
SESUG 2012

1

Paper CT-14

A PROC MEANS Primer

David Kerman, Bank of America, Charlotte, NC

ABSTRACT

A PROC MEANS Primer gives an introduction to the PROC MEANS procedure (included in Base SAS), describing
the syntax and key options, and providing examples on how and when to use this procedure. Special focus is given
to a couple of important options, NWAY and COMPLETETYPES, which are very powerful but can lead to confusion
and errors if not used properly. The paper concludes by giving an example of these types of errors, and provides
recommendations on how to avoid the errors when using PROC MEANS.

WHAT IS PROC MEANS?

PROC MEANS is a procedure (included in Base SAS) that provides data summarization tools to compute descriptive
statistics for variables across all observations and within groups of observations. PROC MEANS can be used to
calculate descriptive statistics based on moments, estimate quantiles (like median or 25

th
 percentile, for example),

calculate confidence limits for the mean, identify extreme values, and perform a t test.

PROC MEANS is similar to PROC SUMMARY, with a main difference being that PROC MEANS produces display
output, where PROC SUMMARY does not.

WAYS TO USE PROC MEANS

PROC MEANS can be used to calculate various statistics (sum, mean, standard deviation, percentiles) on data
grouped by categories. It is also often used to prepare data for export into standard reports, or as a basis for Excel
pivots. The basic syntax of PROC MEANS is as follows:

PROC MEANS DATA=score_data NOPRINT;

 CLASS state city;

 VAR score;

 OUTPUT OUT=scor_stats SUM=;

 RUN;

The CLASS statement is used to list the categories that you want to count by, and the VAR statement is used for the
variable that you are counting/calculating (the variable that you want to calculate the sum, mean or median of, for
example). As noted above, PROC MEANS will normally produce display output – to inhibit this display we are using
the NOPRINT option here. In Table 1 below we see a sample of the score_data data set. Note that the CLASS
statement in the syntax shown above is used for the categorical variables (City and State), while the VAR statement
is used for the numerical variable (Score).

emp_id City State Score

1 Berkeley CA 51

2 Berkeley CA 98

3 Berkeley CA 94

4 Berkeley CA 64

5 Berkeley CA 2

6 Fresno CA 72

7 Fresno CA 49

8 Atlanta GA 35

9 Atlanta GA 74

Table 1. Sample of Score_data Data set

When the PROC MEANS procedure (shown above) runs, the resulting data set produced (scor_stats) contains
statistics summarizing score by city and state. A sample of the scor_stat data set is shown in Table 2.

A PROC MEANS Primer, continued SESUG 2012

2

State City _TYPE_ _FREQ_ Score

 0 58 3520

 Annandale 1 3 226

 Durham 1 6 318

 Richmond 1 5 339

 Yellow Springs 1 4 263

CA 2 7 430

GA 2 6 375

OH 2 10 726

VA 2 8 565

CA Berkeley 3 5 309

CA Fresno 3 2 121

GA Atlanta 3 6 375

MA Boston 3 4 249

Table 2. Sample of Score_stats Data set

In addition to the state, city and score variables, the output data set also contains two SAS-generated variables,
TYPE and _FREQ_. The _TYPE_ variable denotes the level of summarization used, starting at zero and ending at
a value equal to (2**n)-1, where n equals the number of categorical variables in the class statement. In this example,
TYPE = 0 is used for the overall summary, _TYPE_=1 is summarized by city, _TYPE_=2 is summarized by state,
and _TYPE_=3 denotes the state by city summary.

If you are only interested in the highest level summary, you can use the NWAY option. This option will limit the output
data set to only the highest value of _TYPE_ - in this example, where _TYPE_=3.

The syntax becomes:

PROC MEANS DATA=score_data NOPRINT NWAY;

 CLASS state city;

 VAR score;

 OUTPUT OUT=scor_stats SUM=;

 RUN;

Note the output in Table 3 is now limited to the state by city summary

State City _TYPE_ _FREQ_ Score

CA Berkeley 3 5 309

GA Atlanta 3 6 375

MA Boston 3 4 249

MN Duluth 3 2 73

MN Minneapolis 3 6 191

NC Charlotte 3 4 324

NC Durham 3 6 318

Table 3. Sample of Score_stats Data set (using NWAY option)

In the examples shown so far, the PROC MEANS procedure has been used to calculate the sum of the score
variable, and by using the syntax SUM= , the value of the sum is listed with the variable name (Score) as the label.

For the next example, PROC MEANS is used to generate the mean, median, and percentiles.

Syntax:

PROC MEANS DATA=score_data NOPRINT NWAY;

 CLASS state city;

 VAR score;

 OUTPUT OUT=scor_stats_p (drop=_TYPE_ _FREQ_)

 MEAN=mean MEDIAN=median P25=Q1 P75=Q3;

 RUN;

A PROC MEANS Primer, continued SESUG 2012

3

There are two types of modifications to the syntax above (see bold type). First, we use the drop= option to omit the

unneeded _TYPE_ and _FREQ_ variables. Also, the sum= code has been replaced with four different statistics. For
each of these (MEAN, MEDIAN, P25 and P75) we have provided labels (mean, median, Q1, Q3). A sample of the
resulting output data set is shown in Table 4.

State City mean median Q1 Q3

CA Berkeley 61.8 64 51 94

CA Fresno 60.5 60.5 49 72

GA Atlanta 62.5 73 35 84

MA Boston 62.25 61.5 36 88.5

MN Duluth 36.5 36.5 25 48

MN Minneapolis 31.8333 30.5 17 51

NC Charlotte 81 86 68.5 93.5

NC Durham 53 57.5 16 84

NC Raleigh 53.8 51 38 67

OH Cleveland 77.1667 77.5 68 95

VA Annandale 75.3333 75 61 90

VA Richmond 67.8 73 64 83

Table 4. Sample of Score_stats_p Data set

In this output data set, instead of seeing the sum of score for each of the state by city combinations, we have used
PROC MEANS to generate some different statistics (mean, median, 25

th
 percentile and 75

th
 percentile). The

statistics are shown with the labels indicated in the syntax above (i.e. P25=Q1).

COMPLETETYPES OPTION

If you are interested in producing statistics using all possible permutations of the class variables, you will want to
consider the COMPLETETYPES option. In the syntax below, we have added this option to the code from the prior
example:

PROC MEANS DATA=score_data NOPRINT NWAY COMPLETETYPES;

 CLASS state city;

 VAR score;

 OUTPUT OUT=scor_stats_p (drop=_TYPE_ _FREQ_)

 MEAN=mean MEDIAN=median P25=Q1 P75=Q3;

 RUN;

A sample of the resulting data set displays some interesting results (Table 5).

State City mean median Q1 Q3

CA Atlanta

CA Berkeley 61.8 64 51 94

GA Atlanta 62.5 73 35 84

MN Cleveland

Table 5. Sample of Score_stats_p Data set with COMPLETETYPES option

You are probably wondering, “Why would I want to use the COMPLETETYPES option?” In our example, a lot of the
resulting data records are meaningless. For example, there is no Atlanta, CA or Cleveland, MN in our data, so the
statistical values are all missing.

Let’s consider a different example. In the data set samples shown below, we have monthly data on new hires by
state and category. We are looking to set up a reporting program where we can export from SAS to drop data into an
existing excel report which uses cell reference links to populate the report.

A PROC MEANS Primer, continued SESUG 2012

4

Table 6. Sample of march_new_hires data set

Table 7. Sample of april_new_hires data set

For the march_new_hires data set, we will summarize by state and category. Our PROC MEANS syntax will be very
similar to what we have shown previously, and the resulting march_sum data set is shown in Table 8 below:

PROC MEANS DATA=march_new_hires NOPRINT NWAY;

 CLASS state category;

 VAR new_hires;

 OUTPUT OUT=march_sum (drop=_TYPE_ _FREQ_) SUM=;

 RUN;

Table 8. march_sum data set

State City Category new_hires

CA Modesto Strategy 2

CA Modesto Operations 8

CA San Jose Strategy 3

CA San Jose Policy 9

GA Atlanta Analysis 4

GA Atlanta Policy 6

GA Atlanta Strategy 11

State City Category new_hires

CA Modesto Operations 6

CA Modesto Policy 11

CA San Jose Policy 1

CA San Jose Strategy 8

GA Atlanta Analysis 5

GA Atlanta Strategy 17

GA Augusta Strategy 10

state category new_hires

CA Analysis 1

CA Operations 10

CA Policy 9

CA Strategy 8

GA Analysis 4

GA Operations 1

GA Policy 7

GA Strategy 15

NY Analysis 2

NY Operations 6

NY Policy 4

NY Strategy 8

VA Analysis 3

VA Operations 11

VA Policy 4

VA Strategy 5

A PROC MEANS Primer, continued SESUG 2012

5

Note that the city variable is not included on the class statement, so the summary is just at the state and category
level. As you might expect, since our data contains four state values and four category values, the resulting
march_sum data set contains 16 records.

Let’s review the output data set april_sum (Table 9), produced when we run the same PROC MEANS code,
substituting the april_new_hires data set

Table 9. april_sum data set

At first glance, the april_sum data set (Table 9) looks very similar to the march_sum data set (Table 8), but a careful
review reveals an important difference. While we noted 16 records in march_sum, the april_sum data set only
contains 14. Let’s see what changes when we add the COMPLETETYPES option to our code.

PROC MEANS DATA=april_new_hires NOPRINT NWAY COMPLETETYPES;

 CLASS state category;

 VAR new_hires;

 OUTPUT OUT=april_sum_cpt (drop=_TYPE_ _FREQ_) SUM=;

 RUN;

Table 10. april_sum_cpt data set

state category new_hires

CA Operations 8

CA Policy 12

CA Strategy 13

GA Analysis 10

GA Operations 3

GA Policy 11

GA Strategy 27

NY Analysis 11

NY Policy 5

NY Strategy 12

VA Analysis 13

VA Operations 7

VA Policy 10

VA Strategy 7

state category new_hires

CA Analysis .

CA Operations 8

CA Policy 12

CA Strategy 13

GA Analysis 10

GA Operations 3

GA Policy 11

GA Strategy 27

NY Analysis 11

NY Operations .

NY Policy 5

NY Strategy 12

VA Analysis 13

VA Operations 7

VA Policy 10

VA Strategy 7

A PROC MEANS Primer, continued SESUG 2012

6

As highlighted by the arrows above, we now have a data set with 16 rows, including missing new hire values for CA
Analysis and NY Operations. For the month of April, our CA sites did not add any analysis staff, and our NY sites did
not hire any new operations personnel. If we were using excel for monthly reporting, this april_sum_cpt data set
could be pasted directly into excel without cell reference errors (since the number of rows will now match with 16).

The COMPLETETYPES option is not appropriate for all situations, but it is a valuable PROC MEANS option to keep
in your SAS toolkit.

A PUZZLER

Using the same april_new_hires data set from the last example, we run two different PROC MEANS steps – one
using state as the only class variable, and the other using category as the only class variable (see below).

PROC MEANS DATA=april_new_hires NOPRINT;

 CLASS state;

 VAR new_hires;

 OUTPUT OUT=april_st (drop=_FREQ_) SUM=;

 RUN;

PROC MEANS DATA=april_new_hires NOPRINT;

 CLASS category;

 VAR new_hires;

 OUTPUT OUT=april_cat (drop=_FREQ_) SUM=;

 RUN;

Samples of the output data sets april_st and april_cat are shown below (Tables 11 and 12):

Table 11. Sample of april_st data set

Table 12. Sample of april_cat data set

In the two data sets above, we see that summing by state produces 150 new hires, but summing by category
produces 149. What is happening here?

state _TYPE_ new_hires

 0 150

CA 1 33

GA 1 51

NY 1 29

VA 1 37

category _TYPE_ new_hires

 0 149

Analysis 1 34

Operations 1 18

Policy 1 38

Strategy 1 59

A PROC MEANS Primer, continued SESUG 2012

7

This sample of the actual april_new_hires data set will shed some light on the mystery:

Table 13. Sample of april_new_hires data set

A record from the april_new_hires data set contains state, city and new_hires but is blank for category. In this case,
using category under the class statement misses this record and the numeric value of new_hires (1, in this example)
is bypassed in the sum.

In order to prevent the confusion and potential errors from the last example, there a few steps you can take to
improve your results when using PROC MEANS.

1. Prior to running the code, review the input data and contact the data provider to fill in the blank category for the
Brooklyn new hire in April. This may not be a realistic option.

2. Prior to running PROC MEANS, run a datastep like this:

DATA april_new_hires;

 SET april_new_hires;

 if category=’’ then category=’missing’;

 RUN;

3. Add the “missing” option on the CLASS statement line as shown here:

PROC MEANS DATA=april_new_hires NOPRINT;

 CLASS category / missing;

 VAR new_hires;

 OUTPUT OUT=april_cat_m (drop=_FREQ_) SUM=;

 RUN;

A sample of the output data set april_cat_m is shown in Table 14.

Table 14. Sample of april_cat_m data set

By using the “missing” option on the CLASS statement, a blank category row is shown with 1 new hire listed, bringing
the overall new_hires total up to 150.

state City category new_hires

GA Macon Operations 2

GA Macon Policy 7

NY Brooklyn Strategy 6

NY Brooklyn Analysis 10

NY Brooklyn 1

NY Rochester Analysis 1

NY Rochester Policy 5

category _TYPE_ new_hires

 0 150

 1 1

Analysis 1 34

Operations 1 18

Policy 1 38

Strategy 1 59

A PROC MEANS Primer, continued SESUG 2012

8

CONCLUSION

Over the course of my career using SAS, I have found PROC MEANS to be one of my most important tools for data
summarization and statistical analysis. In this brief paper, I have detailed the basic function and syntax, and
highlighted a couple of options (NWAY, COMPLETETYPES) that can be very helpful to beginning or experienced
SAS users. I have really only scratched the surface of all that PROC MEANS can do for you as a SAS programmer.

RECOMMENDED READING

 Base SAS
®
 Procedures Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

David Kerman
Bank of America
NC1-028-12-01
150 N. College St.
Charlotte, NC 28255
980-386-2992
david.kerman@bankofamerica.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

