
CT-03

PRXChange: Accept No Substitutions
Kenneth W. Borowiak, PPD, Inc.

Abstract

SAS® provides a variety of functions for removing and replacing text, such as COMPRESS,
TRANSLATE & TRANWRD. However, when the replacement is conditional upon the text
around the string the logic can become long and difficult to follow. The PRXCHANGE
function is ideal for complicated text replacements, as it leverages the power of regular
expressions. The PRXCHANGE function not only encapsulates the functionality of traditional
character string functions, but exceeds them because of the tremendous flexibility afforded
by concepts such as predefined and user-defined character classes, capture buffers, and
positive and negative look-arounds.

Introduction

SAS provides a variety of ways to find and replace characters or strings in character fields.
Some of the traditional functions include the TRANWRD and TRANSLATE functions, but
these are limited to static strings and characters. The COMPBL function can be used to
reduce consecutive whitespace characters to a single whitespace character. The COMPRESS
function can used to eliminate characters, and this function was enhanced in Version 9.0
to include a third argument to delete or keep classes of characters. While these traditional
character functions are useful for relatively easy tasks, more difficult tasks involving text
substitutions and extractions often involve nesting of functions and conditional logic, which
can be cumbersome to follow and maintain.

With the release of Version 9.0, SAS has introduced Perl-style regular expressions through
the use of the PRX functions and call routines. This rich and powerful language for pattern
matching is ideal for text substitutions, as they allow the user to leverage predefined sets of
characters, customized boundaries and manipulation of captured text. This paper explores
some of the key functionality of the PRXCHANGE function. Some of the basic concepts of
regular expressions (a.k.a regex) are discussed in introductory papers by Borowiak [2008]
and Cassell [2007] and those unfamiliar with PRX should refer to those papers before
proceeding with this paper.

The PRXCHANGE function takes the following form:

prxchange(regular expression|id, occurrence, source)

● regular expression or id : The substitution regex can either be entered directly in the
first argument or a variable with the precompiled result from a call to the PRXPARSE
function. The substitution regex takes the form:

s/matching expression/replacement expression/modifiers
The s before the first delimiter is required1

The matching expression is the regex of the string to match
The replacement expression applied to the matched string
Modifiers control the behaviour of the matching part of the regex (i.e.
such i, x or o)

1 This is unlike the PRXMATCH function, where the m is optional before the first delimiter in the regex
(e.g ‘m/^\d/’).

1

● occurrence : The number of times to perform the the match and substitution. Valid
values are positive integers. A value of -1 is also valid, which performs replacement
as many times as it finds the matching pattern.

● source - The character string or field where the where the pattern is to be searched.

Consider the example in Figure 1, where a new variable NAME2 is created in a PROC SQL
step to replace all occurrences of the letter a with the letter e.

 Figure 1 - Replacement of a to e

proc sql outobs=5 ;
 select name

 , prxchange(‘s/a/e/i’, -1, name) as name2
 from sashelp.class
 order by name2
 ;
 quit ;

Name name2

Barbara Berbere

Carol Cerol

Henry Henry

Jeffrey Jeffrey

James Jemes

Since the i modifier is used, it makes the pattern matching case-insensitive, so occurrences
of a and A will be replaced by e. The value of the second argument is -1, so all occurrences
of a are replaced when found in the variable NAME.

Compression

A special case of a find-and-replace operation is compression, where the replacement is
nothing. This is an operation that is often performed using the COMPRESS function. In the
query below in Figure 3, both the COMPRESS and PRXCHANGE functions are used to remove
the vowels from the variable NAME into the variables NAME2 and NAME3, respectively.

 Figure 3 - Remove all vowels

proc sql outobs=4;
 select name

 , compress(name, ‘aeiou’, ‘i’) as name2
 , prxchange(‘s/[aeiou]//i’, -1, name) as name3
 from sashelp.class

2

 order by name3
 ;
 quit ;

Name name2 name3

Barbara Brbr Brbr

Carol Crl Crl

Henry Hnry Hnry

Judy Jdy Jdy

Now consider a slightly more restricted case where you want to remove vowels but the
vowel must be preceded by the letters l, m or n, while ignoring case. This is relatively
easy condition to implement with regular expressions by using a positive look-behind
assertion (?<=), as demonstrated in Figure 4.

 Figure 4 - Remove vowels preceded by l ,m or n

proc sql ;
 select name
 , prxchange(‘s/(?<=[lmn])[aeiou]//i’, -1, name) as name3
 from sashelp.class
 where prxmatch(‘m/(?<=[lmn])[aeiou]/i’, name)>0
 order by name3
 ;
 quit ;

Name name3

Alice Alce

James Jams

Jane Jan

Janet Jant

Louise Luise

Mary Mry

Philip Philp

Ronald Ronld

Thomas Thoms

3

William Willam

Look-arounds are zero-width assertions (i.e. they do not consume characters in the string)
that only confirm whether a match is possible by checking conditions around a specific
location in the pattern . Look-arounds can be positive or negative and can be forward or
backward looking, and they are discussed in more detail in Borowiak [2006] and Dunn
[2011]. To implement a solution to the problem in Figure 4 with the COMPRESS function
one need to use a DO loop with the SUBSTR function to check the condition, which rules out
using a SQL step.

Dedaction

Another useful type of substitution example is dedaction, or, the ‘blacking out’ of sensitive
information. Consider the case where a pattern is matched and the characters are replaced
by a static string, as in Figure 5 below, where you want to match the actual digits in the
social security number in the free-text field and replace them with the letter x.

 Figure 5 - Replace digits of social security numbers with an x

data SSN ;
 input SSN $20. ;
datalines ;
123-54-2280
#987-65-4321
S.S. 666-77-8888
246801357
soc # 133-77-2000
ssnum 888_22-7779
919-555-4689
call me 1800123456
;
run ;

proc sql feedback ;
 select ssn

 , prxchange(‘s/(?<!\d)\d{3}[-_]?\d{2}[-_]?\d{4}(?!\d)/xxxxxxxxx/io’, -1, ssn)
as ssn2

 from ssn
 ;
 quit ;

SSN ssn2

123-54-2280 xxxxxxxxx

#987-65-4321 #xxxxxxxxx

S.S. 666-77-8888 S.S. xxxxxxxxx

4

246801357 xxxxxxxxx

soc # 133-77-2000 soc # xxxxxxxxx

ssnum 888_22-7779 ssnum xxxxxxxxx

919-555-4689 919-555-4689

call me 1800123456 call me 18001234567

Capture Buffers

Like many other programming languages, regular expressions allow you to use parenthesis
to add clarity by grouping logical expressions together. A result of using grouping
parentheses is that it creates temporary variables, which can be used in the substitution
part of a regex. Consider an extension of the example in Figure 5 where we continue to
replace the digits of social security numbers with an x, but want to maintain any of the
dashes or underscores in the original variables.

 Figure 6 - Maintain dashes and underscores in social security number dedaction

proc sql feedback ;
 select ssn

 , prxchange('s/(?<!\d)\d{3}(-|_)?\d{2}(-|_)?\d{4}(?!\d)/xxx$1xx$2xxxx/io', -1
 , ssn) as ssn2
 from ssn
 ;
quit ;

SSN ssn2

123-54-2280 xxx-xx-xxxx

#987-65-4321 #xxx-xx-xxxx

S.S. 666-77-8888 S.S. xxx-xx-xxxx

246801357 xxxxxxxxx

soc # 133-77-2000 soc # xxx-xx-xxxx

5

ssnum 888_22-7779 ssnum xxx_xx-xxxx

919-555-4689 919-555-4689

call me 18001234567 call me 18001234567

Note the regular expression actually has four pairs of parentheses. The negative look-behind
(i.e. (?<!\d)) and negative look-ahead assertions (i.e. (?!\d)) are non-capturing. The
sub-expression (-|_), which appears the second and third pairs of parentheses, are the two
capturing parentheses, which correspond to the variables $1 and $2. And though the match
of the sub-expressions in the two capturing parentheses are optional, as they are followed
by the ? quantifier, the variables $1 and $2 can be populated with null values.

Case-Folding Prefixes and Spans

When performing a replacement, users have the ability to manipulate captured variables by
changing their case. Consider the example in Figure 7, where the titles Dr, Mr, and Mrs
are entered in various ways but need to be ‘propcased’.

 Figure 7 - Propcase courtesy titles

data guest_list ;
 input attendees $30. ;
datalines;
MR and MRS DRaco Malfoy
mr and dr M Johnson
MrS. O.M. Goodness
DR. Evil
mr&mrs R. Miller
;
run ;

proc sql ;
 select attendees
 , prxchange('s/\b(d|m)(r(?!a)s?)/\u$1\L$2\E/io', -1, attendees) as attendees2
 from guest_list
 ;
 quit ;

attendees attendees2

MR and MRS DRaco Malfoy Mr and Mrs DRaco Malfoy

mr and dr M Johnson Mr and Dr M Johnson

6

MrS. O.M. Goodness Mrs. O.M. Goodness

DR. Evil Dr. Evil

mr&mrs R. Miller Mr&Mrs R. Miller

The regular expression looks for a d or m at the beginning of a word and the matched
character is put in the first capture buffer. It then looks to match r (as long as it is not
followed by an a) followed an optional s and puts the characters in the second capture
buffer. The replacement expression then makes use of case-folding prefixes and spans
to control the case of the capture buffers. \u makes the next character that follows it
uppercase, which would be the d or m in first capture buffer. The case-folding span \L
makes characters that follow lowercase until the end of the replacement or until disabled by
\E, which is applied to the second capture buffer. Case-folding functionality was introduced
in SAS V9.2.

More on Lookarounds

The final example in Figure 9 demonstrates inserting text at a location where both a positive
look-behind (?<=) and look-ahead (?=) assertion is satisfied. Consider the task where a
space character is to be inserted between two consecutive colons. One might be tempted
to write a regex to match the two colons and replace it with three characters (i.e : :).
However, an efficient regex would be able to identify the location that is preceded and
followed by a colon and insert a single space character.

 Figure 8 - Inserting a space between consecutive colons

data colons;
 length string string2 $200 ;
 string='a::::b:::::';
 string2=prxchange("s/(?<=:)(?=:)/ /",-1,string) ;
 run ;

string string2

a::::b::::: a: : : :b: : : : :

This solution will not provide the correct result in versions prior to SAS V9.2, as there was
bug in the Perl 5.6.1 engine that the PRX functions use.

Conclusion

For simple text substitutions, using traditional SAS functions may suffice. However, as a
substitution task becomes more complicated, multiple lines of code can often be reduced to
a single regular expression within PRXCHANGE due to the tremendous flexibility they offer.

7

References

Borowiak, Kenneth W. (2006), “Perl Regular Expressions 102”. Proceedings of the 19th
Annual Northeast SAS Users Group Conference, USA.
http://www.nesug.org/proceedings/nesug06/po/po16.pdf

Borowiak, Kenneth W. (2008), “PRX Functions and Call Routines: There is Hardly Anything
Regular About Them!”. Proceedings of the Twenty First Annual Northeast SAS Users Group
Conference, USA.
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf

Cassell, David L., ”The Basics of the PRX Functions” SAS Global Forum 2007
http://www2.sas.com/proceedings/forum2007/223-2007.pdf

Dunn, Toby, ”Grouping, Atomic Groups, and Conditions: Creating If-Then statements in Perl
RegEx” SAS Global Forum 2011
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf

Friedl, Jeffrey E.F., Mastering Regular Expressions 3rd Edition

Acknowledgements

The authors would like to thank Jenni Borowiak, Kipp Spanbauer and Kunal Agnihotri for
their insightful comments on this paper.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Disclaimer

The content of this paper are the works of the author and do not necessarily represent the
opinions, recommendations, or practices of PPD, Inc.

Contact Information

Your comments and questions are valued and encouraged.
Contact the authors at:

Ken Borowiak
3900 Paramount Parkway
Morrisville NC 27560

ken.borowiak@ppdi.com
ken.borowiak@gmail.com

8

http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug06/po/po16.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb11.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://www2.sas.com/proceedings/forum2007/223-2007.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf
http://support.sas.com/resources/papers/proceedings11/245-2011.pdf

