
 1

Paper BB-11

ODS Output Datasets that Work for You

Stuart Long, Westat, Durham, NC

Ed Heaton, Data and Analytic Solutions, Inc., Fairfax, VA
Dan Scharf, Westat, Durham, NC

ABSTRACT

Although ODS Tables, combined with the ODS TRACE and ODS Output statements, provide a consistent method for
retrieving statistics generated by SAS® Procedures, the design of these tables is inconsistent.

Many of the ODS Output data sets created with ODS Tables revolve around statistics describing one specific variable or
groups of variables. We commonly use only a subset of the data found in a SAS Listing when reporting or continuing an
analysis. Each of these data sets could be streamlined to contain these values plus additional descriptive information
concerning these variables of interest -- such as the variable name, value, label, and formatted value.

This paper proposes a consistent data structure for these data sets that better facilitates reporting and analysis. It
demonstrates a method to translate the data in the ODS Tables into this format.

After showing how to design data sets with this common convention, this paper demonstrates how to (1) automate their
creation and (2) combine the summarized data from multiple ODS Tables within a procedure or between different procedures.

INTRODUCTION

SAS introduced the Output Delivery System (ODS) in SAS Version 7.0 as the new standard for output of data from
procedures. ODS provides a method to consistently store statistics and descriptive information in objects referred to as ODS
Tables. All methods of reporting data from procedures use these tables to retrieve data generated by a given procedure.
Thus all data reported in the SAS Listing is first stored in and then retrieved from ODS Tables. So if a data value appears in
the SAS Procedure Listing, it must also exist in one of the ODS Tables generated by the same SAS Procedure.

The information in the ODS Tables can be routed to various destinations which can be selected by the user. The SAS Listing
is the default destination for many of these ODS Tables. However, the destination that this paper will concentrate on is the
SAS dataset. The ODS Output statement is the method used to assign the data in the ODS Tables to SAS datasets.

The majority of SAS procedures generate ODS Tables containing statistics pertaining to a variable or group of variables
across all observations, or on subsets of observations with a CLASS or BY statement. Procedures may also compute
association statistics between this first set of variables with a second variable, such as modeling a dependent response
variable with independent exposure variables.

What Does SAS Give Us?

Due to the large number and variety of procedures in the various SAS software modules, it is not surprising that the structure
of the ODS Tables (and hence the output datasets that they produce) is not always consistent. This is especially evident in the
identification of the variables, variable values and statistics that are involved in ODS output. Figures 1, 2, and 3 below
illustrate selected ODS output from the UNIVARIATE, FREQ and LOGISTIC procedures, respectively.

These examples use several different techniques for identifying variable names. The Moments table shown from PROC
UNIVARIATE stores the name of the analytic variable in a column called VarName, while the ParameterEstimates table from
PROC LOGISTIC uses Variable for the name of this column. The CrossTabFreqs table in PROC FREQ uses a separate
column for each analytic variable, with the names of the analytic variables as the names of the columns while also embedding
the variable names in a separate column named Table. Similarly, the OddsRatios table from PROC LOGISTIC embeds the
variable name at the beginning of the Effect column.

Similar differences can be seen in the way these tables handle variable values. PROC LOGISTIC’s ParameterEstimates table
stores variable values (such as Past Smoker and Current Smoker) in the ClassVar0 column, while its OddsRatios table
embeds pairs of these values within the Effect column. Finally, PROC FREQ’s CrossTabFreqs table stores these values in the
column that is specifically dedicated to the variable in question.

 2

Finally, the tables are not all consistent in their identification of statistics produced by the procedures. Most tables dedicate a
separate column to each statistic (Estimate, StdErr, etc.), using the name of the statistic as the variable name for the column.
The Moments and BasicMeasures tables produced by PROC UNIVARIATE, however, employ an idiosyncratic arrangement
that stores 2 statistics on each record, mirroring the display in the SAS Listing that presents the statistics in two columns.

 Figure 1: PROC UNIVARIATE ODS Tables

 TABLE: Moments

 VarName Label1 cValue1 nValue1 Label2 cValue2 nValue2

 Age N 11458 11458 Sum Weights 11458 11458
 age Mean 49.3183802 49.318380 Sum Observations 565090 565090
 age Std Deviation 13.341921 13.341921 Variance 178.006856 178.006856
 age Skewness 0.05781753 0.057818 Kurtosis -0.7172626 -0.717263
 age Uncorrected SS 29908748 29908748 Corrected SS 2039424.55 2039425
 age Coeff Variation 27.0526342 27.052634 Std Error Mean 0.12464187 0.124642
 /**/
 TABLE: BasicMeasures

 VarName LocMeasure LocValue VarMeasure VarValue

 age Mean 49.31838 Std Deviation 13.34192
 age Median 49.00000 Variance 178.00686
 age Mode 42.00000 Range 73.00000
 age _ Interquartile Range 21.00000

 Figure 2: PROC FREQ CrossTabFreqs Table

 Row Col
 Table education diabetes _TYPE_ Frequency Percent Percent Percent smoke

Table education * diabetes <=High School . 11 60
Table education * diabetes <=High School No 11 4542 40.993 72.6371 57.0890 .
Table education * diabetes <=High School Yes 11 1711 15.442 27.3629 54.7695 .
Table education * diabetes <=High School . 10 6253 56.435 . . .
Table education * diabetes >High School . 11 318
Table education * diabetes >High School No 11 3414 30.812 70.7272 42.9110 .
Table education * diabetes >High School Yes 11 1413 12.753 29.2728 45.2305 .
Table education * diabetes >High School . 10 4827 43.565 . . .
Table education * diabetes . . 01
Table education * diabetes . No 01 7956 71.805 . . .
Table education * diabetes . Yes 01 3124 28.195 . . .
Table education * diabetes . . 00 11080 100.000 . . .
Table smoke * diabetes . . 11 352 . . . Never Smoked
Table smoke * diabetes . No 11 4379 39.522 72.8377 55.0402 Never Smoked
Table smoke * diabetes . Yes 11 1633 14.738 27.1623 52.2727 Never Smoked Table
smoke * diabetes . . 10 6012 54.260 . . Never Smoked
Table smoke * diabetes . . 11 20 . . . Past Smoker
Table smoke * diabetes . No 11 2615 23.601 71.8802 32.8683 Past Smoker
Table smoke * diabetes . Yes 11 1023 9.233 28.1198 32.7465 Past Smoker
Table smoke * diabetes . . 10 3638 32.834 . . Past Smoker
Table smoke * diabetes . . 11 6 . . . CurrentSmoker
Table smoke * diabetes . No 11 962 8.682 67.2727 12.0915 CurrentSmoker
Table smoke * diabetes . Yes 11 468 4.224 32.7273 14.9808 CurrentSmoker
Table smoke * diabetes . . 10 1430 12.906 . . CurrentSmoker
Table smoke * diabetes . . 01
Table smoke * diabetes . No 01 7956 71.805 . . .
Table smoke * diabetes . Yes 01 3124 28.195 . . .
Table smoke * diabetes . . 00 11080 100.000 . . .

 3

What Would We Like for SAS to Give Us?

After wrestling with the inconsistencies illustrated above in our efforts to produce reports that combined data from multiple
procedures, we decided to come up with a more consistent general structure for these tables. We could then develop tools to
convert the existing ODS dataset output into our preferred format, as well as to much more easily combine output from
multiple procedures. The rules for our new common structure are as follows:

1) Use a separate column for each statistic, using the name of the statistic as the column header
2) Store the name of the analytic variable in a column called VarName
3) If data are provided for multiple categorical levels of the analytic variable, use a separate record for each level, store

the numeric unformatted value in a column named VarValue and the formatted value in a column named VarFmt.
4) If the ODS output contains statistics for multiple variables that are associated with each other, adjust the column

names accordingly, e.g. VarName1, VarName2. If VarName1 is a categorical variable, maintain a separate record
for each level of this variable, however, represent multiple levels for additional variables using separate columns,
rather than separate records, with appropriate descriptive names (This can best be understood by looking at Figures
5 and 6 below).

5) Retrieve and store the variable label for each analytic variable, with column names of VarLabel or VarLabel1,
VarLabel2, etc., if appropriate.

6) Use standard lengths for all character variables: 32 for those containing variable names, 256 for those containing
variable labels or formatted variable values.

7) Add a key variable column to reflect the original specified order of the “primary” variable, VarName1, in the output.
This allows us to return to this order after using variable names to merge the output from different procedures.

Figures 4, 5, and 6 below illustrate our new common structure to output from PROC UNIVARIATE, PROC FREQ and PROC
LOGISTIC. (Variable labels were omitted from Figures 5 and 6 due to space constraints.) This structure has made it much
easier for us to combine, summarize and report analytic results from within and between SAS procedures.

 Figure 3: PROC LOGISTIC ODS Tables

 TABLE: ParameterEstimates
 Prob
 Variable ClassVal0 DF Estimate StdErr WaldChiSq ChiSq

 Intercept 1 -1.0358 0.0355 850.8952 <.0001
 education >High School 1 0.1041 0.0426 5.9544 0.0147
 smoke Past Smoker 1 0.0550 0.0470 1.3703 0.2418
 smoke Current Smoker 1 0.2745 0.0635 18.6858 <.0001

 /************************** ***/

 TABLE: OddsRatios
 Odds
 Effect RatioEst LowerCL UpperCL

 education >High School vs <=High School 1.110 1.021 1.206
 smoke Past Smoker vs Never Smoked 1.057 0.964 1.159
 smoke Current Smoker vs Never Smoked 1.316 1.162 1.490
/***/

 TABLE: ResponseProfile

 OrderedValue Outcome Var2N
 1 Yes 3124
 2 No 7956

 4

REDESIGNING OUTPUT DATASETS: A HARDCODED APPROACH

Restructuring PROC UNIVARIATE Output

Regardless of how we plan to manipulate the ODS Table data to get the statistics we want to present, the first step is always
to output the information stored in ODS Tables into datasets using the ODS OUTPUT statement. However, we cannot specify
the ODS OUTPUT statement until we know the names of the ODS Tables that contain the statistics we wish to retrieve.

 Figure 4: Restructured, Combined Output for Tables from PROC UNIVARIATE

 Var Var Univariate
 Obs Name Label N Mean StdDev Kurtosis Median Key

 1 age Participant Age 11458 49.3184 13.3419 -0.71726 49.00 1

 Figure 5: Restructured dataset for CrossTabFreqs Table from PROC FREQ
 C C C
 V V V F F F o o o
 a a a r r r l l l
 V r r r V V V e e e P P P
 V V a V V V a a a q q q e e e
 F a a r V a a a r r r u u u r r r
 r r r _ V a l l l F F F e e e c c c
 e N N T a r u u u m m m n n n e e e t
 q a a Y l F e e e t t t c c c n n n o
 K m m P u m 2 2 2 2 2 2 y y y t t t t
 e e e E e t _ _ _ _ _ _ _ _ _ _ _ _ a
 y 1 2 _ 1 1 1 2 3 1 2 3 1 2 3 1 2 3 l

 1 EDUCATION DIABETES 01 . . . 0 1 . No Yes . 7956 3124 . . . 11080
 1 EDUCATION DIABETES 11 0 <=High School . 0 1 . No Yes 60 4542 1711 . 57 54 6253
 1 EDUCATION DIABETES 11 1 >High School . 0 1 . No Yes 318 3414 1413 . 42 45 4827
 2 SMOKE DIABETES 01 . . . 0 1 . No Yes . 7956 3124 . 11080
 2 SMOKE DIABETES 11 0 Never Smoked . 0 1 . No Yes 352 4379 1633 . 55 52 6012
 2 SMOKE DIABETES 11 1 Past Smoker . 0 1 . No Yes 20 2615 1023 . 32 32 3638
 2 SMOKE DIABETES 11 2 Current Smoker . 0 1 . No Yes 6 962 468 . 12 14 1430

 Figure 6: Composite LogisticStats Dataset

 Var Prob Odds Logistic
Obs VarName1 Value1 Chisq Ratio LowerCL UpperCL Key VArLabel1 VarFmt1

 1 education 0 1 Education <=High School
 2 education 1 0.0147 1.110 1.021 1.206 1 Education >High School
 3 smoke 0 2 Smoke Status Never Smoked
 4 smoke 1 0.2418 1.057 0.964 1.159 2 Smoke Status Past Smoker
 5 smoke 2 <.0001 1.316 1.162 1.490 2 Smoke Status Current Smoker

 Var Var Var Var
bs VarName2 VarLabel2 Value2_1 Value2_2 Fmt2_1 Fmt2_2 VarN2_1 VarN2_2

1 diabetes Dx with Diabetes 0 1 No Yes 6937 2652
2
3
4
5

 5

The ODS TRACE statement provides an easy way to
find the names of ODS Tables. To execute an ODS
TRACE, embed the procedure code between ODS
TRACE ON and ODS TRACE OFF, as shown below:

 ODS TRACE ON / LISTING;

 PROC UNIVARIATE DATA=mydata;

 VAR age; RUN;

 ODS TRACE OFF;

After running this code, we can review the SAS Listing
(partial output shown in Figure 7) to determine which
ODS Tables contain the statistics we need. The
LISTING option of the ODS TRACE statement prints
the name of each ODS Table above the output
generated from that table.

With ODS Table names in hand, we can specify the
ODS OUTPUT statement. The following code creates
datasets named Moments and BasicMeasures from the
Moments and BasicMeasures Tables, respectively:

 ODS OUTPUT Moments=Moments

 BasicMeasures=BasicMeasures;

 PROC UNIVARIATE DATA=mydata;

 VAR age; RUN;

 ODS OUTPUT CLOSE;

Now that the information in the ODS Tables has been
output to datasets, our goal is to create a composite
summary dataset with one observation per summarized
analytic variable, as well as a separate column
containing each statistic.

To accomplish this, we first impose this structure on each individual ODS output dataset, and then merge them together by the
analytic variable name. The following code converts dataset Moments (see Figure 1) to the desired structure:

 DATA Moments (KEEP = VarName UnivariateKey n mean stddev kurtosis);

 LENGTH VarName $32;

 SET Moments;

 BY VarName;

 IF Label1="N" THEN N = nValue1;

 IF Label1="Mean" THEN Mean = nValue1;

 IF Label1="Std Deviation" THEN StdDev = nValue1;

 IF Label2=”Kurtosis” THEN Kurtosis = nValue2;

 IF LAST.VarName THEN DO;

 UnivariateKey+1;

 OUTPUT Moments;

 END;

 RETAIN n mean stddev kurtosis; RUN;

Since we may want to present the statistics from PROC UNIVARIATE in the order that they were run, we have preserved that
order in variable UnivariateKey. This variable only need be created on one of the two PROC UNIVARIATE output datasets
since these datasets will be merged together by analytic variable name.

The following code converts BasicMeasures (see Figure 1) to the desired structure:

 DATA BasicMeasures (KEEP = VarName Median);

 LENGTH VarName $32;

 SET BasicMeasures;

 BY VarName;

 IF LocMeasure="Median" THEN Median=LocValue;

 IF LAST.VarName THEN OUTPUT BasicMeasures;

 RETAIN Median;

 RUN;

 Figure 7: SAS Listing

 The UNIVARIATE Procedure
 Variable: age (Participant Age)

 Output Added:

 Name: Moments
 Label: Moments
 Template: base.univariate.Moments
 Path: Univariate.age.Moments

 Moments
 N 11458 Sum Weights 11458
 Mean 49.3183802 Sum Observations 565090
 Std Deviation 13.341921 Variance 178.006856
 Skewness 0.05781753 Kurtosis -0.7172626
 Uncorrected SS 29908748 Corrected SS 2039424.55
 Coeff Variation 27.0526342 Std Error Mean 0.12464187

 Output Added:

 Name: BasicMeasures
 Label: Basic Measures of Location and Variability
 Template: base.univariate.Measures
 Path: Univariate.age.BasicMeasures

 Basic Statistical Measures
 Location Variability
 Mean 49.31838 Std Deviation 13.34192
 Median 49.00000 Variance 178.00686
 Mode 42.00000 Range 73.00000
 Interquartile Range 21.00000

 6

We now have each separate ODS output dataset in the desired structure, and have also standardized the variable identifying
the analytic variable name as VarName, with a standard length of 32 characters (the SAS maximum). The only remaining
items to retrieve are the labels for the analytic variables. However, the labels cannot be found in any of the ODS Tables
produced by PROC UNIVARIATE. This brings us to the realization that while all of the statistics generated by a procedure can
be found in ODS Tables, not all of the descriptive information found in the SAS Listing can be found in ODS Tables. We will
have to look external to PROC UNIVARIATE to capture the labels we need. The ODS Tables produced by PROC
CONTENTS provide an efficient solution for locating these labels that is both easy to use and understand. The following code
outputs labels for Age to dataset Contents:

 ODS OUTPUT Variables=Variables (KEEP = Variable Label

 RENAME = (Variable = VarName

 Label = VarLabel));

 PROC CONTENTS DATA=mydata (KEEP = age);

 RUN;

 ODS OUTPUT CLOSE;

The Variables ODS Table in PROC CONTENTS always sets the length of Variable to 32 characters, so we only need to
rename it to VarName to complete the standardization of this variable. However, the variable Label from this ODS Table
varies in length depending on the data. So in addition to renaming Label to VarLabel, we will need to reset its length to our
standard of 256 characters.

The code below creates our final composite dataset, UnivariateStats (displayed in Figure 4), by merging together the
Moments, BasicMeasures, and Variables datasets while resetting the length of VarLabel:

 DATA UnivariateStats;

 LENGTH VarLabel $256;

 MERGE Variables BasicMeasures Moments;

 BY VarName;

 RUN;

Restructuring PROC FREQ Output– OneWayFreqs Table

PROC FREQ has multiple ODS Tables to handle the storage of frequencies and percentages. Table OneWayFreqs handles
those involving only one variable, while CrossTabFreqs handles crosstabulations of two or more variables. And in what is a
rare feature associated with PROC FREQ, these ODS Tables retain all of the analytic variable attributes that we need to
conform the data to our set of rules for a common structure. In the examples that follow for PROC FREQ (and also for PROC
LOGISTIC), we will limit the analytic variables processed to categorical numeric variables, which for our purposes is defined as
those numeric variables that have a one-to-one relationship between unformatted and formatted values.

The following code outputs table OneWayFreqs to dataset OneWayFreqs (displayed in Figure 8):

 ODS OUTPUT OneWayFreqs=OneWayFreqs(drop=F_diabetes F_smoke);

 PROC FREQ DATA=mydata;

 TABLES diabetes smoke / MISSPRINT;

 RUN;

 ODS OUTPUT CLOSE;

Since the numeric variables Diabetes and Smoke are passed through to OneWayFreqs with formats still attached, we can
discard the text variables F_Diabetes and F_Smoke, which PROC FREQ adds to hold the text for the formatted values of
Diabetes and Smoke. All other variables in the OneWayFreqs dataset are numeric except for the character variable Table,
which contains the analytic variable name as part of the table request.

 Figure 8: PROC FREQ OneWayFreqs ODS Table

 Cum Cum
Obs Table diabetes Frequency Percent Frequency Percent smoke

 1 Table diabetes . 378
 2 Table diabetes No 7956 71.81 7956 71.81 .
 3 Table diabetes Yes 3124 28.19 11080 100.00 .
 4 Table smoke . 6364 55.54 6364 55.54 Never Smoked
 5 Table smoke . 3658 31.93 10022 87.47 Past Smoker
 6 Table smoke . 1436 12.53 11458 100.00 Current Smoker

 7

Now we want to convert OneWayFreqs to our desired structure, which is: (1) one observation per analytic variable level;
(2) separate variables for the analytic variable name, label, (numeric) unformatted value, and (character) formatted value; and
(3) one variable for each statistic calculated, i.e., the frequencies and percentages. While there are many methods available
for converting the data to our new structure, using DATA Step arrays (as shown in the code below) has the advantage of
preserving any special missing values in the analytic variables.

 DATA OneWayFreqs (KEEP = VarName VarFmt VarLabel VarValue

 frequency percent cumfrequency cumpercent);

 LENGTH VarName $32

 VarLabel

 VarFmt $256

 VarValue 8;

 SET OneWayFreqs;

 ARRAY vars {*} diabetes smoke;

 VarName=SCAN(table,2,' ');

 DO I = 1 TO DIM(vars);

 IF UPCASE(VarName)=UPCASE(VNAME(vars(i))) THEN DO;

 VarFmt =VVALUE(vars(i));

 VarLabel =VLABEL(vars(i));

 VarValue =vars(i);

 RETURN;

 END;

 END;

 RUN;

The DATA Step above first extracts the value for VarName from the Table variable. It then searches for the value of VarName
in the array VARS, which contains the same variable names that were in the TABLES statement of our PROC FREQ. Once a
match is found, VarLabel, VarValue, and VarFmt are populated. Figure 9 displays the restructured OneWayFreqs dataset.

An anomaly was found in the structure of the OneWayFreqs output dataset when analytic variables in the TABLES statement
had a length less than 8 bytes. After the first observation where variables for the raw and formatted values were populated,
values were retained on all subsequent observations, regardless of whether the analytic variable was part of the Table request
for that observation. No such problem was observed with the CrossTabFreqs output dataset. This issue was still outstanding
in SAS 9.2 TS Level 2M3 for the XP_PRO platform.

Restructuring PROC FREQ Output - CrossTabFreqs

One of the most common reporting needs is to present statistics for one variable in its relationship with another
variable. Crosstabulations of two variables, with levels of one variable presented in rows and levels of the other variable
presented in columns and frequencies and percentages in the body of the display, are a basic, standard way to present the
relationship of one variable to another.

While both the CrossTabFreqs and List tables can output the results of n-way crosstabulations, we have chosen to focus on
CrossTabFreqs for the examples in this paper. All crosstabulations requested in PROC FREQ can be output to
CrossTabFreqs ODS Table. However, since this table is designed to handle n-way tables and not just the two-way tables we
are interested in, the row and column structure described in our rules for design is not available in this ODS Table. Instead, it
is structured so that the frequency for each cell of our desired display is on a different row of the ODS Table, and furthermore,
like the OneWayFreqs ODS Table, each analytic variable occupies its own column in the output dataset. This can be an
unwieldy dataset to use for generating reports or performing data merges with other ODS Tables.

To present the data in our desired display, we need to restructure (transpose) the values of the second variable so that we
have separate frequency variables for each level of the second variable, while maintaining one observation for each level of
the first variable. We will have separate generic variables for name and label of the two analytic variables in the

 Figure 9: Restructured dataset for OneWayFreqs Table from PROC FREQ
Var Cum Cum
Obs VarName VarLabel VarFmt Value Frequency Percent Frequency Percent

 1 diabetes Dx with Diabetes . . 378 . . .
 2 diabetes Dx with Diabetes No 0 7956 71.81 7956 71.81
 3 diabetes Dx with Diabetes Yes 1 3124 28.19 11080 100.00
 4 smoke Smoking Status Never Smoked 0 6364 55.54 6364 55.54
 5 smoke Smoking Status Past Smoker 1 3658 31.93 10022 87.47
 6 smoke Smoking Status Current Smoker 2 1436 12.53 11458 100.00

 8

crosstabulation, eliminating the structure with each analytic variable in its own column. To accomplish this, we will simply
elaborate further on the DATA Step array method used for the OneWayFreqs Table. The following code produces the raw
CrossTabFreqs output dataset displayed in Figure 2, while Figure 5 shows our desired final dataset structure.

 ODS OUTPUT CrossTabFreqs=CrossTabFreqs;

 PROC FREQ DATA=mydata;

 TABLES (education smoke)*diabetes / MISSPRINT; RUN;

 ODS OUTPUT CLOSE;

Since we are now generating statistics for the relationship between 2 variables, we will identify our analytic variables by
VarName1 (EDUCATION SMOKE) and VarName2 (D IABETES). Each of the variables containing descriptive information will
contain this ordinal naming convention.

We will begin the alteration by creating the four pieces of descriptive information for the VarName1 and VarName2 variables,
namely, analytic variable name & label, and formatted & unformatted values for the level of the analytic variable.

 DATA CrossTabFreqs (KEEP = FreqKey VarName: VarFmt: VarLabel: VarValue: _TYPE_ frequency

 colpercent);

 LENGTH VarName1 VarName2 $32

 VarFmt1 VarFmt2

 VarLabel1 VarLabel1 $256 ;

 ARRAY var1ary {*} education smoke;

 ARRAY var2ary {*} diabetes;

 SET CrossTabFreqs ;

 BY Table notsorted;

 IF FIRST.Table then FreqKey+1;

 VarName1=UPCASE(SCAN(TABLE,2," "));

 VarName2=UPCASE(SCAN(TABLE,4," "));

 DO i = 1 TO DIM(var1ary);

 IF VarName1 = UPCASE(VNAME(var1ary(i))) THEN DO;;

 VarFmt1 = VVALUE(var1ary(i));

 VarLabel1 = VLABEL(var1ary(i));

 VarValue1 = var1ary(i);

 END;

 END;

 DO i = 1 TO DIM(var2ary);

 IF VarName2 = UPCASE(VNAME(var2ary(i))) THEN DO;;

 VarFmt2 = VVALUE(var2ary(i));

 VarLabel2 = VLABEL(var2ary(i));

 VarValue2 = var2ary(i);

 END;

 END; RUN;

Variables representing levels of VarName2 and association statistics between VarName1 and VarName2 will be propagated
across the observations containing the levels of VarName1. The VarName2 and VarLabel2 variables will not be propagated,
but rather appear once on each observation, which leaves us with four items to transpose:

 VarValue2, VarFmt2, Frequency and ColPercent.

Before transposing, we will sort the CrossTabFreqs dataset by four items:

 FreqKey: for retaining the original order of pairs of variables
 TYPE: for identifying how the frequencies are associated with the two variables
 VarValue1: to group all observations for EDUCATION and SMOKE
 VarValue2: to order DIABETES levels for propagation across each level of EDUCATION and SMOKE

As pointed out, the _TYPE_ variable will identify the types of associations that the frequencies represent, as can be seen in
Figure 3::

 “00”: Identifies the overall frequency total for the association of EDUCATION and SMOKE crossed with DIABETES.
 “01”: Identifies column total counts and percents for each level of DIABETES.
 “10”: Identifies row total counts and percents for each level of EDUCATION and SMOKE.
 “11”: Identifies frequencies and percents for each cell produced by recorded values of EDUCATION and
 SMOKE crossed with DIABETES.

The following code then sorts the data and divides it into two data sets – one to be transposed, and one to be merged with the
transposed data. The dataset to be transposed, CrossTabFreqs11, will contain observations where _TYPE_ is “01” or “11”.

 9

The variable Var2Ord will be created to provide an ordinal suffix for each variable transposed by PROC TRANSPOSE. This
dataset contains the observations with data that will be transposed. The second dataset, CrossTabFreqs00, contains
observations where _TYPE_ equals “10”, row totals, and “00”(the total count across all cells). On CrossTabFreqs00, the value
of _TYPE_ will be changed to “11” and “01” respectively to facilitate final merging of column and overall totals.

 PROC SORT DATA=CrossTabFreqs;

 BY FreqKey _TYPE_ VarValue1 VarValue2; RUN;

 DATA CrossTabFreqs11

 CrossTabFreqs00 (KEEP = VarName1 VarLabel1 VarValue1 VarFmt1 VarName2 VarLabel2

 TYPE FreqKey frequency

 RENAME = (frequency=total));

 SET CrossTabFreqs;

 BY FreqKey _TYPE_ VarValue1 VarValue2;

 IF FIRST.VarValue1 THEN Var2Ord=0;

 IF FIRST.VarValue2 THEN Var2Ord+1;

 SELECT(_TYPE_);

 WHEN("01","11")

 OUTPUT CrosstabFreqs11;

 WHEN("00","10") DO;

 TYPE=CATS(SUBSTR(_TYPE_,1,1),"1");

 OUTPUT CrossTabFreqs00;

 END;

 END; RUN;

Due to the constraints of PROC TRANSPOSE, each variable must be transformed independent of the others, after which a
merge will be performed to associate the transformed variables with the proper level of VarName1. This code shows an
example of how the first PROC TRANSPOSE will be written to handle propagating the VarValue2 variable for each level of
VarName1. VarFmt2, Frequency and Colpercent will be transposed in identical fashion. The following code produces the
dataset seen in Figure 10.

 PROC TRANSPOSE DATA=CrossTabFreqs11 OUT=TranCTF1 (DROP=_NAME_ _LABEL_)

 PREFIX=VarValue2_;

 BY FreqKey VarName1 VarLabel1 VarName2 VarLabel2 _TYPE_ VarValue1 VarFmt1;

 ID var2ord;

 VAR VarValue2; RUN;

Four datasets, TranCTF1 to TranCTF4, will be created by the four executions of PROC TRANSPOSE. The final, restructured
dataset is then created by merging these four datasets together with CrossTabFreqs00 (Figure 11) to create the final dataset
seen in Figure 5 on page four of this paper.

 DATA FreqStats;

 MERGE TranCTF1 TranCTF2 TranCTF3 TranCTF4 CrossTabFreqs00;

 BY FreqKey VarName1 VarName2 _type_ VarValue1 ; RUN;

 Figure 10: Tranposed dataset: TranCTF1
 V V V
 a a a
 V V V r r r
 V a V a a V V V
 F a r a r r V a a a
 R r L r L _ V a l l l
 e N a N a T a r u u u
 q a b a b Y l F e e e
 K m e m e P u m 2 2 2
 E e l e l E e t _ _ _
 y 1 1 2 2 _ 1 1 1 2 3

 1 EDUCATION Education DIABETES Dx with Diabetes 01 . . . 0 1
 1 EDUCATION Education DIABETES Dx with Diabetes 11 0 <=High School . 0 1
 1 EDUCATION Education DIABETES Dx with Diabetes 11 1 >High School . 0 1
 2 SMOKE Smoke Status DIABETES Dx with Diabetes 01 . . . 0 1
 2 SMOKE Smoke Status DIABETES Dx with Diabetes 11 0 Never Smoked . 0 1
 2 SMOKE Smoke Status DIABETES Dx with Diabetes 11 1 Past Smoker . 0 1
 2 SMOKE Smoke Status DIABETES Dx with Diabetes 11 2 Current Smoker . 0 1

 10

We have focused on two-way tables in this example, but the same methods can be expanded for n-way tables by having the
variables represent cross-tabulations of multiple variables (e.g., males under age 50, etc.), or by having each observation
represent the same kind of crosstabulation, or by doing both if you have you have 4-way (or more) table.

Restructuring PROC LOGISTIC Output

Regression models in SAS usually do not provide all of the descriptive information in ODS Tables. In addition, some of the
descriptive information that is available may be embedded within character variables found in the tables. In PROC LOGISTIC,
if a numeric categorical analytic variable has a format attached, then the ODS Tables will show the text formatted value when
displaying the levels of that categorical variable. If the variables are not formatted, then raw numeric values are displayed.
Using raw numeric values offers advantages over format character strings. First, it is easier to identify numeric category
values when they are embedded within a character string. Second, it is easier to re-associate formatted character data with
numeric values rather than the other way around.

To create our composite summary dataset from PROC LOGISTIC ODS Tables, we also need to retrieve the descriptive
information in addition to retrieving chi square probabilities and odds ratios with corresponding confidence intervals. We will
output the ParameterEstimates table for chi square probabilities and the OddsRatios table for odds ratios and confidence
intervals. We will also output a third dataset from the ResponseProfile table in order to include data describing the response
variable in our final dataset. In order to keep this example simple, we will use only numeric categorical variables.

 ODS OUTPUT ParameterEstimates=ParameterEstimates

 OddsRatios=OddsRatios

 ResponseProfile=ResponseProfile ;

 PROC LOGISTIC DATA = mydata NAMELEN=32;

 CLASS education smoke / ORDER=INTERNAL PARAM=REF REF=FIRST;

 MODEL diabetes(ORDER=INTERNAL DESCENDING) = education smoke ;

 RUN;

 ODS OUTPUT CLOSE;

Figure 3 gives us a look at how the three ODS Tables produced by the code above are designed. Our goal is to create a
summary dataset that contains the statistics of interest (highlighted in Figure 3) from these three datasets as well as our four
pieces of descriptive information (analytic variable name & label as well as formatted & unformatted values for each analytic
variable level). Figure 6 contains a printout of what our final dataset will look like. In Figure 6, we see that all of the statistics
are associated with a category level of each exposure variable in one concise dataset. The name, values and counts for the
response variable and its corresponding levels, are stored on the first observation as a header record for easy access.

Each of the datasets created from these ODS Tables will require subsequent DATA Step processing. To better facilitate the
coding methods needed for each DATA Step, we will remove as much of the extraneous information and unneeded
observations as is possible at the time of their creation. We can also rename the variables that contain descriptive information
at this time. Figure 12 shows the output datasets created by the code below.

 Figure 11: CrossTabFreqs00
 V V V
 V V a a a
 a a V r r F r
 r r a L 2 _ r 1
 N N r a L T t e V
 a a F b a Y o q a
 m m m e b P t K l
 e e 1 l e E a e u
 1 2 1 1 l _ l y e

 EDUCATION DIABETES . Education Dx with Diabetes 01 11080 1 .
 EDUCATION DIABETES <=High School Education Dx with Diabetes 11 6253 1 0
 EDUCATION DIABETES >High School Education Dx with Diabetes 11 4827 1 1
 SMOKE DIABETES . Smoke Status Dx with Diabetes 01 11080 2 .
 SMOKE DIABETES Never Smoked Smoke Status Dx with Diabetes 11 6012 2 0
 SMOKE DIABETES Past Smoker Smoke Status Dx with Diabetes 11 3638 2 1
 SMOKE DIABETES Current Smoker Smoke Status Dx with Diabetes 11 1430 2 2

 11

 ODS OUTPUT ParameterEstimates= ParameterEstimates
 (KEEP = variable classval0 probchisq

 RENAME = (Variable = VarName1)

 WHERE = (VarName1 NE "Intercept"))

 OddsRatios = OddsRatios

 (KEEP = effect oddsratioest lowercl uppercl

 RENAME = (OddsRatioEst=OddsRatio))

 ResponseProfile=ResponseProfile

 (KEEP= outcome count

 RENAME = (count=VarN2)) ;

 PROC LOGISTIC DATA = mydata NAMELEN=32;

 CLASS education smoke / ORDER=INTERNAL PARAM=REF REF=FIRST;

 MODEL diabetes(ORDER=INTERNAL DESCENDING) = education smoke;

 FORMAT _numeric_;

 RUN;

 ODS OUTPUT CLOSE;

While the above code can create VarName1 with a RENAME statement on the ParameterEstimates Table and a subsequent
assignment statement (shown in code below) can easily create VarValue1, these variables are not as easily created from the
OddsRatio Table. In the OddsRatio Table, these variable must be extracted from the character variable, EFFECT.

We want our final PROC LOGISTIC composite dataset to have one observation for each level of VarName1, including the
referent level, with descriptive information available on all observations, and relational statistics available on all except the
observation for the referent level. To set this up, we need to create two datasets from OddsRatios – one with referent level
data (containing only descriptive information) and one with non-referent level data (containing descriptive information and
relational statistics). These will later be merged together with the ParameterEstimates dataset.

The following code creates the final ParameterEstimates dataset and the two OddsRatio datasets discussed, which are
displayed in Figures 13, 14, and 15:

 Figure 12: PROC LOGISTIC adjusted datasets from ODS Tables

 TABLE: ParameterEstimates

 Class Prob
 Obs VarName1 Val0 ChiSq

 1 education 1 0.0147
 2 smoke 1 0.2418
 3 smoke 2 <.0001
/***/
 TABLE: OddsRatios

 Odds
 Obs Effect Ratio LowerCL UpperCL

 1 education 1 vs 0 1.110 1.021 1.206
 2 smoke 1 vs 0 1.057 0.964 1.159
 3 smoke 2 vs 0 1.316 1.162 1.490
/***/
 TABLE: ResponseProfile

 Obs Outcome VarN2

 1 1 3124
 2 0 7956

 12

 DATA ParameterEstimates (KEEP = VarName1 VarValue1 probchisq);

 LENGTH VarName1 $32;

 SET ParameterEstimates ;

 BY VarName1 NOTSORTED;

 VarValue1 = INPUT(classval0,BEST8.);

 RUN;

 DATA OddsRatios (KEEP = VarName1 VarValue1 LogisticKey OddsRatio LowerCL UpperCL)

 OddsRatios0 (KEEP = VarName1 VarValue1 LogisticKey);

 LENGTH VarName1 $32;

 SET OddsRatios ;

 VarName1 = SCAN(EFFECT,1);

 VarValue1 = INPUT(SCAN(EFFECT,2),BEST8.);

 IF VarName1^=LAG(VarName1) THEN DO;

 LogisticKey+1;

 OUTPUT OddsRatios;

 VarValue1 = INPUT(SCAN(EFFECT,4),BEST8.);

 OUTPUT OddsRatios0;

 END;

 ELSE OUTPUT OddsRatios;

 RUN;

Variable labels and formats will be retrieved from PROC CONTENTS:

 ODS OUTPUT Variables=ExposureInfo (KEEP = Variable Label Format

 RENAME = (Variable = VarName1

 Label = VarLabel1));

 PROC CONTENTS DATA=mydata (KEEP = education smoke); RUN;

 ODS OUTPUT CLOSE;

We can now sort the ParameterEstimates, OddsRatios and OddsRatios0 datasets by VarName1 and VarValue1 followed by a
DATA Step where these three datasets are merged together. Since our desired dataset also includes the data output from
PROC CONTENTS, merged by VarName1, we can complete the addition of the descriptive information within the same DATA
Step using Hash Table processing:

 DATA LogisticStats (DROP=Format);

 LENGTH VarLabel1 VarFmt1 $256 ;

 IF 0 THEN SET ExposureInfo;

 DECLARE HASH c(DATASET:”ExposureInfo”);

 c.DEFINEKEY(“VarName1”);

 c.DEFINEDATA(ALL:”yes”);

 c.DEFINEDONE();

 DO UNTIL (done);

 MERGE ParameterEstimates OddsRatios OddsRatios0 END=done;

 BY VarName1 VarValue1;

 rc=c.FIND(); DROP rc;

 VarFmt1=PUTN(VarValue1,Format);

 OUTPUT LogisticStats;

 END;

 STOP; RUN;

 Figure 13: Adjusted
 Parameter
 Estimates
 Dataset

 Var prob
 VarName1 Value1 chisq

 education 1 0.0147
 smoke 1 0.2418
 smoke 2 <.0001

 Figure 14: Adjusted OddsRatios
 Dataset

 Var Odds Logistic
 VarName1 Value1 Ratio LowerCL UpperCL Key

 education 1 1.110 1.021 1.206 1
 smoke 1 1.057 0.964 1.159 2
 smoke 2 1.316 1.162 1.490 2

 Figure 15: Adjusted
 Odds
 Ratios0
 Dataset

 Var Logistic
 VarName1 Value1 Key

 education 0 1
 smoke 0 2

 13

By sorting the LogisticStats dataset by the LogisticKey variable, we will place the observations in the original order requested
in the execution of the PROC LOGISTIC. Figure 16 displays the LogisticStats dataset after execution of the above DATA
Step.

Our final task is to add the descriptive information for the response variable, VarName2. Logistic orders the response variable
in descending order. For our purposes, we will sort the response variable in ascending order. We can retrieve the needed
descriptive items for VarName2 from PROC CONTENTS and merge it with the ResponseProfile dataset. But first, we must
restructure the ResponseProfile dataset.

 DATA ResponseProfile ;

 LENGTH VarName2 $32 ;

 MERGE ResponseProfile ;

 VarName2=”diabetes”;

 Var2Ord=_N_;

 VarValue2=INPUT(outcome,8.0);

 RUN;

We can now add the descriptive information from the ResponseInfo dataset (output from the

Variables Table from PROC CONTENTS):

 DATA ResponseProfile ;

 LENGTH VarLabel2 VarFmt2 $256 ;

 MERGE ResponseProfile ResponseInfo ;

 VarFmt2=PUTN(VarValue2,Format);

 RUN;

Two descriptive items (VarValue2 and VarFmt2) and one statistic (VarN2) will be propagated across one observation using
PROC TRANSPOSE in the same manner as was seen in the CrossTabFreqs example. We will also create the order variable
for use in PROC TRANSPOSE. We will display the code for transposing VarValue2.

 PROC TRANSPOSE DATA=ResponseProfile OUT=TranRP1 (DROP=_NAME_ _LABEL_)

 PREFIX=VarValue2_;

 BY VarName2 VarLabel2;

 ID var2ord;

 VAR VarValue2;

 RUN;

After creating a composite dataset of these transposed response items:

 DATA TranRP;

 MERGE TranRP1 TranRP2 TranRP3 ;

 BY VarName2 VarLabel2;

 RUN;

we will merge it onto the first observation of dataset containing the OddsRatios and ParameterEstimates summary information.
Once TranRP is merged with LogisticStats, we have the dataset that can be seen in Figure 6 on Page 4 of this paper.

 DATA LogisticStats;

 MERGE LogisticStats TranRP;

 RUN;

 Figure 16: Composite LogisticStats Dataset

 Var Prob Odds Logistic
 VarName1 Value1 Chisq Ratio LowerCL UpperCL Key VArLabel1 VarFmt1

 education 0 1 Education <=High School
 education 1 0.0147 1.110 1.021 1.206 1 Education >High School
 smoke 0 2 Smoke Status Never Smoked
 smoke 1 0.2418 1.057 0.964 1.159 2 Smoke Status Past Smoker
 smoke 2 <.0001 1.316 1.162 1.490 2 Smoke Status Current Smoker

 14

AUTOMATE THE PROCESS

The code presented in this paper up to now, has centered on creating adjusted ODS output datasets for specific variables.
We can design modules of SAS code which are capable of processing these analytic tasks on generic sets of variables.
Within SAS, the SAS Macro Facility is a tool that can be used to automate general tasks that we wish to compartmentalize or
repeat. We have created a macro module for each procedure that we wish to generate a summary set of statistics conforming
to our set of rules of design. Each macro module executes independently, given the parameters passed during the time of
invocation, and returns a single product: a concise restructured output dataset from one or more ODS Tables generated by the
procedure executed in the macro module.

Automating PROC UNIVARIATE

The PROC UNIVARIATE example, that we have presented, produces a summary dataset which contains select statistics for
all recorded observations of the input dataset across the processed variables. In our automated version, we will add a CLASS
statement to the PROC UNIVARIATE and retrieve statistics from the Moments Table, only. This will require that we use the
variables VarName1 and VarName2, where VarName1 contains the names of the processed variables and VarName2
contains the name of the CLASS variable.

We will pass, as parameters:

 1) the name of the input dataset
 2) the list of variables to process
 3) the name of the CLASS variable
 4) the name of the output dataset.

 %procUnivariate(data = mydata ,

 varList = age bmi ,

 class = diabetes,

 UnivariateOut = UnivariateStats)

Figure 17 contains the listing of the dataset of summary statistics from the Moments table that is returned by the
ProcUnivariate macro. The ProcUnivariate macro can be found in Appendix 2.

Automating PROC FREQ

The ProcFreq macro module (found in Appendix 3) contains automated code based directly on the hard coded example
presented in this paper. The macro module returns a dataset identical to the one in Figure 5. Parameters passed include:

 1) the name of the input dataset
 2) the list of row variables
 3) the variable(s) to contain column statistics
 4) the name of the dataset of summary statistics returned by the macro.

 Figure 17: Dataset Returned by %ProcUnivariate (CLASS Statement Added)

 U

 n

 i V V

 v a a

 V V a r r V V

 V a V a r V V a a s s

 a r a r i a a r r t t

 r L r L a l l F F m m d d

 N a N a t u u m m e e d d

 a b a b e e e t t a a e e

 m e m e K 2 2 2 2 n n v v

 e l e l e _ _ _ _ _ _ _ _

 1 1 2 2 y 1 2 1 2 1 2 1 2

 age Patient Age diabetes Dx With Diabetes 1 0 1 No Yes 49.3367 48.8451 14.7130 12.6577

 bmi Body Mass Index diabetes Dx With Diabetes 2 0 1 No Yes 27.5817 27.0641 4.6234 4.1684

 15

 %ProcFreq(data = mydata ,

 var1List = education smoke ,

 var2List = diabetes,

 out = FreqStats)

Figure 18 contains the listing for this dataset.

Automating PROC LOGISTIC

Appendix 4 contains the macro module for PROC LOGISTIC. The code in the macro deviates from that discussed in the
paper in that it will allow for the programmer to pass continuous exposures into the model as well as categorical exposures
using separate parameters in the macro call. The categorical variables will appear in the CLASS statement of the PROC
LOGISTIC while both the categorical and continuous variables appear in the MODEL statement. The dataset of summary
statistics will appear nearly identical to the one presented in this paper. The observable difference is that the VarValue1 and
VarFmt1 are missing for the continuous variables. The following macro call to ProcLogistic will generate the results seen in
Figure 19.

 %MACRO ProcLogistic(data = mydata,

 response = diabetes,

 class_vars = smoke education,

 continuous_vars = age bmi,

 out = LogisticStats,

 rc = rc

);

Six parameters are passed in the call to %ProcLogistic:

1) The name of the input dataset
2) The name of the response variable
3) The names of Class Exposures
4) The names of Continuous Exposures
5) The name of the output dataset (a default value of LogisticStats)
6) A variable to keep track of the return code for the hash table

The hash table return code is passed as a parameter with the default name of rc. This allows the programmer to change the
name of the return code variable if it is known that this variable already exists in the input dataset and is being processed by
the PROC LOGISTIC.

 Figure 18: The FreqStats Dataset Returned by %ProcFreq

 C C C
 V V V F F F o o o
 a a a r r r l l l
 V r r r V V V e e e P P P
 V V a V V V a a a q q q e e e
 F a a r V a a a r r r u u u r r r
 r r r _ V a l l l F F F e e e c c c
 e N N T a r u u u m m m n n n e e e t
 q a a Y l F e e e t t t c c c n n n o
 K m m P u m 2 2 2 2 2 2 y y y t t t t
 e e e E e t _ _ _ _ _ _ _ _ _ _ _ _ a
 y 1 2 _ 1 1 1 2 3 1 2 3 1 2 3 1 2 3 l

 1 education diabetes 01 . . . 0 1 . No Yes . 7956 3124 . 11080
 1 education diabetes 11 0 <=High School . 0 1 . No Yes 60 4542 1711 . 57 54 6253
 1 education diabetes 11 1 >High School . 0 1 . No Yes 318 3414 1413 . 42 45 4827
 2 smoke diabetes 01 . . . 0 1 . No Yes . 7956 3124 . 11080
 2 smoke diabetes 11 0 Never Smoked . 0 1 . No Yes 352 4379 1633 . 55 52 6012
 2 smoke diabetes 11 1 Past Smoker . 0 1 . No Yes 20 2615 1023 . 32 32 3638
 2 smoke diabetes 11 2 Current Smoker . 0 1 . No Yes 6 962 468 . 12 14 1430

 16

Designing Utility Macros

Data processing using PROC CONTENTS and PROC TRANSPOSE appears within the design phase of more than one of our
procedures that are summarized. Since the structure for these two procedures is identical each time they are executed, we
can design a utility macro for each, in a generic sense, that can be invoked when needed. We will also design two additional
utility macros, named %SPLIT and %AnalysisSet, which will be discussed further in this section. Appendix 1 contains our
version of these utility macros.

Designing a Supervisory Macro

Once you have designed macro modules that return concrete useful items such as the datasets that we have discussed, you
can design other macros that use them as building blocks to achieve a larger task. This type of macro is often referred to as a
supervisory macro. It governs the invocation of each macro module within its boundaries (%MACRO to %MEND), passing
appropriate data through macro parameters, executing the modules in the proper order and building a final product based on
the results received from the tasks it delegates to each module.

Since we have discussed and provided macros for three procedures, we will design a supervisory macro that will delegate
tasks to all three of these modules and combine the resulting datasets into one composite dataset with statistics from multiple
procedures which can be used to generate a summary report of select statistics. Let’s begin by defining the %MACRO
statement for this supervisory macro:

 %MACRO supervisor(data = ,

 Varlist1 = ,

 Varlist2 = ,

 Out =);

We will be passing in an input dataset, two lists of variables and the name of an output datasets as macro parameters:

 %supervisor(data = mydata ,

 Varlist1 = smoke education #age #bmi ,

 Varlist2 = diabetes,

 Out = SummaryStats)

 Figure 19: The LogisticStats Dataset Returned by %ProcLogistic

 Var Var Var Var Odds Upper Lower prob

 Obs Label1 Fmt1 Name1 Value1 Ratio CL CL chisq

 1 Smoking Status Never Smoked smoke 0

 2 Smoking Status Past Smoker smoke 1 0.95 0.87 1.05 0.346

 3 Smoking Status Current Smoker smoke 2 0.77 0.68 0.87 <.000

 4 Education < High School education 0

 5 Education High School education 1 1.59 1.37 1.83 <.000

 6 Education College education 2 1.34 1.16 1.55 <.000

 7 Patient age age . 1.01 1.00 1.02 0.004

 8 Body Mass Index bmi . 1.03 1.02 1.04 <.001

 Var Var Var Var Var Var Var Var

 Obs Name2 Label2 Value2 Value2 Fmt2_1 Fmt2_2 N2_1 N2_2

 _1 _2

 1 diabetes Dx Diabetes 0 1 No Yes 7760 2996

 2

 3

 4

 5

 6

 7

 8

 17

It is beneficial to include a validation macro module which can be invoked within the supervisory macro. This validation macro
will assure that all of the items that are passed into the supervisory macro actually exist and conform to the needs of the
procedures that will process them. If any of the items fail validation testing, processing of the supervisory macro should cease
with notification written to the SAS Log. Due to space issues, we will not include a validation macro with this paper but we
recommend you review other papers for ideas on how to create this type of macro module

1
.

Our task will include running a PROC LOGISTIC with a categorical response variable, identified by the parameter Varlist2, with
exposure variables identified by the parameter Varlist1. The exposures can be either categorical or continuous. Categorical
and continuous variables will be handled differently by the supervisory macro. Categorical variables will be processed by the
ProcFreq macro module and then passed to the ProcLogistic macro module by the class_vars parameter. Continuous
variables will be processed by the ProcUnivariate macro module and then passed to the ProcLogistic macro module by the
continuous_vars parameter. To distinguish between the two types of variables, we attach an identifying character as a prefix
to the name of the continuous variables in the VarList1 parameter of the invocation for the supervisory macro. We will use the
“#” symbol as this control character. If there is no prefix, then the exposure will be processed as a categorical variable. The
supervisory macro will separate these two sets of variables using the %Split macro function (Appendix 1):

 %LOCAL class_vars continuous_vars;

 %LET varlist1 = %UPCASE(&varlist1);

 %LET varlist2 = %UPCASE(&varlist2);

 %LET class_vars = %split(vars= &varlist1,control=);

 %LET continuous_vars = %split(vars= &varlist1,control=#);

We will be processing data by three procedures, PROC UNIVARIATE, PROC FREQ and PROC LOGISTIC. PROC
UNIVARIATE and PROC FREQ will return statistics on all observations within the input dataset that contain recorded data.
PROC LOGISTIC, however, will remove all observations that contain any missing values across the list of exposures and the
response variable. This means that PROC LOGISTIC is returning results based on the lowest common denominator of the
three procedures. In order to properly compare the results from all three procedures, they must each input an identical dataset
based on the lowest common denominator. This will require creating an analysis dataset which can be passed to each macro
module to assure that the procedures process data that can be properly combined, compared and reported together. We will
create this analysis set with the %AnalysisSet macro (Appendix 1).

 Data;Stop;Run; %LOCAL AnalysisSet; %LET AnalysisSet = &sysLast ;

 %AnalysisSet(data = &data,

 variables = &varlist2 &class_vars &continuous_vars,

 out = &AnalysisSet)

Next we will create a summary dataset of counts and percents for our categorical variables using the ProcFreq macro module:

 Data;Stop;Run; %LOCAL FreqStats; %let FreqStats = &sysLast ;

 %ProcFreq(data = &AnalysisSet ,

 Rowvars = &class_vars,

 Colvars = &varlist2,

 out = &FreqStats)

Means and standard deviations will be obtained using the ProcUnivariate macro module with the continuous variables passed
in the VarList1 parameter:

 Data;Stop;Run; %LOCAL UnivariateStats; %LET UnivariateStats = &sysLast ;

 %procUnivariate(data = &AnalysisSet,

 varList = &continuous_vars,

 class = &varlist2,

 UnivariateOut = &UnivariateStats)

Our final macro to invoke will be the ProcLogistic module:

 Data;Stop;Run; %LOCAL LogisticStats; %LET LogisticStats = &sysLast ;

 %ProcLogistic(data = &AnalysisSet,

 response = &varlist2,

 class_vars = &class_vars,

 continuous_vars = &continuous_vars,

 out = &LogisticStats,

 rc = rc

);

 18

Sort the &FreqStats and &LogisticStats datasets prior to the final merge of these three

datasets.

 PROC SORT DATA=&FreqStats;

 BY VarName1 VarValue1;

 RUN;

 PROC SORT DATA=&LogisticStats;

 BY VarName1 VarValue1; RUN;

The &FreqStats and &LogisticStats datasets will be combined in our final dataset using a

simple merge statement. Since the statistics from the &UnivariateStats dataset will be

combined using a different set of merge criteria, being just the VarName1 variable, we will

use a has table for processing this data in the final DATA Step.

 DATA &out ;

 If 0 then set &UnivariateStats ;

 Declare hash c(dataset:"&UnivariateStats") ;

 c.defineKey("VarName1") ;

 c.defineData(all:"yes") ;

 c.defineDone() ;

 Do until (done) ;

 MERGE &FreqStats (WHERE = (_TYPE_="11"))

 &LogisticStats

 end=done ;

 BY VarName1 VarValue1;

 IF c.find() NE 0 THEN call missing(of mean_: StdDev_:) ;

 OUTPUT;

 End ;

 Stop ;

 RUN;

This macro is self-cleaning in the sense that all macro variables used are local and all temporary datasets created by this
macro are deleted before exiting the macro.

 PROC DATASETS;

 DELETE %SUBSTR(&AnalysisSet,6)

 %SUBSTR(&FreqStats,6)

 %SUBSTR(&UnivariateStats,6)

 %SUBSTR(&LogisticStats,6);

 QUIT;

 %MEND supervisor;

The only item remaining after the %Supervisor macro compiles and executes will be a dataset with composite summary
statistics from PROC UNIVARIATE, PROC FREQ and PROC LOGISTIC, named SummaryStats.

Figure 20 contains a report generated from our dataset produced by the supervisory macro.

 Figure 20: Example report:

 Diagnosed with Diabetes

 | Yes | No | 95%

 | (N=2996) | N=(7760) |p-value Odds Confidence Interval

 | N % Mean StdDev | N % Mean StdDev | Ratio Upper Lower

 Smoking Status | | |

 Never Smoked |1556 51.9 |4265 54.9 |

 Past Smoker | 991 33.1 |2558 32.9 |0.1058 0.923 0.837 1.017

 Current Smoker| 449 14.9 | 937 12.0 |<.0001 0.776 0.683 0.881

 Education | | |

 < High School | 358 11.9 | 645 8.3 |

 High School |1326 44.2 | 858 49.7 |<.0001 1.658 1.432 1.921

 College |1312 43.7 | 257 41.9 |<.0001 1.435 1.233 1.670

 Patient Age | 48.8 14.7 | 49.3 12.7 |0.0036 1.005 1.002 1.009

 Body Mass Index | 27.1 4.2 | 27.6 4.2 |<.0001 1.027 1.016 1.039

 19

CONCLUSION

SAS ODS provides an efficient method for saving SAS Procedures output to SAS datasets. Although the design of these
datasets is inconsistent, as we have seen, uniform rules can be adopted and applied to restructure them to more easily
combine them to meet analysis and reporting needs. The macro modules we have created here will output what may be a
near minimum of data that one might want to summarize from the ODS tables produced by the three procedures we have
covered. However, the reader can utilize the principles presented here to retrieve additional statistics from these tables or
from other ODS tables produced by the same procedures or any SAS procedure. Furthermore, the reader can design
summary datasets to handle situations we have not programmed our macros to handle, such as character variables or
formatted continuous numeric variables. The coding methods needed to handle these types, or even a combination of these
types, are very similar. In summary, if the structure of the ODS output datasets that SAS provides does not meet your
reporting and analysis needs, our rules for redesigning these datasets can serve as a blueprint for creating datasets that do
(meet your needs).

DISCLAIMER: The contents of this paper are the work of the authors and do not necessarily represent the opinions,
recommendations, or practices of Westat and Data and Analytic Solutions, Inc.

ACKNOWLEDGEMENTS

The authors would like to thank Mike Rhoads for his assistance and review of the methods presented in this paper.

REFERENCES

1. Long, S., Abolafia, J., Park, L. (2006). Using SAS® ODS to extract and merge statistics from multiple SAS procedures into a
single summary report, a detailed methodology. Proceedings of the 31st Annual SAS Users Group International Conference.

CONTACT INFORMATION

Stuart Long (long3@niehs.nih.gov)
Westat
1009 Slater Road, Suite 110
Durham, NC 27703

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

 20

APPENDIX 1: UTILITY MACROS

***;

* Macro ProcContents

*

* Creates a contents dataset of key variable attributes (name,

* variable type, label, and format name) for selected variables

* using PROC CONTENTS.

*

* Parameters:

* Data = input data set name (data set on which PROC CONTENTS is run)

* Vars = list of selected variables whose attributes are kept

* I = text, typically a number, to insert in output variable names

* Var&i.Name and Var&i.Label (optional). If not specified

* output variable names remain as VarName and VarLabel.

* ContentsOut = output data set name

***;

%MACRO ProcContents(data = &SYSLAST,

 vars = ,

 i = ,

 ContentsOut =);

 ODS LISTING CLOSE ;

 ODS OUTPUT Variables=&ContentsOut(KEEP= Variable Type Format Label

 RENAME=(Variable = VarName&i

 Label = VarLabel&i));

 PROC CONTENTS DATA=&data(KEEP = &vars);RUN;

 ODS OUTPUT CLOSE ;

 ODS LISTING ;

%MEND ProcContents;

***;

* Macro ProcTranspose

*

* Transposes selected variables by running one PROC TRANSPOSE per

* specified variable using common BY and ID statements, and then

* merging the transposed datasets together to create the output

* dataset. Transposed variable names created from the specified

* variables are a concatenation of the original variable name and the

* value of the ID variable.

*

* Within each unique combination of BY-variable levels in the transpose:

* - the input dataset is assumed to contain multiple records, uniquely

* identified by the ID variable

* - the output dataset will contain one record, with multiple variables

* for each of the transposed variables

*

* Parameters:

* Data = input data set name (data before transposing)

* Default is the last data set created.

* Vars = list of variables to transpose (used one at a time in

* the VAR statement in PROC TRANSPOSE)

* ByVars = list of BY-variables for the transpose (entire list

* is used in the BY statement of each PROC TRANSPOSE)

* ID = ID variable used in each PROC TRANSPOSE

* TransposeOut = output data set name

***;

%MACRO ProcTranspose(data = &SYSLAST,

 vars = ,

 BYVars = ,

 21

 ID = ,

 TranOut =);

 %LOCAL i;

 %LET i=1;

 %DO %UNTIL(NOT %LENGTH(%SCAN(&vars,&i)));

 DATA;STOP;RUN; %LOCAL TranOut&i; %LET TranOut&i = &SYSLAST ;

 PROC TRANSPOSE DATA=&data out=&&TranOut&i (DROP=_NAME_ _LABEL_)

 prefix=%SCAN(&VARs,&I)_;

 BY &BYVars;

 ID &id;

 VAR %SCAN(&VARs,&I);

 run;

 %LET i = %EVAL(&i+1);

 %END;

 DATA &TranOut;

 MERGE %DO j = 1 %TO %EVAL(&i-1); &&TranOut&j %END; ;

 BY &BYVars ;

 RUN;

 PROC DATASETS;

 DELETE %DO j = 1 %TO %EVAL(&i-1); %SUBSTR(&&TranOut&j,6) %END; ;

 QUIT;

%MEND ProcTranspose;

***;

* Macro Function Split

*

* Takes a space-delimited list of variable names and subsets it, keeping

* only the variables that contain a specified single-character prefix

* that is a character other than a letter or an underscore (_). The

* prefix is removed from all variable names in the subsetted list.

* If no prefix is specified, the subsetted list contains all variable

* names from original list that DO NOT have such a prefix, i.e., those

* that start with a letter or an underscore.

* The subsetted list is output in place of the macro call, so the Split

* macro call can be assigned as follows to a macro variable:

* %LET contvars = %Split(vars= male #age diabetes, conrol=#);

*

* Parameters:

* Vars = input list of variables, each of which may or may not have a

* single-character prefix that is not a letter or underscore

* Control = single-character prefix to search for in first character of

* variable names in the list. Default=<blank> (no prefix).

***;

%MACRO Split(vars = ,

 Control =);

 %LOCAL count varlist chars;

 %IF &vars NE %THEN %DO;

 %IF &control NE %THEN %DO;

 %LET count=1 ;

 %DO %UNTIL (%QSCAN(&vars,&count)=) ;

 %LET var = %QSCAN(&vars,&count);

 %IF %SUBSTR(&var,1,1)=&control %THEN

 %SYSFUNC(COMPRESS(%QSCAN(&vars,&count),&control)) ;

 22

 %LET count = %EVAL(&count+1);

 %END ;

 %END;

 %ELSE %DO;

 %LET count=1 ;

 %DO %UNTIL (%QSCAN(&vars,&count)=) ;

 %LET var = %QSCAN(&vars,&count);

 %IF %INDEX(ABCDEFGHIJKLMNOPQRSTUVWXYZ_,%UPCASE(%SUBSTR(&var,1,1))) NE 0 %THEN

 %QSCAN(&vars,&count) ;

 %LET count = %EVAL(&count+1);

 %END ;

 %END;

 %END;

%MEND split;

***;

* Macro AnalysisSet

*

* Checks a list of variables. If any observation has a missing value

* for any one of the variables, then that observation is removed from

* the returned analysis set

*

* Parameters:

* Data = input data set name.

* Variables = input list of variables to check

* variable names in the list. Default=<blank> (no prefix).

* Out = output data set name for the analysis dataset

***;

 %MACRO AnalysisSet(data = ,

 variables = ,

 out =) ;

 DATA &out ;

 SET &data (KEEP = &variables);

 IF NMISS(OF _numeric_) = 0 THEN OUTPUT; RUN;

 %MEND AnalysisSet;

APPENDIX 2: ProcUnivariate MACRO

***;

* Macro ProcUnivariate

*

* Creates a dataset of summary statistics (N, mean, standard deviation)

* for selected variables from a dataset using PROC UNIVARIATE.

* Variable information is added from PROC CONTENTS using hash tables.

*

* External macros used: ProcContents, ProcTranspose

*

* Parameters:

* Data = input data set name (unsummarized raw data)

* VarList = list of variables for which summary statistics are

* calculated

* Class = variable name for CLASS statement in PROC UNIVARIATE

* (required). Only one CLASS variable may be specified

* with this macro.

* RC = work variable, which can be renamed if default name

* conflicts (default=RC)

* UnivariateOut = output data set name

***;

%MACRO ProcUnivariate(

 data=

 , varList=

 23

 , class=

 , UnivariateOut=

 , rc=rc

) ;

 %put NOTE: _local_ ;

 ODS LISTING CLOSE;

 /*---*/

 %LOCAL Var1Info Var2Info;

 DATA;STOP;RUN; %LET Var1Info = &SYSLAST ;

 DATA;STOP;RUN; %LET Var2Info = &SYSLAST ;

 %ProcContents(data = &data,

 vars = &varlist,

 i = 1,

 ContentsOut = &Var1Info);

 %ProcContents(data = &data,

 vars = &class,

 i = 2,

 ContentsOut = &Var2Info);

/*---*/

 %LOCAL moments ;

 ODS OUTPUT Moments=_data_(DROP= CValue1 CValue2

 RENAME=(VarName=VarName1));

 PROC UNIVARIATE DATA=&data ;

 CLASS &class;

 VAR &varlist;

 FORMAT &class;

 RUN;

 %let Moments = &sysLast ;

 ODS output close ;

 /*---*/

 Data &UnivariateOut (DROP = &class);

 LENGTH VarFmt2 $256

 FORMAT $32

 VarLabel1 VarLabel2 $256;

 /* Let's load the class variable info from PROC CONTENTS. */

 Set &Var2Info ;

 /* Let's put the dataset with analysis variable info from PROC

 CONTENTS into a hash table. */

 If 0 then set &Var1Info ;

 Declare hash v(dataset:"&Var1Info") ;

 v.defineKey("VarName1") ;

 v.defineData("VarLabel1") ;

 v.defineDone() ;

 Do until (done) ;

 Set &moments end=done ;

 By VarName1 NOTSORTED &CLASS NOTSORTED;

 IF FIRST.VarName1 THEN Var2Ord=0;

 IF FIRST.&CLASS THEN Var2Ord+1;

 VarValue2=INPUT(&class,BEST8.);

 /* The SELECT block is a little more wordy, but will run more

 efficiently. I think it's also easier to read because it has an

 explicit end; the IF statements suddenly switch from looking at

 LABEL1 to LABEL2 without as clear a delineation. */

 Select (Label1) ;

 When ("N") N = nValue1 ;

 When ("Mean") Mean = nValue1 ;

 When ("Std Deviation") StdDev = nValue1 ;

 Otherwise ;

 End ;

 Drop Label1 NValue1 Label2 NValue2 ;

 VarFmt2=PUTN(VarValue2,Format);

 If last.&class then do ;

 &rc = v.find() ;

 Drop &rc Format;

 24

 Output &UnivariateOut;

 End ;

 End ;

 Stop ;

 Run ;

 ODS LISTING;

 PROC PRINT DATA=&UnivariateOut;

 RUN;

 ODS LISTING CLOSE;

 /*---*/

 %ProcTranspose(data = &UnivariateOut ,

 vars = VarValue2 VarFmt2 mean stddev ,

 BYVars = VarName1 VarLabel1 VarName2 VarLabel2,

 ID = var2ord,

 TranOut = &UnivariateOut);

 /*---*/

 PROC DATASETS;

 DELETE %SUBSTR(&Var1Info,6)

 %SUBSTR(&Var2Info,6)

 %SUBSTR(&Moments,6);

 QUIT;

 ODS listing ;

 /*---*/

%mEnd procUnivariate;

/*==*/

 APPENDIX 3: ProcFreq MACRO

***;

* Macro ProcFreq

*

* Creates a dataset of counts and column percentages from 2-way cross-

* tabulations produced using PROC FREQ. All possible cross-tabulations

* are produced by crossing each row variable from a list of row

* variables with each column variable from a list of column variables.

* Missing values are included in denominators when calculating column

* percentages.

*

* External macros used: ProcTranspose

*

* Parameters:

* Data = input data set name (unsummarized raw data)

* Var1List = list of row variables

* Var2List = list of column variables

* Out = output data set name

***;

%macro ProcFreq(

 data=

 , rowvars=

 , colvars=

 , out=

) ;

 %put _local_ ;

 ODS listing close ;

 /*---*/

 %local crossTabFreqs ;

 ODS output CrossTabFreqs=_data_ ;

 PROC FREQ DATA=&data;

 TABLES (&rowvars)*(&colvars) / MISSPRINT;

 25

 RUN;

 %let crossTabFreqs = &sysLast ;

 %put NOTE: %nrStr(&crossTabFreqs)=&crossTabFreqs ;

 ODS output close ;

 /*---*/

 %local reworkedCrossTabFreqs ;

 DATA _data_(KEEP=FreqKey VarName: VarValue: VarLabel: VarFmt: _type_

 frequency colpercent) ;

 LENGTH VarName1 VarName2 $32

 VarFmt1 VarFmt2 VarLabel1 VarLabel2 $256 ;

 ARRAY var1ary{*} &rowvars;

 ARRAY var2ary{*} &colvars;

 SET &crossTabFreqs ;

 BY Table notSorted ;

 If first.Table then FreqKey+1;

 VarName1=SCAN(TABLE , 2) ;

 VarName2=SCAN(TABLE , 3) ;

 DO i=1 TO DIM(var1ary);

 IF upcase(VarName1) = UPCASE(VNAME(var1ary{i})) THEN DO;

 VarFmt1 = VVALUE(var1ary{i});

 VarLabel1 = VLABEL(var1ary{i});

 VarValue1 = var1ary{i};

 END;

 END;

 DO i = 1 TO DIM(var2ary);

 IF upcase(VarName2) = UPCASE(VNAME(var2ary{i})) THEN DO;

 VarFmt2 = VVALUE(var2ary{i});

 VarLabel2 = VLABEL(var2ary{i});

 VarValue2 = var2ary{i};

 END;

 END;

 RUN;

 %let reworkedCrossTabFreqs = &sysLast ;

 %put NOTE: %nrStr(&reworkedCrossTabFreqs)=&reworkedCrossTabFreqs ;

 /*---*/

 PROC SORT data=&reworkedCrossTabFreqs ;

 BY FreqKey _TYPE_ VarValue1 VarValue2;

 RUN;

 /*---*/

 %local total ; Data;Stop;Run; %let total = &sysLast ;

 %put NOTE: %nrStr(&total)=&total ;

 DATA

 &reworkedCrossTabFreqs

 &total(

 KEEP= VarName1 VarValue1 VarLabel1 VarFmt1 VarName2 VarLabel2 _TYPE_

 FreqKey frequency

 RENAME=(frequency=total));

 SET &reworkedCrossTabFreqs ;

 BY FreqKey _TYPE_ VarValue1 VarValue2;

 IF FIRST.VarValue1 THEN Var2Ord=0;

 IF FIRST.VarValue2 THEN Var2Ord+1;

 SELECT(_TYPE_);

 WHEN("01","11") OUTPUT &reworkedCrossTabFreqs ;

 WHEN("00","10") DO;

 SUBSTR(_TYPE_,2) = "1" ;

 OUTPUT &total;

 END; *DO;

 END; *SELECT;

 RUN;

 /*---*/

 26

 %local tranCTF ; Data;Stop;Run; %let tranCTF = &sysLast ;

 %put NOTE: %nrStr(&tranCTF)=&tranCTF ;

 %procTranspose(data = &reworkedCrossTabFreqs ,

 Vars = VarValue2 VarFmt2 Frequency ColPercent ,

 Byvars = FreqKey VarName1 VarLabel1 VarName2 VarLabel2 _type_

 VarValue1 VarFmt1 ,

 Id = Var2ord ,

 TranOut = &tranCTF

)

 /*---*/

/* PROC SORT DATA=&tranCTF ;*/

/* BY FreqKey _TYPE_ VarValue1;*/

/* RUN;*/

/* PROC SORT DATA=&total ;*/

/* BY FreqKey _TYPE_ VarValue1;*/

/* RUN;*/

 Data &out ;

 Merge &tranCTF &total ;

 BY FreqKey _TYPE_ VarValue1 ;

 RUN;

 /*---*/

 /* A little cleanup is in order. */

 Proc sql ;

 Drop table

 &crossTabFreqs

 , &reworkedCrossTabFreqs

 , &total

 , &tranCTF

 ;

 Quit ;

 /*---*/

 ODS LISTING;

%MEND ProcFreq;

/*==*/

APPENDIX 4: ProcLogistic MACRO

***;

* Macro ProcLogistic

*

* Get model statistics from PROC LOGISTIC. See comments below.

*

* External macros used: ProcTranspose, Split

*

* Parameters:

* Data = input data set name

* Response = name of the 0/1 response variable for PROC LOGISTIC model

* Class_vars = list of Categorical exposure variables for PROC LOGISTIC model

* Continuous_vars = list of Continuous exposure variables for PROC LOGISTIC model

* Out = output data set name

* RC = work variable, which can be renamed if default name

* conflicts (default=RC)

***;

/************* PROC LOGISTIC *****************/

 27

***;

* Macro ProcLogistic

*

* Get model statistics from PROC LOGISTIC. See comments below.

*

* External macros used: ProcTranspose, Split

*

* Parameters:

* Data = input data set name

* Response = name of the 0/1 response variable for PROC LOGISTIC model

* Class_vars = list of Categorical exposure variables for PROC LOGISTIC model

* Continuous_vars = list of Continuous exposure variables for PROC LOGISTIC model

* Out = output data set name

* RC = work variable, which can be renamed if default name

* conflicts (default=RC)

***;

%MACRO ProcLogistic(data = ,

 Response = ,

 class_vars = ,

 continuous_vars = ,

 out = Logistic_Stats,

 rc = rc

);

 %LET class_vars = %UPCASE(&class_vars);

 %LET continuous_vars = %UPCASE(&continuous_vars);

 %LOCAL class_info response_info pe rp or or_ref TranRP;

 DATA;STOP;RUN; %LET class_info = &SYSLAST ;

 DATA;STOP;RUN; %LET response_info = &SYSLAST ;

 DATA;STOP;RUN; %LET pe = &SYSLAST ;

 DATA;STOP;RUN; %LET rp = &SYSLAST ;

 DATA;STOP;RUN; %LET or = &SYSLAST ;

 DATA;STOP;RUN; %LET or_ref = &SYSLAST ;

 DATA;STOP;RUN; %LET TranRP = &SYSLAST ;

 %ProcContents(data = &data,

 vars = &class_vars &continuous_vars,

 i = 1 ,

 Contentsout = &class_info);

 ODS LISTING CLOSE;

 ODS OUTPUT ParameterEstimates = &pe (KEEP = variable classval0 probchisq

 estimate StdErr

 RENAME = (Variable = VarName1)

 WHERE = (VarName1 ^= "Intercept"))

 ResponseProfile = &RP (RENAME = (Count=VarN2))

 OddsRatios = &or (KEEP = EFFECT OddsRatioEst LowerCL UpperCL

 RENAME = (OddsRatioEst = OddsRatio));

 PROC LOGISTIC DATA = &data ;

 CLASS &class_vars / ORDER=INTERNAL PARAM=REF REF=FIRST;

 MODEL &response (ORDER=INTERNAL DESCENDING) = &class_vars &continuous_vars;

 FORMAT &response &class_vars &continuous_vars; RUN;

 ODS OUTPUT CLOSE;

 ODS LISTING;

 DATA &pe (KEEP = VarName1 VarValue1 probchisq LogisticKey);

 LENGTH VarName1 $32;

 SET &pe ;

 BY VarName1 NOTSORTED;

 IF VarName1^=LAG(VarName1) THEN LogisticKey+1;

 VarValue1 = input(classval0,BEST8.);

 RUN;

 28

 DATA &or (KEEP = VarName1 VarValue1 LogisticKey OddsRatio LowerCL UpperCL)

 &or_ref (KEEP = VarName1 VarValue1 LogisticKey);

 LENGTH VarName1 $32 VarValue1 8;

 SET &or ;

 VarName1 = SCAN(EFFECT,1);

 VarValue1 = INPUT(SCAN(EFFECT,2),BEST8.);

 IF VarName1^=LAG(VarName1) THEN DO;

 LogisticKey+1;

 OUTPUT ∨

 Reference=SCAN(EFFECT,4);

 IF Reference ^= "" THEN DO;

 VarValue1 = INPUT(Reference,BEST8.);

 OUTPUT &or_ref;

 END;

 END;

 ELSE OUTPUT ∨

 RUN;

 PROC SORT DATA=&pe; BY VarName1 VarValue1;RUN;

 PROC SORT DATA=∨ BY VarName1 VarValue1;RUN;

 PROC SORT DATA=&or_ref; BY VarName1 VarValue1;RUN;

 DATA &out (DROP = format type);

 LENGTH VarLabel1 VarFmt1 $256 ;

 If 0 then set &class_info ;

 Declare hash c(dataset:"&class_info") ;

 c.defineKey("VarName1") ;

 c.defineData(all:"yes") ;

 c.defineDone() ;

 Do until (done) ;

 MERGE

 &pe

 &or

 &or_ref

 end=done

 ;

 BY VarName1 VarValue1;

 &rc = c.find() ; Drop &rc ;

 VarFmt1 = putN(VarValue1 , Format) ;

 OUTPUT;

 End ;

 Stop ;

 RUN;

 PROC SORT DATA=&out;

 BY LogisticKey;

 RUN;

 PROC SORT DATA=&rp;

 BY outcome;

 RUN;

 DATA &rp (DROP=outcome);

 LENGTH VarName2 $32 VarValue2 8.0;

 SET &rp ;

 var2ord=_N_;

 VarValue2=INPUT(outcome,8.0);

 VarName2="&response";

 RUN;

 %ProcContents(data = &data,

 vars = &response,

 i = 2 ,

 Contentsout = &response_info);

 DATA &rp (DROP = format);

 29

 LENGTH VarLabel2 VarFmt2 $256;

 MERGE &rp &Response_Info;

 BY VarName2;

 VarFmt2=PUTN(VarValue2,Format);

 RUN;

 %ProcTranspose(data = &rp ,

 vars = VarValue2 VarFmt2 VarN2 ,

 BYVars = varname2 varlabel2 ,

 ID = var2ord,

 TranOut = &TranRP);

 DATA &Out;

 MERGE &Out &TranRP;

 RUN;

 PROC DATASETS;

 DELETE %SUBSTR(&class_info,6)

 %SUBSTR(&response_info,6)

 %SUBSTR(&pe,6)

 %SUBSTR(&rp,6)

 %SUBSTR(&or,6)

 %SUBSTR(&or_ref,6)

 %SUBSTR(&TranRP,6);

 QUIT;

%MEND ProcLogistic;

/*==*/

