
1

Paper 132

Linking Medical Records to Medics in Cyberspace
Sigurd W. Hermansen, Westat, Rockville, MD, USA

ABSTRACT
In the brave new world of Web registries, the National Provider Identifier (NPI) supposedly links providers
of medical services to a registry of medics. When electronic medical records (eMR's) include accurate
NPI, using the NPI to look up a medic's personal data on the NPI registry (http://www.npi-search.com/)
works seamlessly. Without an accurate NPI, searches become more complex and less reliable. The
downloadable NPI registry database turns out to be an exceedingly complex and difficult target for
searches. Fortunately, the SAS System provides all of the tools that we need to uncompress, restructure,
index, and search the NPI registry.

KEYWORDS
Web registry, compress, csv, pipe, database, identifier, structure, restructure, view, index, search.

INTRODUCTION

Big data on the Web give researchers an open door to rich and extensive information resources. The
Jurassic era of information technology has ended in an explosion of Web servers connected over high
speed networks to desktop and mobile browsers. But downloading megabits in a second is one thing,
while extracting useful information from really big data is another thing entirely.

If one takes a close look at some of the very large collections of data that government agencies,
universities, research consortia, and corporations are uploading to the Web or distributing on DVD’s, one
discovers a distressing lack of useful metadata and documentation, and a curious mixture of text files of
wide mainframe records with repeating groups of fields; xml-tagged records with metadata buried in style
sheets; delimited worksheets; spreadsheet workbooks; and zip archives of files all linked at the same
level by one key. One has to wonder if the developers have never heard of E. F. Codd and his standards
for database development.

Before discussing a specific Web registry, it seems important to mention that the current Tower of Babel
standards for databases on the Web have created a cottage industry of service bureaus specializing in
guiding others through the process of accessing big data. Should we suspect that the principals in these
service bureaus had some role in developing one or another of the architecture of large collections of
data on the Web?

NATIONAL PROVIDER INDENTIFIER (NPI)
A provision of the Health Insurance Portability and Accessibility Act (HIPAA) of 1996 requires medical
service providers in the US to obtain an NPI. The acronym NPI refers both to the medical provider ID and
to the downloadable data that index each provider’s attributes to an NPI. The Web page for the monthly
National Plan and Provider Enumeration System (NPPES) downloadable NPI data file (http://nppes.viva-
it.com/NPI_Files.html) has this caveat:

“Please be sure to read the Facts about the Downloadable File before attempting to download the actual
file. The NPPES Downloadable File is very large (exceeds 4 GB) and is intended to be downloaded by
individuals with the requisite technical expertise.“

Fair warning. The documentation describes the file as a compressed, comma-separated variable (csv)
file. From that description, we know that we won’t be able to stream data from a compressed data file as
we would an ordinary text file. Instead, we’ll have to stream data from the file in a SAS DATA step using a
FILENAME statement with a device-type of PIPE. An example appears in the inset below. The –c, -a, and

http://www.npi-search.com/
http://nppes.viva-it.com/NPI_Files.html
http://nppes.viva-it.com/NPI_Files.html

2

–q “switches” specify streaming of text to standard output (where SAS will read data as if reading a file),
ASCII data, and quiet mode respectively. The beauty of the PIPE in a FILENAME statement is that it
separates out the details of reading data from a device-type and makes operating system commands
independent of a SAS DATA step that
reads or writes data from or to one or
another device-type.

CONVERTING THE COMPRESSED
NPI CSV FILE TO A SAS DATA SET
SAS holds off on invoking the gunzip
command until the compiler sees the
file reference NPIPipe in a DATA step
INFILE statement. The INPUT
statement begins streaming data into
the SAS program data vector once the
INFILE statement tells the SAS
compiler what to expect: data records
with end of line (EOL) markers,
column values delimited by commas
(DELIMITER), records that may have
missing variable values at the end of a
record (MISSOVER), two consecutive
delimiters denote a missing value and
delimiters contained within quotes
don’t count as delimiters (DSD), skip
records at the beginning of the file
(FIRSTOBS=), and assume an EOL if
the line length exceeds a certain
number of characters (LRECL=). The
LENGTH statement declares variables
that will be assigned values and their
maximum lengths, and the INPUT
statement defines the order in which
they will be read from comma-
separated text strings. The large
number of variables in the csv file
gives us a repetitive typing exercise
that most would prefer to avoid. By
reading all of the variables in
sequence from a compressed file and
writing them to a compressed SAS

SAS Solution: Read Big Data from a compressed csv file.

FILENAME: PIPE
syntax

FILENAME <filename> PIPE ….

examples

filename NPIPipe PIPE " gunzip -c -a -q /user/path/file.zip *.csv ";

caveats

The gunzip command is available as a Linux shell command, but may have to be installed or replaced with another command
under MS Windows or other operating systems.

SAS Solution: Converting a csv file to a SAS data set .

SAS Data Step: INFILE … INPUT …
syntax

DATA <DATASET NAME> INFILE <FILENAME

REFERENCE>

 DELIMITER=',' MISSOVER DSD; …. INPUT ….

examples

DATA LnxNPI.NPI (compress=yes);

 INFILE NPIPipe

 DELIMITER=','

 MISSOVER

DSD

 LRECL=32767

 FIRSTOBS=2

 ;

 LENGTH

 npi $ 10

 entity_type_code $ 1

 replcmnt_npi $ 10

 ein $ 9

 prov_org_nm $ 70";

....

 ;

 INPUT

 npi $

 entity_type_code $

 replcmnt_npi $

 ein $

 prov_org_nm $

 prov_lnm $

....

caveats

LRECL option not required on IBM z/OS machines.

3

data set, we can limit the storage requirements to around a 400 MB source and a 276 MB SAS data set.
The SAS data set must, of course, have variables that match SAS requirements. The INPUT process
assigns variable names that are free of banned special character and no more than 32 characters long.
The NPI-documented variable names look more like labels than names in that they include spaces
(sometimes two instead of one) and a variety of special characters. Although legal names for variables as
well as files seem a matter of taste, I tend to prefer names that have some descriptive value, but are also
easy to recall and free of special characters that make typing them difficult. Whatever the form of the
variable name, however, I would see the 329 variables in the NPI as too many.

DESIGN STANDARDS FOR THE NPI
The documentation of the 329 variables that accompanies the cyberspace download of the NPI says
volumes about the structure of the database. Each record has values arising from different dimensions of
interest. Representing multiple dimensions of reality in a “flatfile” seem akin to artists’ illusions of three
dimension perspectives on two-dimensional surfaces: good artistry, but not a good way to represent real
entities and events in the context of space and time. One group of variables represents at least somewhat
permanent attributes of providers, while others contain multiple addresses and other contact information,
repeating groups of medical credential and taxonomy variables, and NPI dates and status variables. A
group of “other provider ID” variables repeats fifty times to accommodate an arbitrary maximum number
of instances. All this increases the extent to which programmers have to spend time managing and
documenting variable names.

Database design standards include minimal levels of database complexity and physical footprint that can
fully support content and access. Separating out repeating values into a separate table, when keyed with
the NPI and a sequencing variable, would reduce the number of variables by almost thirty times in the
other provider ID group to six variables. Replacing two hundred variables with five reduces the total
number of variables by half. Even more, restructuring the NPI to reduce the number of variables would
combine many variables with the same set of possible values (domain) into one variable. Something as
basic as standardizing spellings of names of other issuers of ID’s (e.g., Blue Cross Blue Shield, BC/BS,
BCBS, …) becomes far easier when dealing with one domain instead of fifty.

Proper database design minimizes the difficulties associated with data redundancy (say, failures to
update or delete all instances) and missing values (say, distinguishing missing values by definition from
omissions). From a broader perspective, we are looking for data independence. This means that keys
embedded in data link related data items, not somewhat arbitrarily chosen variable names associated
with pointers in lookup tables. Linking by matching key values in data makes it possible to transfer data
from one platform and application environment to another with no loss of information. This higher
standard for databases on the Web may not eliminate the requirement of technical expertise for those
interested in using databases such as the NPI, but it would support automated access to data and
improve the quality of information derived from them.

The next section demonstrates methods for reducing the complexity of the NPI and working toward data
independence. None of these methods require the SAS System, but SAS certainly makes database
restructuring easier.

RESTRUCTURING THE NPI
Sensible database design and architecture calls for “normalizing” databases, in part by replacing
repeating groups of the same variables with a separate, “child” table of one row per group. A group of
rows replaces a group of variables. The key (NPI) and the variable group number in each subsidiary table
make this restructuring lossless in that joins or merges of the subsidiary tables back to a main table can
reconstruct the original NPI file structure.

In SAS, the first step in normalizing the NPI entails simple partitioning of the NPI into multiple tables (data
sets). A sketch of an expanded DATA statement of the earlier INFILE … INPUT program illustrates the
method (see inset).

4

This first step in the restructuring process roughly partitions groupings of columns in the original NPI
“flatfile” into data sets representing different dimensions. (The first data set will be output only if the
entity_type_code indicates a group NPI record.) When run within a SAS Macro, repeating groups of
variables with an additive index distinguishing variables in one group from those in other groups, as in the
NPI, a simple Macro loop saves on typing. The specification of the output data set LnxNPI.NPIotherID
shows how this works. Other data set options, such as compress=yes or rename=-, may also be included
within the parentheses. Even so, simply partitioning the NPI
will neither reduce data volume nor normalize the database.
The log of the partitioning process does, nonetheless, give
us useful hints about the extent to which data volume will
decrease as a side-effect of normalization.

NOTE: 3717915 records were read from the infile NPIPIPE.

 The minimum record length was 0.

 The maximum record length was 3901.

NOTE: The data set LNXNPI.NPISAMPLE has 14105

 observations and 329 variables.

NOTE: Compressing data set LNXNPI.NPISAMPLE decreased

 size by 95.85 percent…..

NOTE: The data set LNXNPI.PROVIDERS has 2825229

 observations and 25 variables.

NOTE: Compressing data set LNXNPI.PROVIDERS decreased

 size by 85.56 percent.

 Compressed is 7286 pages; un-compressed would

 require 50451 pages.

NOTE: The data set LNXNPI.BUSINESSCONTACT has 2825229

 observations and 21 variables.

NOTE: Compressing data set LNXNPI.BUSINESSCONTACT

 decreased size by 72.82 percent…..

NOTE: The data set LNXNPI.NPISTATUS has 2825229

 observations and 6 variables.

NOTE: Compressing data set LNXNPI.NPISTATUS decreased

 size by 13.64 percent…..

NOTE: The data set LNXNPI.NPIOTHERID has 2825229

 observations and 201 variables.

NOTE: Compressing data set LNXNPI.NPIOTHERID decreased

 size by 99.00 percent….

NOTE: DATA statement used (Total process time):

 real time 5:17.08

 CPU TIME 4:22.28

The Data step populates the last data set, NPIOTHERID, by
looping through a repeating group of variable name “stems”
and appending an index value to each name. The repeating
variable group structure seems substandard from the onset
for a database because it has to be extended to larger index
values or it will drop information. An adverse side-effect on
data volume seems typical as well. After separating out the
fifty groups of variables into NPIOTHERID, SAS
compression reduces the space required to hold the dataset
by 99 percent. While SAS compression often reduces data
sets to fractions of original sizes, this scale of reduction
suggests that the vast majority of the variables in the NPI
download are empty.

If the NPI follows the usual convention that a missing value
in the first variable of a repeating group of variables means

SAS Solution: Restructure NPI (1).

SAS Data Step: DATA options
syntax

DATA <DATASET NAME 1> (<OPTIONS>)

 <DATASET NAME 2> (<OPTIONS>)

examples

 DATA LnxNPI.NPIGroup

 (compress=yes)

 LnxNPI.Providers

 (compress=yes

 keep=

 NPI

 prov_lnm

 prov_fnm

 prov_mnm

)

 LnxNpi.businessContact

 (compress=yes

 keep=

 NPI

 prov_busns_mail_addr1

 prov_busns_mail_addr2

 prov_busns_mail_addrcity

 prov_busns_mail_addrstat

)

 LnxNPI.NPIotherID

 (compress=yes

 keep=

 NPI

 %do __n = 1 %to 50 ;

 othr_prov_ident&__n

 othr_prov_identcode&__n

 othr_prov_identstate&__n

 othr_prov_identissuer&__n

 %end;

);

Caveats

SAS Macro loops must be run within a SAS
Macro.

5

that all other variables in that group have missing values as well, we can block writing of the row
containing a repeating group of missing values. In effect, we are removing rows in which all variables
except the NPI have missing values:

The absence of a row of repeating values for an NPI implies that those values are missing for the provider
represented by the NPI. Not writing empty rows to a table will reduce the number of rows, sometimes
dramatically. Although the 1

st
 table containing repeating groups of variables (NPITAXONOMY) has at least

one variable with a non-missing value in each row, less than half of the NPI have at least one value in the
NPIOTHERID table, and only 1,190 NPI have at least one value in NPIHEALTHPROVTAXGROUP:

NOTE: The data set LNXNPI.NPITAXONOMY has 2825228 observations and 61 variables.

NOTE: Compressing data set LNXNPI.NPITAXONOMY decreased size by 91.07 percent.

 Compressed is 5487 pages; un-compressed would require 61419 pages.

NOTE: The data set LNXNPI.NPIOTHERID has 1133405 observations and 201 variables.

NOTE: Compressing data set LNXNPI.NPIOTHERID decreased size by 98.40 percent.

 Compressed is 1513 pages; un-compressed would require 94451 pages.

NOTE: The data set LNXNPI.NPIHEALTHPROVTAXGROUP has 1900 observations and 16 variables.

NOTE: Compressing data set LNXNPI.NPIHEALTHPROVTAXGROUP decreased size by 73.68 percent.

 Compressed is 10 pages; un-compressed would require 38 pages.

NOTE: DATA statement used (Total process time):

 real time 4:57.43

 CPU TIME 4:12.38

The size of the data set NPIOTHER decreased less after compression by a fraction of a percent. Why?
Simple, really. The number of rows halved after removing empty rows, leaving a higher proportion of non-
missing data

Now, once we have separated out repeating groups of variables into subsidiary data sets, the next step of
the database restructuring process entails stacking each group of n variables into n columns keyed by the
NPI and a sequence number. So, under the heading VarA, …,VarX, we stack VarA1,…,VarX1;
VarA2,…,VarX2; …. To identify and differentiate each row in the stack, we retain the NPI and put the
index number of the group into a separate variable (seq). The NPI and seq variables together serve as
the composite index key to each row. Each row has a distinct key value. A distinct key lets us find any
one group of a repeating group of variables containing non-missing values. If not found in a search for a
value of the distinct key, we can infer that all the variables in that instance of the group had missing
values:

SAS Solution: Remove groups of variables with missing values.

SAS Data Step: DATA options
syntax

IF <condition> THEN OUTPUT <dataset>

examples

 if entity_type_code = '1' and NOT missing(hlth_prov_taxono1)

 then output LnxNPI.NPItaxonomy ;

 if entity_type_code = '1' and NOT missing(othr_prov_ident1)

 then output LnxNPI.NPIotherID ;

 if entity_type_code = '1' and NOT missing(Health_Prov_Tax_Group_1)

 then output LnxNPI.NPIHealthProvTaxGroup ;

Caveats

None

6

Here, as before, a simple SAS Macro loop takes
care of the tedious task of writing almost the
same subquery, one for each group in the
repeating groups of variables. In this example,
the program stacks over three million rows with
six variables in each. After the stacking
operation, the new NPIOTHERIDs data set
actually occupies about one-third more disk
space than the original NPIOTHERID data set
(both compressed). The key index in the
stacked data set repeats the NPI and adds the
seq variable, but having the key index makes
the extra space worthwhile. We can use the key
index to count the number of other ID’s any one
provider with an NPI may have, or to search for
all instances of other identifiers issued by, e.g.,
the State of Kentucky for a list of provider NPI’s.
Less obvious but perhaps more important,
selecting or summarizing values of a few

SAS Solution: Stack Repeating Group Variables from Same Domain

SAS Data Step: DATA options
syntax

(SELECT …) UNION CORR (SELECT …) UNION CORR …

examples

%macro stackVarGrps;

 proc sql;

 create table WinNPI.NPIotherIDs (compress=yes) as

 select * from

 (

 (select NPI,' 1' as seq,othr_prov_ident1 as othr_prov_ident,

 othr_prov_identcode1 as othr_prov_identcode,

 othr_prov_identstate1 as othr_prov_identstate,

 othr_prov_identissuer1 as othr_prov_identissuer

 from WinNPI.NPIotherID where NOT othr_prov_ident1 IS NULL)

 %do __n = 2 %to 50;

 union corr

 (select NPI,"&__n" as seq,othr_prov_ident&__n as othr_prov_ident,

 othr_prov_identcode&__n as othr_prov_identcode,

 othr_prov_identstate&__n as othr_prov_identstate,

 othr_prov_identissuer&__n as othr_prov_identissuer

 from WinNPI.NPIotherID where NOT othr_prov_ident&__n IS NULL)

 %end;

)

 ;

 quit;

%mend stackVarGrps;

%stackVarGrps

Caveats

SAS assigns the variable labels in the first dataset to the variables in the new “stacked” dataset.

SAS Solution: Reconstruct NPI (2).

SAS PROC SQL: JOIN
syntax

SELECT … FROM … <dsn> … JOIN <dsn> … ON
examples

 proc sql;

 create view WinNPI.vwJoin as

 select coalesce(r1.NPI,r2.NPI) as NPI,

 seq,othr_prov_identissuer

 from WinNPI.Providers as r1

 inner join

 WinNPI.NPIOtherids as r2

 on r1.NPI=r2.NPI

 where NOT othr_prov_identissuer IS NULL

 order by NPI,seq ;

 quit;
caveats

Altering database structures or data updates may lead to errors or
affect the yield of a stored view.

7

variables helps us improve data quality. For example, when we stack all values of othr_prov_identissuer
(the label that identifiers the issuers of other ID’s), a summary of that variable displays obvious
discrepancies such as “Johns Hokins” instead of “Johns Hopkins”, “Kaier” and “Kais” instead of “Kaiser”,
and “Antem”, “Antehm”, “Antham”, and “Anthlem” (to name a few) instead of “Anthem”. Many of the low-
frequency instances of label values look suspicious.

Restructuring a complex file structure or database to achieve data independence often leads to a better
understanding of content and structure. Partitioning complex files into simpler tables, stacking multiple
instances, and indexing help programmers write more reliable summary and search programs in less
time.

JOINS ON KEYS AND VIEWS

When partitioned into tables with linkage keys, complex flatfiles or sections of these files can be
reconstructed into their original form, or alternatively into almost any structure required by analysts or
clients. Typically programmers extract subsets of big data such as the NPI. The Reconstruct inset (above)
displays a typical JOIN of two tables derived from the NPI: the Providers table that contains all NPI (the
identifiers), and the NPIOtherids that we created to stack other provider ID’s and issuers of those ID’s.
JOINs may also link tables derived from the NPI to lists of provider names, credentials, and other
attributes that could constrain the selections from a restructured NPI to providers of interest.

A restructured NPI would not have to be limited to tables linked on the NPI (the identifier). Tables
containing values from the same domain in different column variables can be “decomposed” into two or
more tables linked on new keys.

The example of a JOIN actually creates a stored view of the database; that is, a query that generates a
predefined tabular structure (a base table or a report) from data currently in the database. Big database
documentation could include a variety of view definitions that would reconstruct repeating groups of
variables or other structures that analysts or clients may prefer.

INDEXES AND SEARCHES
Were searches of the NPI and other big data limited as a rule to linkage to one huge file of records on a
single key, ordering data by that key would effectively solve the search problem. Searching on different
keys, say, names, credentials, or organizations as well as NPI, makes sorting and searching strategies
impractical. Pre-defined “standing” indexes speed up searches by “inverting” the order of pointers to
records to the order of the key values. For example,

 IndexValue Record Key
 1 95888 Aanseld
 2 00086 Abner
 . . .
 . . .

 The index virtually orders the pointers to records in the sort order of the key values. The pointers
give a program direct access to the records in the desired order.

Although database systems support building, storing, and updating of standing indexes, providing these
services seems well outside what we might expect in a Web database supplier. Instead, given
appropriate key values in data as part of data independence, we can build indexes dynamically to support
any number of searches of a Web database. At this stage it should not come as too much of a shock to
learn that SAS supports highly efficient dynamic indexing of big databases. As in other SAS Java object
programs, building the index begins with a quick look at the header of the data set being indexed (if 0
then set <dsn>;), followed by declaring (dcl) the hash object (hg) and naming the data set. The “multidata”
option (new in SAS V9.2) indexes all instances of a key value and related data, not just the first instance.
The hg.define… methods specify variables in the key and related data. That’s it for the index (see
Dynamic Indexing inset below).

8

SAS Solution: Dynamic Indexing

SAS Data Step: Hash Object
syntax

SAS Hash Object methods dcl hash, .definekey and .definedata

examples

 proc sql;

 create table Providers as

 select NPI,prov_lnm length=6 as prov_lnm, prov_fnm length=4 as prov_fnm,

 prov_mnm length=1 as prov_mnm,prov_othr_lnm length=6 as prov_othr_lnm

 from LnxNPI.Providers quit;

 data viewhashMatches/ view=vwhashMatches ;

 if 0 then set Providers ;

 dcl hash hg (dataset:'Providers',multidata:'y',hashexp:16) ;

 hg.definekey ('prov_lnm','prov_fnm') ;

 hg.definedata ('NPI','prov_lnm','prov_fnm','prov_mnm','prov_othr_lnm');

 hg.definedone () ;

 dcl hash hh (dataset:'Providers',multidata:'y',hashexp:16) ;

 hh.definekey ('prov_othr_lnm','prov_fnm') ;

 hh.definedata ('NPI','prov_lnm','prov_fnm','prov_mnm','prov_othr_lnm');

 hh.definedone () ;

 do until (eof2) ;

 length lastname $ 6 firstname $ 4 midname $ 1 ;

 set LnxNPI.ProviderStationNPIname end = eof2 ;

 Prov_lnm=substr(scan(ProviderName,1,','),1,6);

 Prov_othr_lnm=Prov_lnm;

 Prov_fnm=substr(scan(scan(ProviderName,2,','),1,' '),1,4);

 Prov_mnm=substr(scan(ProviderName,2,' '),1,1);

 lastname=Prov_lnm;

 firstname=Prov_fnm;

 midname=Prov_mnm;

 rc = hg.find (); if (rc = 0) /* Success. */

 then do; output ;

 hg.has_next(result: r);

 do while(r ne 0);

 hg.find_next();

 output;

 hg.has_next(result: r);

 end;

 end;

 rc = hh.find () ; if (rc = 0) /* Success. */

 then do; output ;

 hh.has_next(result: r);

 do while(r ne 0);

 hh.find_next();

 output;

 hh.has_next(result: r);

 end;

 end;

 end;

run ;
Caveats

 Requires substantial memory for hash object index.

9

The do until block that comes next reads another data set and uses the hg.find () and

hg.find_next () methods to search for first (if any) and subsequent matches to the key and to output any
found.

Extensions of this simple example willbuild multiple indexes and search each index for matches to
different keys. A further extension defines data as a pointer to rows in the indexed data set instead of the
data values that come from those rows.

CONCLUSION
Big data on the Web offer the promise of fuller and better access to large collections of administrative and
factual data. We have observed here that making the promise a reality will require better methods for
transporting data from one environment and reconstructing those data into informative databases capable
of supporting meaningful reseach. If we don’t take reasonable precautions, database transports over the
Web may, as in the movie Spaceballs, leave us after reconstruction with misfit parts. Instead, if we make
good use of available data compression/decompression methods, adhere to good database design
standards, and restructure Web databases to facilitate data selection, summary, cleaning, and indexing,
we will be able to use data from the Web in ways that will change our lives for the better. The SAS
System provides tools in one package that programmers and analysts can use to make better use of big
data on the Web.

REFERENCES

Codd, E. The Relational Model for Database Management (Version 2 ed.). Addison Wesley Publishing

Company. Boston (1990). ISBN 0-201-14192-2.
P. Dorfman, G. Snell. Hashing: Generations. SUGI 28, Seattle, WA, 2003.
R. DeVenezia. Greetings from the Edge: Using javaobj in DATA Step, Montreal, Canada, 2004 Paper
033-29 SUGI 29
R. Ray, J. Secosky Better Hashing in SAS® 9.2, SGF, San Antonio, TX, 2008 Paper 155-31 SUGI 31

ACKNOWLEDGMENTS
Peter Eberhardt SESUG 2012 academic chair and Producer of the Transporter Room, has stretched the boundaries
of the Users’ Group conference. My fellow Transporters, Paul Dorfman and Richard DeVenezia, introduced hash
indexes and Java objects to SAS programmers, and Robert Ray and Jason Secoskyof SAS Institute extended basic
hash objects to multidata searches. Mike Rhoads reviewed and edited the paper to bring it up to Westat standards
and beyond. He and Carina Tornow suggested improvements in content and presentation; despite their best efforts,
the author has sole responsibility for any errors or oversights.

DISCLAIMERS
The contents of this paper are the work of the author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Sigurd W. Hermansen

Westat

1650 Research Blvd.

Rockville, MD 20850

Work Phone: 301.251.4268

E-mail: hermans1@westat.com

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-14192-2

