
SESUG 2012

1

 Paper CT-11

An Introduction to Criteria-based Deduplication of Records

Elizabeth Heath – RTI International, RTP, NC
Priya Suresh – RTI International, RTP, NC

ABSTRACT

When survey respondents are allowed to select whether they will complete a paper or electronic version
of a survey, a few respondents will inadvertently submit two versions of the survey. Because the survey
needs only one data submission from each respondent, multiple submissions per respondent are first
identified, reviewed for completeness and other criteria provided by the survey, and then the criteria are
applied for keeping only one record per respondent. We will show how SAS® can be used to apply
selection criteria to identify and remove duplicate records for a respondent.

INTRODUCTION

In preparing data delivery files, it is standard practice to check for and remove duplicate records. The SAS sort
procedure is the foundation of deduplicating records. For a good reference on the SAS sort procedure and using
SAS to deduplicate records, see Heidi Markovitz’s paper entitled “Dup, Dedup, DUPOUT - New in PROC SORT” in
the Proceedings of the 14th Annual SESUG Conference, October 2006. We prepared this paper for beginning SAS
users to show how duplicate data records can be removed from survey data and how data must be reviewed to
determine criteria for deduplicating survey data.

SAMPLE DATA

For discussion purposes, we will use the fictitious survey data shown in Table 1. The survey contains an
identification number for each respondent and seven questions. In Table 1, observations 1 and 5 have no missing
values for questions Q4 and Q6, while the other observations have missing values for Q4 or Q6. The missing
question Q4 and Q6 values are due to legitimate skips based on gate questions Q3 and Q5. Observations 4 and 7
have incomplete records. The data also include submission date and whether the data collection mode was electronic
(e) or paper (p). The identification number and questions are numeric and the submission date is a numeric SAS
date.

Obs id Q1 Q2 Q3 Q4 Q5 Q6 Q7 mode subdt

1 10 1 5 1 3 1 7 4 p 1/3/2011

2 11 3 6 2 . 2 . 5 p 2/7/2011

3 12 4 3 2 . 1 6 3 p 1/15/2011

4 12 4 3 2 p 4/2/2011

5 21 2 3 1 4 1 3 4 e 3/1/2011

6 22 1 5 2 . 1 4 5 p 2/2/2011

7 10 1 5 1 3 . . . e 12/1/2010

8 15 2 4 1 2 2 . 6 p 3/21/2011

9 11 3 6 2 . 2 . 5 e 1/7/2011

Table 1. Fictitious sample data

Introduction to Criteria-based Deduplication of Records, continued SESUG 2012

2

CHECK FOR DUPLICATE RECORDS

Visual inspection of Table 1 shows that there are two records for respondents with IDs of 10, 11, and 12. While it is
easy to find duplicate data submissions in the fictitious data shown in Table 1, it is impractical to visually check for
duplicate records when there are hundreds if not thousands of respondents for a survey . A quick way to check for
duplicate records is to run the sort procedure with the NODUPKEY option for the variable ID. In the sort procedure
statement that follows, unique IDs are written to the dataset called unqIDs, in order to not remove duplicate records
from the source dataset called sesug. As shown in Output 1, the sort procedure finds three duplicate IDs. The next
step is to examine the duplicate records and evaluate how to remove the duplicate records.

proc sort data = sesug (keep=id) nodupkey out= unqIDs;

 by id;

run;

NOTE: There were 9 observations read from the data set WORK.SESUG.

NOTE: 3 observations with duplicate key values were deleted.

NOTE: The data set WORK.UNQIDS has 6 observations and 1 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.04 seconds

 cpu time 0.04 seconds

Output 1. Program log for PROC SORT Statement

EXAMINE DATA IN DUPLICATE RECORDS

Before data collection started, the project anticipated that they might receive more than one data submission from a
few respondents and initially thought that they would keep the first data submission. Now that we know that there are
duplicate records, we need to examine the data in the duplicate records to see if the decision to keep the first
submitted record is the right decision.

To check this, the data are sorted by ID and ascending record submission date with the following code, in order to
display the duplicate record with earliest submission date first.

proc sort data = sesug;

 by ID subDT;

run;

As the data are sorted by ID and ascending record submission date, the sort procedure determines whether the ID
occurs one time, which is the first and last occurrence of the ID, or if the ID occurs more than one time. As shown in
Table 2, for duplicate ID number 10, the December 2010 record is the first occurrence of ID 10 and the January 2011
record is the last occurrence of ID 10, while unique ID number 21 is the first and last occurrence of ID 21.

ID Record submission date Unique or duplicate ID First or last ID

10 12/01/2010 Duplicate First.ID

10 01/03/2011 Duplicate Last.ID

21 03/01/2011 Unique First.ID and Last.ID

Table 2. Example of first and last ID numbers for data sorted by ID and ascending submission date

Introduction to Criteria-based Deduplication of Records, continued SESUG 2012

3

After sorting the survey data by ID and ascending date, records with duplicate IDs are written to dataset

dups with the following code.

data dups;

 set sesug;

 by ID subDT;

 if not (first.ID and last.ID);

run;

Output 2 shows that if the first submitted record were used as the deduplication criteria, for ID number 10, the
December 2010 record would be kept but it has less data than the January 2011 record. For ID numbers 11 and 12,
the criteria of keeping the first submitted record is fine. After reviewing Output 2, project staff decided that they prefer
keeping records with more non-missing data over simply keeping the first submitted record.

Obs id Q1 Q2 Q3 Q4 Q5 Q6 Q7 mode subdt

1 10 1 5 1 3 . . . e 12/01/2010

2 10 1 5 1 3 1 7 4 p 01/03/2011

3 11 3 6 2 . 2 . 5 e 01/07/2011

4 11 3 6 2 . 2 . 5 p 02/07/2011

5 12 4 3 2 . 1 6 3 p 01/15/2011

6 12 4 3 2 p 04/02/2011

Output 2. Duplicate record output from sort and data step

RECORD COMPLETENESS

To check the effect of sorting data by record completeness, the completeness of each record is determined by
counting the number of non-missing responses to questions that are asked of all respondents. This means that
questions Q4 and Q6, which can be skipped, are excluded from the completeness count in the code that is shown
below.

arraY numQ (*) Q1 Q2 Q3 Q5 Q7;

compNum = 0;

do i = 1 to dim(numQ);

 if numQ(i) ^= . then compNum = compNum + 1;

end;

drop i;

As shown in Output 3, deduplicating data by record completeness is good for ID numbers 10 and 12 but the duplicate
records for ID number 11 have identical completeness counts. As a result of the data in Output 3, the project decided
to deduplicate records based on the highest record completeness and then by the earliest submission date.

Introduction to Criteria-based Deduplication of Records, continued SESUG 2012

4

Obs id CompNum subdt

1 10 3 12/01/2010

2 10 5 01/03/2011

3 11 5 01/07/2011

4 11 5 02/07/2011

5 12 5 01/15/2011

6 12 3 04/02/2011

Output 3. Completeness and submission date for duplicate records

DEDUPLICATE THE DATA

As shown in the following code, deduplication criteria are implemented by first sorting the data by ID number,
descending record completeness, and ascending submission date, and then writing the first occurrence of each ID
number to dataset survey_unq and all other records, which are duplicates, to dataset survey_dups. A final check is
done for duplicate ID numbers in dataset suvery_unq. As shown in Output 4, the final check for duplicate records
shows there are no duplicates in dataset survey_unq, and Output 5 shows the deduplicated data in survey_unq.

proc sort data = sesug;

 by id descending compnum subdt;

run;

data survey_unq survey_dups;

 set sesug;

 by id descending compnum subdt;

 if first.ID then output survey_unq;

 else output survey_dups;

run;

proc sort data = survey_unq nodupkey out=ck4dups;

 by id;

run;

NOTE: There were 6 observations read from the data set WORK.SURVEY_UNQ.

NOTE: 0 observations with duplicate key values were deleted.

NOTE: The data set WORK.CK4DUPS has 6 observations and 10 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 cpu time 0.00 seconds

Output 4. Final check for duplicate records

Introduction to Criteria-based Deduplication of Records, continued SESUG 2012

5

Obs id Q1 Q2 Q3 Q4 Q5 Q6 Q7 mode subdt CompNum

1 10 1 5 1 3 1 7 4 p 01/03/2011 5

2 11 3 6 2 . 2 . 5 e 01/07/2011 5

3 12 4 3 2 . 1 6 3 p 01/15/2011 5

4 15 2 4 1 2 2 . 6 p 03/21/2011 5

5 21 2 3 1 4 1 3 4 e 03/01/2011 5

6 22 1 5 2 . 1 4 5 p 02/02/2011 5

Output 5. Deduplicated data

CONCLUSION

The SAS sort procedure can be used to identify duplicate records, deduplicate the data using criteria such as non-
missingness, and verify the absence of duplicate records after deduplication criteria have been applied. As shown in
this paper with the sample data, SAS can also be used to evaluate the effectiveness of proposed deduplication
criteria.

REFERENCES

Markovitz, Heidi Markovitz, 2006, CC14 Dup, Dedup, DUPOUT - New in PROC SORT, Proceedings of the 14th
Annual SouthEast SAS Users Group (SESUG) Conference, Atlanta, GA, October 8–10, 2006.

RECOMMENDED READING

 Base SAS Procedures Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Elizabeth Heath
Phone: (919) 485-2786
E-mail: eah@rti.org

Priya Suresh
Phone: (919) 541-7428
E-mail: psoh@rti.org

Our mailing address:
RTI International
PO Box 12194
RTP NC 27709-2194

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

