joins and simply requires the programmer to maintain clear logic in
coding. The following examples will explain a few scenarios of merges that can help avoid the complications of using
join statements.

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

5

EXAMPLE: ONE-TO-MANY MERGE/LEFT OUTER JOIN

Our first example involves what is known as a one-to-many merge, or as it is called in PROC SQL, a left outer join. In
this case, the goal is to take a dataset that contains a single record per individual in the population and merge it with
another dataset that may have multiple entries per population member.

In our example, we have a dataset containing members of a population (student_data_recode, modified from Figure
1) and another dataset that contains the classes that each student took in a particular semester
(student_course_data, Figure 2). Both datasets have common key variables, “student_id” and “term,” suitable for
merging. Our goal is to merge the two datasets to determine the courses that these PhD students took in the
academic year 2010-11.

First, we present the activity as completed with a DATA step. Notice how we need to sort both datasets using PROC
SORT and then perform the merge with the DATA step. The in statement specifies that we want to keep all entries
from the student_data_recode dataset, as it is the key dataset that defines our population. The if statement ensures

that only records that have an entry in student_data_recode are retained. Therefore, if there are any entries that are
present only in student_course_data and not in student_data_recode, they will not appear in the final output dataset.

/**DATA Step Syntax**/

proc sort data = work.student_data_recode;

 by student_id term;

run;

proc sort data = work.student_course_data;

 by student_id term;

run;

data work.classes_by_phd_students;

 merge work.student_data_recode (in=a) work.student_course_data;

 by student_id term;

 if a;

run;

Next, we present the same operation as performed in PROC SQL. It is quite clear that the entire operation is now
performed in one procedure, not three, as no sorting is required. No special keywords need to be specified regarding
the join type, as the where statement indicates the only equivalencies that need to be present.

/**PROC SQL Syntax**/

proc sql;

 create table work.classes_by_phd_students_sql as

 select *

 from work.student_data_recode, work.student_course_data

where student_data_recode.student_id = student_course_data.student_id

 and student_data_recode.term = student_course_data.term;

quit;

Most types of the merges can be handled by manipulating with the where conditions shown above. However, many-
to-many merges are difficult to handle with such logical conditions on where, so joins might need to be used.

SUMMARIZING DATA USING PROC SQL

One of the most commonly used data manipulation techniques involves sorting and summarizing data to obtain one
row per unique ID. DATA step users can use either a very complicated DATA step for this purpose or utilize PROC
SORT and PROC SUMMARY. PROC SQL, however, can act as a substitute for all of these methods. As in the case
of merging, the benefits of using PROC SQL over other procedures come to light when a task that otherwise requires
multiple steps can be performed with a single PROC SQL code snippet.

In the previous example, we gathered the course listing for all doctoral students. Now we would like to find all the
students who took more than 9 credit hours of classes in Fall 2010 (term = ‘201008’) and classify them by their
academic level. Using PROC SUMMARY and DATA step, we must summarize the student_course_data table by the
“section_credits” variable, merge that output table with the student_data table, and again sort and summarize the new
data table to obtain the number of student_ids with more than 9 credits. The output dataset appears in Figure 3.

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

6

Figure 3. Output of Summarized Table

First, we present the DATA step and PROC SUMMARY way to obtain these results. This three-step process involves
1) sorting the student dataset and summarizing the course dataset, 2) merging the summarized results back to the
original student data file that contains academic level, and 3) obtaining a summary by academic level, yielding the
output as seen in Figure 3. The job gets done, but not in the most efficient fashion.

/**Step 1: Sorting and Summarizing Credits by student by each term**/

proc sort data = work.student_data;

 by student_id term;

run;

proc summary data=work.student_course_data;

class student_id term;

 output out = work.credits_by_term_summary sum=;

 var section_credits;

run;

/**Step 2: Merging the Credits Summary to Academic Level from student_data table**/

data work.student_data_credits_summary;

 merge work.student_data (keep=student_id term academic_level)

work.credits_by_term_summary (keep =student_id term section_credits

where=(student_id ^= ' ' & term = '201008'));

 by student_id term;

 if term = '201008'; /**Subset the data to only include Fall 2010 records **/

run;

/**Step 3: Sorting and Summarizing the above data by Academic Level for Students

who took more than 9 credits in Fall 2010**/

proc sort data = work.student_data_credits_summary;

 by academic_level;

run;

proc summary data=work.student_data_credits_summary (where=(section_credits>9));

by academic_level;

 output out = work.acad_level_CreditSummary;

run;

Alternatively, the same conclusion can be reached through the use of PROC SQL. We present the code in two steps.
First, the group by statement is used to create a table featuring one entry for each student and a new variable,

“summ_section_credits” containing the total number of credits earned. In the second step, a table is created to bring
in student data and summarize credits earned by class standing. While this code is still not particularly brief, it
certainly finishes the desired task in fewer steps than with DATA step.

proc sql;

 /*Step 1: Create table with section credits by student*/

 create table temp as

 select distinct student_course_data.student_id, student_course_data.term,

 sum(student_course_data.section_credits) as Summ_Section_Credits

 from student_course_data

 where student_course_data.term = '201008'

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

7

 group by student_course_data.student_id

 ;

 /*Step 2: Create table by class standing for those with greater than 9 hours*/

 create table temp_2 as

 select distinct student_data.academic_level, count(temp.student_id) as

GT9credits

from student_data, temp

 where student_data.student_id = temp.student_id AND student_data.term =

temp.term AND temp.summ_section_credits > 9

 group by student_data.academic_level

 ;

quit;

CONCLUSION

Changing one’s coding technique after many years of completing the task in a certain way may at first feel like forcing
oneself to become left-handed after a life of being a right-hander. However, we have presented a series of what we
have found to be the most important equivalencies to understand when either translating between DATA step and
PROC SQL or figuring out how to write code more effectively. While those who favor DATA step may not save much
coding time nor increase programmatic efficiency for simpler tasks, such as in the case of appending datasets, such
programmers may want to give PROC SQL a second look for merging and summarizing. With the availability of many
familiar SAS options that have long been available, DATA step programmers have plenty of opportunities to ease into
PROC SQL, leaving programming biases behind and, perhaps, creating a more harmonious environment among
colleagues of differing SAS backgrounds.

Learning PROC SQL the DATA STEP Way, continued SESUG 2012

8

REFERENCES

Borowiak, K. W. (2006, March). Using data set options in PROC SQL. Paper presented at the 31st Annual SAS

Users Group International Conference, San Francisco, CA.

Conway, T. (2008, March). It's a bird, it's a plane, it's SQL transpose! Paper presented at the 2008 SAS Global
Forum, San Antonio, TX.

Dickstein, C., & Pass, R. (2004, May). DATA step vs. PROC SQL: What's a neophyte to do? Paper presented at the

29th Annual SAS Users Group International Conference, Montreal, QC.

Foley, M. J. (2005, April). MERGING vs. JOINING: Comparing the DATA step with SQL. Paper presented at the 30th
Annual SAS Users Group International Conference, Philadelphia, PA.

Harrington, T. J. (2002, April). An introduction to SAS PROC SQL. Paper presented at the 27th Annual SAS Users

Group International Conference, Orlando, FL.

Kahane, D. C. (2009, September). Using DATA step MERGE and PROC SQL JOIN to combine SAS datasets. Paper
presented at the 2009 Northeast SAS Users Group Conference, Burlington, VT.

Lafler, K. P. (2006, March). A hands-on tour inside the world of PROC SQL. Paper presented at the 31st Annual SAS
Users Group International Conference, San Francisco, CA.

Lafler, K. P. (2009). DATA step versus PROC SQL programming techniques. Paper presented at the Sacramento
Valley SAS Users Group Meeting.

Lauderdale, K. (2007, April). PROC SQL—The dark side of SAS? Paper presented at the 2007 SAS Global Forum,

Orlando, FL.

Marcella, S., & Jorgensen, G. (2010, November) PROC SQL: Tips and translations for DATA step users. Paper
presented at the 2010 Northeast SAS Users Group Conference, Baltimore, MD.

Matthews, J. (2006, September). PROC SQL versus the DATA step. Paper presented at the 2006 Northeast SAS

Users Group Conference, Philadelphia, PA.

Williams, C. S. (2002, September/October). PROC SQL for DATA step die-hards. Paper presented at the 2002
Northeast SAS Users Group Conference, Buffalo, NY.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Meghal Parikh and Elayne Reiss
University of Central Florida
12424 Research Parkway, Suite 215
Orlando, FL 32826
Phone: (407) 882-0285
Fax: (407) 882-0288
uaps@ucf.edu
http://uaps.ucf.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:uaps@ucf.edu
http://uaps.ucf.edu/

