SESUG 2012

Paper PO-06
Mastering the Basics: Preventing Problems by Understanding How SAS® Works
Imelda C. Go, South Carolina Department of Education, Columbia, SC

ABSTRACT

There are times when SAS programmers might be tempted to blame undesirable results on a SAS error when the
problem actually occurred because they did not understand how SAS works. This paper provides a few examples of how
misunderstanding SAS data processing can produce unexpected results. Examples include those involving the program
data vector, syntax, and behavior of PROCs. These examples emphasize the need for programmers to have a solid
understanding of what their SAS code produces. Making the assumption that one’s code is perfect before testing can lead
to inadequate testing and costly but preventable mistakes. A safer approach is to assume that one’s code might result in
mistakes until testing proves otherwise.

Note: The sample code in this paper was tested using SAS Version 9.2.

First of all, this paper is not one about undesirable programming habits. The paper provides a few examples of situations
where a clear understanding of how SAS works can prevent problems. Seeing these examples will hopefully provide SAS
programmers with incentives to continue learning about SAS, which includes learning things that are new, reviewing past
concepts, and searching for better ways to program.

Fortunately for SAS programmers, SAS continues to enhance its products. A popular example is the ability to use long
variable names since Version 6. Prior to Version 6, variable names could not exceed eight characters in length. The
author remembers conducting a SAS training session where all of the trainees were unaware that long variable names
had already been available for a few years. At the end of the session, one trainee remarked that it was worth the time just
to learn about the long variable names.

As SAS continues to add to the arsenal of tools available to SAS programmers, investing the time to learn more about
SAS can increase efficiency and productivity. The author can think of a number of programming situations, which after
certain PROC features took effect, old code could be replaced with code that was much easier to maintain and
understand. There are also older features that are no longer supported, which emphasize the need to stay current with
one’s SAS knowledge.

With a good knowledge of SAS foundations and hopefully more, a programmer can proceed to write SAS programs with
confidence that the code will produce the intended results. Unfortunately, knowledge is not enough. The programmer
would be wise to develop good programming habits, such as validating the results against the code that generated the
results. Sometimes extra variables need to be created and extra PROCs need to be run to perform checks. This step-by-
step validation is extra work but is necessary to make sure that what the programmer intended was indeed reflected in the
results.

The paper has the following examples:
Beware of syntax

2. Don’t miss the missing values

3. Keep track of the last data set created
4. Know the rules

5. Think like SAS

6. Beware of features you may not need
7

8

9.

1

=

Understand step boundaries
Know the difference between many-to-many merges in the DATA STEP and PROC SQL
Remember that many things can go wrong when manipulating data sets

0. Realize that not all numbers can be represented exactly on the computer



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

1. BEWARE OF SYNTAX

Just because a SAS statement compiles without an error in the SAS log does not mean it produces the intended results.
To a new SAS programmer, the following statements might appear to calculate the same value when they actually may
not all necessarily offer the same results.

SAS Statement Notes

A. | XMEAN = (X1 + x2 + x3 + x4 + x5 + | XMEAN is missing if any values from x1 through x10 are missing.
X6 + X7 + X8 + x9 + x10)/10;

B. | XMEAN = mean (x1, x2, x3, x4, x5, | Themeanis calculated using nonmissing values from x1-x10. The

x6, X7, x8, x9, x10); denominator is the number of nonmissing values, which is not
necessarily 10 if x1-x10 have missing values.
C. | XMEAN = mean (OF x1-x10); Because of the keyword OF, SAS interprets x1-x10 as a numbered
range list consisting of 10 variables (x1, X2, ..., x10).
D. | XMEAN = mean (x1-x10); XMEAN is the mean of the difference between two variables (x1 and

x10). Without the OF keyword, x1-x10 was treated as a difference and

not as a numbered range list. If the programmer left out the OF keyword,
then this statement is incorrect but will still compile because the syntax is
still correct.

E. | XMEAN = mean (OF X:); XMEAN is the average of the name prefix list that refers to all variables
that begin with the specified character string (i.e., X in this case)
preceding the colon. In the context of the above examples, XMEAN is the
mean of x1-x10 if there are no other data set variables with names that

begin with X.
Let’s look at the following data set and code: Obs cars boats
1 1 1
2 1 .

Given the note in row A above, one would expect to see one observation for:
proc print;
where cars+boats>0;

Given the note in row B above, one would expect to see two observations for:
proc print;
where sum(cars,boats)>0;

Given the note in row C above, one would expect to see two observations for:
proc print;
where sum(of cars boats)>0;

But in reality the last PROC PRINT statement has a syntax error as evidenced by the log below. Usage Note 14554 confirms
that a syntax error results when using the OF operator within a WHERE statement. It also states: “The syntax for WHERE
statements is derived from SQL, and in some cases does not provide for certain features otherwise available in SAS, such as
the OF keyword. To prevent the error, specify each of the variables rather than using OF and a variable list.”

B18 proc print;
519 where cars+boats>0;
G20

NOTE: There were 1 observations read from the data set WORK.ONE.
WHERE (cars+boats)>»0;

NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

521 proc print;
B22 where sum(cars,boats)>0;
BE3

NOTE: There were 2 observations read from the data set WORK.ONE.
WHERE SUM(cars, boats)>0;

NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

24 proc print;
625 where sum(of cars boats)>0;
ce
76
ERROR: Syntax error while parsing WHERE clause.

ERROR 22-322: Syntax error, expecting one of the following: !, !!, &, (, ), %, **, +, *,°, -, /,
<, €=, <>, =, >, >»=, 7, AND, BETWEEN, CONTAINS, EQ@Q, GE, GT, IN, IS, LE, LIKE, LT,
NE, NOT, NOTIN, DR, =, 7=, |l lls = ~=.

ERROR 76-322: Syntax error, statement will be ignored.

Bk  run;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds

cpu time 0.00 seconds



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

2. DON'T MISS THE MISSING VALUES

SAS offers 28 different ways to represent a numeric missing value.

Missing Value Type | Representation Description
Regular Numeric - Single period
-a Special representation:
-b Single period followed by a letter

Special numeric missing values are not case-sensitive

Special Numeric ) .
P (-Ais equivalent to .a).

Special representation:
- Single period followed by an underscore

Special Numeric -

Sooner or later a new SAS programmer is going to find out that a numeric missing value in SAS has a value less than any
actual numeric value. Suppose X is a numeric variable. The condition of x<10 is true when X is a missing value or is an
actual number less than 10. The numeric missing values also have an order as shown in the following table.

Increasing Sort Order of
Numeric Values

A
.B
.C

X

Y

Z
nonmissing values

The condition below is true for all y values that are numeric missing values. (If the z below was not preceded by a period,

z would be interpreted as a variable name.)
y<=.z

SAS Statements Notes

A. | iT grade <70 then lettergrade="F~; The lettergrade value is F even when the grade value
is missing. Be very careful with your conditional
statements and make sure they reflect your intentions.

B. | IT .<grade <70 then lettergrade="F~; Only nonmissing grade values less than 70 will result in a
lettergrade value of F.

3. KEEP TRACK OF THE LAST DATA SET CREATED

The programmer has the option of specifying explicitly which data set should be used in a PROC step. If the data set is
not specified, SAS will use the last created data set. To avoid the use of the wrong data set, it helps to always specify
which data set should be used. It helps during troubleshooting especially when the last data set creation happened a
while back.

Hand¥Y data set

Obs x COUNT PERCENT
1 1 1 50
[ [ 1 50



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

In the example below, the variable y is not found because PROC MEANS is attempting to perform the calculations using
data set Xonly as the most recently created data set. The error in the log alerts the programmer that something is wrong.
It would be even worse if there was no error in the log and the wrong data set was used for PROC MEANS. Without the
error in the log, there’s no alert that something might have gone wrong especially if the programmer is unaware the wrong
data set was applied to PROC MEANS.

750 proc freq data=XandY; tables x/out=Xonly;
T51

NOTE: There were 2 observations read from the data set WORK.XANDY.
NOTE: The data set WORK.XONLY has 2 observations and 3 variables.
NOTE: PROCEDURE FREQ used (Total process time):

real time 0.00 seconds

cpu time 0.00 seconds

52 proc means; var x Y;
ERROR: Variable ¥ not found.
753

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE MEANS used (Total process time):

real time 0.00 seconds

cpu time 0.00 seconds

This is what the Xonly data set contains:
Konly data set

Obs ® COUNT PERCENT
1 1 1 S0
= [ 1 5o

4. KNOW THE RULES

Many rules govern any programming language. In the example below, the OBS system option and OBS= data set option
are used in the same program. In order to be able to anticipate the correct results, one should remember that the OBS=
data set option in the SET statement overrides the OBS= system option. System options also remain in effect until they
are changed.

Consider the two following data sets: first data set second data set
Obs x Ob=s Y
1 1 1 2
2 1 2 2

When OBS = 1 is set as a systems option, SAS will only process the first member of the data set within the SAS job. On
the other hand, the OBS = 2 data set option in the SET statement overrides the OBS = 1 system option. In the DATA step,
two observations will be processed from the First data set and the first observation will be processed from the second
data set. PROC PRINT and PROC MEANS will each only use the first observation in the data set. PROC CONTENTS
reports that the Final data set has three observations.

289 options obs=1;

290 data final;

291 set first(obs=2) second;

292 ctr=1;
£93

NOTE: There were 2 observations read from the data set WORK.FIRST.
NOTE: There were 1 observations read from the data set WORK.SECOND
NOTE: The data set WORK.FINAL has 3 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

£94 proc print data=fTinal;
295

NOTE: There were 1 observations read from the data set WORK.FINAL.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds
£96 proc means; var ctr;

£97

NOTE: There were 1 observations read from the data set WORK.FINAL.
NOTE: PROCEDURE MEANS used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

4



Mastering the Basics: Preventing Problems by Understanding How SAS® Works

£98

£99 run;

NOTE:

PROCEDURE CONTENTS used (Total

SESUG 2012

proc contents data=final;

process time):

real time 0.00 seconds
cpu time 0.00 seconds
The CONTENTS Procedure
Data Set Name WORK .F INAL Observations @
Member Type DATA Variables
Engine va Indexes 0
Created Thursday, August 02, 2012 11:34:42 AM Observation Length 24
Last Modified Thursday, August 02, 2012 11:34:42 AM Deleted DObservations 0
Protection Comptessed NO
Data set Type Sorted NO
Label
Data Representation WINDOWS_GBH4
Encoding wlatinl Western (Windows)
Engine/Host Dependent Information
Data Set Page Size 4096

Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 168
Obs in First Data Page 3
Number of Data Set Repairs 0

C:\Users\igosAppDatasLoca INTemp\SAS Temporary

Files\_TD3976\final .sasThdat

Filename
Release Created 9.0202M3
Host Created KE4_VSPRO
Alphabetic
*
3
1
=

5. THINK LIKE SAS

List of Variables and Attributes
Variable Type Len

ctr Num 8

x Num 8

Y Num 8

Let us consider the following data sets and the DATA step that combines the two using the SET statement.

Tirst data =set

Obs race gender
1 B F
[ B

data final;

set first second;

if race="B" and gender="F" then
else if race="B" and gender="M"

second data set

Obs group race genhder
1 BM B H
2 BF B F

group="BF";
then group="BM*";

The Final data set includes the variable group that appears to be the concatenation of the race and gender field
values. But look at the second record and note that BF appears when gender is missing. Is this an error? It is, if this is

not the type of result you want!

data set Tinal

Obs race gender group
1 B F B
2 B G.IEi.D
3 B M BF
4 B F BF



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

In the context of how SAS processes data, this is not an error. The SAS®9.2 Language Reference: Dictionary warns that
all variables that are read with a SET, MERGE, MODIFY, or UPDATE statement are automatically retained. In the second
record, race is B and gender is blank. Using just the logic of the IF-THEN/ELSE statements, the group value for the
second record would be blank. However, the group value of BF was assigned to the second record through the effects of
values being retained. The automatic retention of variables whenever the SET, MERGE, MODIFY, or UPDATE
statements are used in a DATA step is a key piece of information vital to understanding how the program data vector
(PDV) behaves.

The SAS®9.2 Language Reference: Concepts defines the program data vector (PDV) as “a logical area in memory where
SAS builds a data set, one observation at a time. When a program executes, SAS reads data values from the input buffer
or creates them by executing SAS language statements. The data values are assigned to the appropriate variables in the
program data vector. From here, SAS writes the values to a SAS data set as a single observation.”

If the intention is to process data without the effects of retaining variables, the following code will do just that. In the first
DATA step, the SET statement is first applied to the two data sets. In a second data set, the IF-THEN/ELSE processing is
applied.

data final;
set first second;

data final2;

set final;

if race="B" and gender="F" then group="BF~";

else if race="B" and gender="M" then group="BM";

data set finalg

Obs race gender group
1 B F BF
2 B
3 B M BM
Y B F BF

6. BEWARE OF FEATURES THAT YOU MAY NOT NEED

Consider the following data set and PROC MEANS code.
test data set

Obs school student score gender
1 ABC Leslie 81 F
[ AEC Chris 82 M
3 AEC Brandon 82 M
4 AEC Judy a5 F
5 HYZ Lane 81 M
5} HYZ Susan g2 F
T HY2Z Doug g2 M
g HYZ Angela a5 F

proc means noprint data=test;
id gender;

class school;

var score;

output out=statsl;

run;

The ID statement is used to include additional variables in an output data set. In this PROC MEANS example, the ID
statement will include in the output data set the maximum value of gender. Since gender is a character variable, the
maximum of F and M is M based on alphabetical or dictionary ordering. (Note: To get the minimum value, use the IDMIN
instead of the ID statement.)

One may argue that the ID statement, in this example, is not appropriate because PROC MEANS produces only summary
output. Regardless of what one’s position is or reasons are for using the ID statement, the programmer is responsible for
determining which parts of the output are meaningful in the context of what the programmer is trying to achieve. Just
because SAS produces the output does not mean all parts of the output are relevant to the task at hand.



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

The following shows the output produced by the PROC MEANS statements above.

stats data set

Obs school gender _TYPE_ _FREG_ _STAT_ score
1 M 0 8 N 8.0000
2 M 0 8 MIN 81.0000
3 M 0 8 MAX 95.0000
4 M 0 8 MEAN 85.0000
5 M 0 8 STD 6.1875
6 ABC M 1 4 N 4.0000
T ABC M 1 4 MIN 81.0000
-] ABC M 1 4 MAX 95.0000
9 ABC M 1 4 MEAN 85.0000

10 ABC M 1 4 STD 6.6833
11 KYZ M 1 4 N 4.0000
12 KYZ M 1 4 MIN 81.0000
13 KYZ M 1 4 MAX 95.0000
14 KYZ M 1 4 MEAN 85.0000
15 K¥YZ M 1 4 STD 6.6833

The _TYPE_ variable is important because it tells you which variables in the CLASS statement the summary statistics
pertain to. For the sake of providing a simpler example, only school was used in the CLASS statement. One can more
easily determine what the SAS data set means if one can see what code generated the data set. However, by just looking
at the data set without looking at the SAS code, the trained eye could infer the following:

e If the reader can safely assume that this is the original output data set from PROC MEANS, then there was only
one variable in the CLASS statement because _TYPE_ is either O or 1.

e The first five records (clue: _TYPE_=0) are summary statistics on the score variable for all the observations
regardless of school (clue: school is blank) value.

e Because gender is never blank throughout the data set, that implies it could not have been listed in the CLASS
statement. For _TYPE_=0 records, PROC MEANS will calculate the statistics regardless of the values in the
CLASS statement. Therefore, the class variables will have no value for _ TYPE_=0 records.

e All eight observations in the data set had a score value regardless of CLASS categories. (Clues: _FREQ_=8
whenever _TYPE_=0 and score is 8 whenever _STAT_ is N).

If the _TYPE_ and _FREQ_ variables were removed from the data set, as shown below, a less experienced reader might
misinterpret what is in the data set and make the mistake of thinking that the gender might have been in the CLASS
statement. Clearly, a solid understanding of how PROC MEANS produces variables in its output data sets can guard
against such mistakes.

statsE data set

Obs school gender _STAT_ score
1 M N 8.0000
2 M MIN 81.0000
3 M MAX 95.0000
4 M MEAN 85.0000
5 M STD 6.1875
] ABC M N 4.0000
T ABC M MIN 81.0000
8 ABC M MAX 95.0000
9 ABC M MEAN 85.0000

10 ABC M STD 6.6833
11 KvZ M N 4.0000
12 KyZ M MIN 81.0000
13 KvyZ M MAX 95.0000
14 KvyzZ M MEAN 85.0000
15 KvyZ M STD 6.6833



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

7. UNDERSTAND STEP BOUNDARIES

Step boundaries determine when SAS statements take effect. SAS executes program statements when SAS crosses a
default or an explicit step boundary, such as:

e A DATA statement

e A PROC statement

¢ A RUN statement
However, there are exceptions. For example, PROC SQL executes without the RUN statement.

Consider the following SAS code written for the purpose of sending the PROC PRINT output to the PDF file hamed
print.pdf. Note that there is no RUN statement after PROC PRINT.

data one;
input x;
cards;

1

2

ods pdf file="C:\Users\igo\Desktop\print.pdf";
proc print;
ods pdf close;

Without the RUN statement after PROC PRINT, the print.pdf file will be empty. This fact is noted in the log with a
suggestion that perhaps the RUN statement did not precede the ODS PDF CLOSE statement.

683 data test;
684 input x;
685 cards;

NOTE: The data set WORK.TEST has 2 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds

cpu time 0.00 seconds

90 ods pdf file="C:\Users\igo\Desktap\print.pdf’;
NOTE: Writing ODS PDF output to DISK destination “C:\Users\igo\Desktop\print.pdf”, printer “PDF™.
691 proc print;
592 ods pdf close;
NOTE: ODS PDF printed no output.
(This sometimes results from failing to place a RUN statement before the 0DS PDF CLOSE
statement.)

NOTE: There were 2 observations read from the data set WORK.TEST.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

One way to avoid such a problem is to be explicit and to have the habit of always putting a RUN statement at every step
boundary. In this way, the RUN statement is always there when one needs it even if it might have no effect. For example,
the RUN statement has no effect on PROC SQL, which is executed immediately, as shown below in the SAS log.

NOTE: PROCEDURE SGBL used (Total process time):
real time £9:59.80
cpu time 1.10 seconds

703 =select ® from test;
TO0H run;

702 proc sql;
NOTE: PROC SOL statements are executed immediately; The RUN statement has no effect.




Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

8. KNOW THE DIFFERENCE BETWEEN MANY-TO-MANY MERGES IN THE DATA STEP AND
PROC SQL

Consider two data sets, datal and data2.

datal data set datag data set
Ob= gender namel Obs gender hameg
1 Female Linda 1 Female May
2 Female Marcy g Female Gloria

The DATA step can handle one-to-one, one-to-many, and many-to-one matches but not many-to-many matches. For true
many-to-many matches, the result should be a cross product. For example, if two records from each data set match the
two records from the other data set by gender, the merged results should have 2 x 2 = 4 records.

gender | namel name2
Female | Linda May
Female | Linda Gloria
Female | Marcy May
Female | Marcy Gloria

The following code merges both data sets in the DATA Step.
proc sort data=datal; by gender;
proc sort data=data2; by gender;
data combo; merge datal data2;
by gender;
proc print;

The results only produce two records and do not include all possible combinations.
combo data set

Obs gender namel nameg
1 Female Linda May
- Female Marcy Gloria

Use PROC SQL to obtain all possible combinations. PROC SGL output

proc sql;

select datal.gender, namel, name2 gender namel namez

from datal, data2 Fema le Linds May

where datal.gender=data2.gender; Female Linda Glaria
Female Marcy May
Female Marcy Gloria

9. REMEMBER THAT MANY THINGS CAN GO WRONG WHEN MANIPULATING DATA SETS

Consider two data sets, timel and time2. In the examples, ss stands for scaled score.

timel data set

Obs grade last first == lunch =sn
1 Y Garbo Greta 434 R 111111111
2 3 Davis Betty 380 R cEZEEEEZER
3 g2 Taylor Liz £45 R 333333333
| 9 Kidman Nicole 333 R 9444444y

timeg data set

Obs grade last first S5 lunch SSh

1 5 Garbo Greta 533 F 111111111
g 4 Davis Betty 493 F EEEEEEEER
3 3 Taylor Liz 3498 F 333333333
| 8 Loren Sophia TE3 F 555555555



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

When the two data sets are merged using a DATA step to merge timel and time2, the two data sets need to be sorted
by ssn (or the BY-variables). When contributing data sets have variables with the same name, the variables need to be
renamed in order to prevent the values of one data set from overwriting the values of the other data set during the merge.
The merge results shown below are problematic because the variables with the same name were not renamed or dropped
from either data set.

proc sort data=timel; by ssn;

proc sort data=time2; by ssn;

data test; merge timel time2; by ssn;

Obs grade last first ss lunch ssh

1 5 Garbo Greta 533 F IERRERERERE]
2 4 Davis Betty 493 F 22eeeeeee
3 3 Taylor Liz 399 F 333333333
4 9 Kidman Nicole 333 R 4444444y
5 8 Loren Sophia TE3 F 555555555

The following data step shows some variables being dropped and renamed prior to merging. The resulting data set has
correct values.

data test;
merge timel (in=inl drop=grade lunch rename=(ss=ssl))
time2 (in=in2 drop=grade lunch rename=(ss=ss2));
by ssn;
Obs last first ss1 EE] S ssE
1 Garbo Greta 434 11111111 533
2 Davis Betty 380 eegzzeeed 4a93
3 Taylor Liz 245 333333333 399
Y Kidman Nicole 333 CEEEEEEET -
5 Loren Sophia . 3333111 TE3

What happens if the BY statement is accidentally omitted from the previous example? No error message will be given
because it is valid SAS syntax and SAS does merges without BY statements. The records are merged in the order in
which they occur on the data set and without regard to any other criteria. The resulting data are invalid and shown below.
data test;
merge timel (in=inl drop=grade lunch rename=(ss=ssl))
time2 (in=in2 drop=grade lunch rename=(ss=ss2));

Ob=s last first ss1 Ssh ssc sSource
1 Garbo Greta 434 111111111 533 both
2 Davis Betty 380 cZZeceeee 493 both
3 Taylor Liz £45 333333333 399 both
4 Loren Sophia 333 555555555 TE3 both

10. REALIZE THAT NOT ALL NUMBERS CAN BE REPRESENTED EXACTLY ON THE
COMPUTER

Numeric precision (i.e., the accuracy with which a number can be represented) and representation in computers are the
roots of the problem. SAS uses floating-point (i.e., real binary) representation. The original decimal number and the
binary-represented number may be very close, but very close is not the same as equal. There happens to be no exact
binary representation for the decimal values of 0.1 and 0.3, which accounts for the difference in example #1 below. The
advantage of floating-point representation is speed and its disadvantage is representation error.

Repeating decimals and irrational numbers are other obvious problems for exact storage on a computer. For example, 1/3
is equal to a decimal point followed by an infinite number of 3's. Computers cannot store an infinite number of digits.

We need to make a distinction between the expected mathematical result (our decimal values) and what the computer

can store (binary values) and program accordingly. Readers may refer to two SAS technical support references (TS-230
and TS-654) listed at the end of this paper for in-depth explanations and examples regarding floating-point representation.

10



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

EXAMPLE #1

We know, as a mathematical fact, that 3 multiplied by 0.1 is 0.3. Therefore, when we examine the following code below, it
would seem reasonable to expect that the equal variable will have a value of Y because both variables resolve to 0.3 (at
least mathematically).

data one;

valuel=0.3;

value2=3*0.1;

difference=valuel-value2;

if 0.3=3*0.1 then equal="Y";

else equal="N";

If you are thinking the only possible answer is Y, then you are in for surprise! Let's look at the PROC PRINT output for the
data set above.

Obs valuel value? difference equal

1 0.3 0.3 =5.5511E-17 N

If we use the following statement with PROC PRINT,
format valuel value2 32.31;

we get the following output.

Obs valuel value? difference equal

1 L3000000000000000000000000000000 - 3000000000000000000000000000000 -5.551E-17 N

The two values are both 0.3, but that is only as far as the PROC PRINT output goes. The two values are stored in the
computer differently. In a later page, we note that SAS formats round and that is why we are not able to see the difference
in the values.

To see how the values differ, let us use the HEX16. format with PROC PRINT.
format valuel value2 hexl6.;

We get the following output that shows the difference between the two values.

Obs valuel value? difference equal

1 3FD3333333333333 IFD3333333333334 =5.5511E-17 H

EXAMPLE #2

Here is still another example. The difference for both pairs of numbers is mathematically 3.8, but the comparisons fail.
data test;
input valuel value2;
difference=valuel-value2;
if difference=3.8
then equalto3point8="Y";
else equalto3point8="N-";
cards;
16.3 12.5
15.7 11.9

Without specifying a format, we get the following PROC PRINT results.

Obs valuel value? difference equal todpoint8
1 16.3 12.5 3.8 N
2 15.7 11.9 3.8 N

11



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

If we use the following statements:
proc print;
format difference 32.31;

we get the following output.

Ob= valuel value? difference equaltodpointt
1 16.3 12.5 3.800000000000000000000000000000 N
Z 15.7 11.9 3.799999999999990000000000000000 N
EXAMPLE #3

Representation error can become a serious problem when one is unaware it could even happen and takes no precautions
against it. Unaccounted for, the size of the errors or discrepancies could accumulate over multiple operations. Let's take
the simple example of adding 0.1 ten trillion times. We know the result should be one trillion.

data test;

do i=1 to 10000000000;
sum+0.1;

end;
integer=1000000000;
diff=sum-integer;

drop i;

After adding all those numbers, SAS produces the following.
Ob= sum integer diff

1 1000000163 .1 1000000000 163.124

Over so many, many calculations, the difference accumulated to 163.124. How serious is that? It all depends on your
data. This might still be tolerable for some and totally unacceptable for others. Something else to think about is what
happens to other results when the tainted sum is used in other calculations.

COPING WITH THE PROBLEM

We are responsible for our data, programs, and results. The first step in solving the problem is identifying the problem and
being aware of the conditions under which the problem might create undesirable results. As far as the computer science
field is concerned, this is a known problem. “Most of the published algorithms for numerical analysis are designed to
account for and minimize the effect of representation error.”(TS-230)

“Unfortunately there is no one method that best handles the problems caused by numeric representation error. What is a
perfectly good solution for one application may drastically affect the performance and results of another application.” (TS-
230) Hence, this paper focuses on the simplest examples of this problem.

Coping Strategy #1: Keep It Whole

The safest way is to just deal with integers or whole numbers. If on a computer, the results of operations on integers are
always integers, then there is no problem because an integer can be stored exactly in computers as long as the largest
integer value the computer can represent has not been exceeded.

Whether you can stay within the realm of integers depends on what data are involved and what needs to be done to the
data. Unless you're just adding, subtracting, and multiplying integers with integers, you could encounter a noninteger
when it's time to divide an integer with another integer.

Consider the following example, which could be monetary amounts, such as dollars and cents.
data test;
input value;
integerversion=int(100*value);
cards;
18.1
118.18

12



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

The input values were multiplied by the scale factor of 100 (to “transfer” the digits after the two decimal places to the
integer side of the number). The INT function, which returns the integer value of the argument, is then applied to remove
the representation error that might have been introduced by the decimal or fractional portion of the input.

Obs value integerversion
1 18.10 1810
2 118.18 11818

You can proceed to apply integer arithmetic to the integer values. When you reach the last integer arithmetic result, you
can divide it by 100 to regain the decimal portion. You can also apply a similar strategy to percentages. Percentages,
such as 18%, can be multiplied by 100 and stored as 18.

Coping Strategy #2: Dare to Compare with Rounded Numbers

In examples #1 — #3 above, representation error manifested itself in the comparison of values. TS-654 recommends that
you keep the following in mind when working with nonintegers or real numbers in general,

v" Know your data.

v" Decide on the level of significance you need.

v" Remember that all numeric values are stored in floating-point representation.
v' Use comparison functions, such as ROUND.

You can apply the ROUND function at strategic points in the calculation process (e.g., at the end of a series of
calculations, after each calculation). What you do depends on the nature of the data, what you have to do with the data,
and when representation error might become an issue. Before making an equality comparison, you can round one or both
of the operands. An alternative to rounding is specifying to what degree two values are close enough so that they can be
considered good as equal as far as your SAS programming is concerned. This process is called fuzzing the comparison.
Refer to TS-230 for examples.

The ROUND function has the following syntax:
ROUND (argument <,rounding-unit>)

It rounds the first argument to the nearest multiple of the second argument. When the rounding unit is unspecified, it
rounds to the nearest integer.

The SAS® 9.2 Language Reference: Dictionary reassures us that, in general, we can expect to produce decimal arithmetic
results if the result has no more than nine significant digits and one of the following conditions is true:

v' The rounding unit is an integer or is a power of 10 greater than or equal to 1E-15.

v' The expected decimal arithmetic result has no more than four decimal places.
Refer to the SAS® 9.2 Language Reference: Dictionary for more details regarding the ROUND function. Should the
ROUND function fail to meet your needs, you may specify your own fuzz factor to use with the ROUND function. TS-230
provides examples of how to do this.

Let us modify EXAMPLE #1 to include the ROUND function for both values.
data test;
valuel=0.3;
value2=3*0.1;
difference=valuel-value2;
if round(valuel,0.1)=round(value2,0.1)
then equal="Y";
else equal="N";

This time we can expect the correct mathematical results because the ROUND function returns the value that is based on
decimal arithmetic by rounding the values to the first decimal place.

Ob= valuel value? difference equal

1 0.3 0.3 -5.5511E-17 T

13



Mastering the Basics: Preventing Problems by Understanding How SAS® Works SESUG 2012

Let us modify EXAMPLE #2 to include the ROUND function at the point of comparison.
data test;
input valuel value2;
difference=valuel-value2;
if round(difference,0.1)=3.8
then equalto3point8="Y";
else equalto3point8="N";

cards; Obs=s valuel value? difference equalto3pointB
16.3 12.5

15.7 11.9 1 16.3 12.5 3.8 Y

. 2 15.7 11.9 3.8 Y

Let us modify EXAMPLE #3 to include the ROUND function each time addition occurs.

data test;

reté_“n sum 0O; Obs= sum integer diff
do i=1 to 10000000000;

sum=round(sum+0.1,0.1); 1 1000000000 1000000000 0
end;

integer=1000000000;
diff=sum-integer;
drop i;

REFERENCES

SAS Institute Inc. 2009. Base SAS® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2010. SAS®9.2 Language Reference: Concepts, Second Edition. Cary, NC: SAS Institute Inc.
SAS Institute Inc. 2011. SAS®9.2 Language Reference: Dictionary, Fourth Edition. Cary, NC: SAS Institute Inc.

TS-230: Dealing with numeric representation error in SAS applications. Retrieved July 1, 2008, from the SAS Web site:
http://support.sas.com/techsup/technote/ts230.html

TS-654: Numeric precision 101. Retrieved July 1, 2008, from the SAS Web site:
http://support.sas.com/techsup/technote/ts654.pdf

Usage Note 14554: Syntax error when using OF operator within a WHERE statement. Retrieved August 1, 2012, from the
SAS Web site: http://support.sas.com/kb/14/554.html

TRADEMARK NOTICE

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their
respective companies.

14



