
 SESUG 2012

 Paper CT-18

Let's Play a Game: A SAS® Program for Creating a Word Search Matrix
Robert S. Matthews, University of Alabama at Birmingham, Birmingham, AL

ABSTRACT
This paper describes a process for inserting a list of words into a matrix of random letters. The output produces two
tables. The first table is a display of the matrix after the words in the list are inserted, but before random letters are
inserted into the remaining cells in the matrix. The second table is the final matrix after empty cells are filled with
random letters. The program has two levels of difficulty and highlights a number of techniques for working with two-
dimensional arrays. It is applicable to all versions and platforms of The SAS® System.

INTRODUCTION
A word search matrix has a number of potential uses; it can be both educational as well as entertaining. The primary
goal in designing a program to produce such a matrix was that it be flexible enough to handle different size matrices,
word lists, and skill levels. A flowchart, in Appendix I, describes the sequence of events for implementing the
program. The program source code is listed in Appendix II.

DESIGN
The design of this program involves three primary steps.

1. Input a list of words
2. Determine where to place each word in the matrix
3. Print the final matrix to the screen or other output device

The first step is to obtain from the user a list of words to be inserted into the matrix. This can be done in a variety of
different ways, such as reading the words from a text file, creating a data entry screen in SAS, or placing the words
directly in the program code and reading them via a CARDS statement.

Step two involves placing each word into the output matrix. This is the most complicated part of the entire process.
The flowchart, in Appendix I, is extremely helpful in visualizing how a word is inserted into the output matrix. In brief,
these are the steps involved.

1. Determine the starting row and column
2. Pick a random direction
3. Determine the ending row and column
4. Check to see if the ending row and column are within the matrix boundaries
5. Check to see if an existing word in the matrix is being overwritten
6. After all words are placed into the matrix, empty cells are filled with random letters

The last step is to print the final matrix to the output device. The user also has the choice of printing an "answer key".

CONCLUSION
Designing a program to produce a word search matrix for my children to use in their schoolwork seemed pretty
simple until I starting writing the code to actually implement it. It was an interesting programming challenge and I
hope that others can adapt the program for their own uses.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Robert Matthews
University of Alabama at Birmingham
1700 University Blvd., LHL 410
Birmingham, AL 35294-0013
E-mail: rsm@uab.edu
Web: http://www.epi.soph.uab.edu/rsm

http://www.epi.soph.uab.edu/rsm

Let's Play a Game: A SAS® Program for Creating a Word Search Matrix, continued SESUG 2012

2

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Let's Play a Game: A SAS® Program for Creating a Word Search Matrix, continued SESUG 2012

3

APPENDIX I

Print

answer

key?

Input Word List

Process each word

in the input list

Determine starting

Row and Column

Pick a random

direction

Determine ending

Row and Column

Is the ending

Row and Column

within the letter

matrix?

Are we

overwriting

an existing

word?

Assign each letter in

the word to a cell in

the matrix

YES

YES

YES

NO NO

STOP

Print the

answer key

Fill

remaining

empty cells

in the

matrix with

random

letters

Print the

completed

matrix

NO
Another

word?

NO

YES

Let's Play a Game: A SAS® Program for Creating a Word Search Matrix, continued SESUG 2012

4

APPENDIX II
Program source code

* Word Search v.1.5 Robert Matthews ;

* If you make improvements on this code I would
 appreciate a copy sent to rsm@uab.edu;

title '* * * WORD SEARCH * * * ';
title3 ' ';
options nodate nonumber ps=42 ls=80 pageno=1;

data wordlst ;
 length wrd $20;
 array w{*} $20 word1-word30;
 retain count 1 word1-word30;
 input wrd @@;
 w{count} = upcase(wrd);
 count+1;
 drop wrd;
cards;
flat heaven fridge lift torch christian
robert cinema bobby icelolly crisps
;
run;

data wordlist;
 set wordlst nobs=n;
 count=count-1;
 if _n_ = n ;
run;

/* Alternate method for entering words;
data getwords;
 length word $20;

 window words
 #5 @5 'Please enter the spelling words'
 #7 @10 'Word: ' word;

 display words;
 if word='' then
 stop;
 else
 word = upcase(word);
run;

proc transpose data=getwords out=newlist(drop=_name_)
prefix=word;
var word; run;

data wordlist;
 set newlist end=last;
 retain count 0;
 array w word1-word30;
 do over w;
 w=upcase(w);
 if last and w ne '' then count+1;
 end;

 if last;
run; */

%let row=12; %let col=20;
%let totlcell = %eval(&row * &col);

data matrix;

 set wordlist;

 skill = 2; * 1 - Easy 2 - Hard;

 array m{&row,&col} $1 m1-m&totlcell;

 array w{*} word1-word30;
 array d{*} d1-d8;
 alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';

 do i = 1 to count;

 wlength = length(w{i});
 r_rnd = round(ranuni(0) * &row,1);
 if r_rnd = 0 then r_rnd = 1;

 c_rnd = round(ranuni(0) * &col,1);
 if c_rnd = 0 then c_rnd = 1;

 valid = 0; lcount=0;

 do until (valid);

 * Possible directions for a word to go;
 * 1-N 2-NE 3-E 4-SE 5-S 6-SW 7-W 8-NW;

here: d_rnd = round(ranuni(0) * 8 + 1,1);
 if skill=1 and d_rnd not in (3,5) then goto here;

 if d_rnd = 0 then d_rnd = 1;
 select (d_rnd);
 when (1) do; er = r_rnd-wlength+1;
 ec = c_rnd;
 r_offset = -1;
 c_offset = 0 ;
 end;
 when (2) do; er = r_rnd-wlength+1;
 ec = c_rnd+wlength-1;
 r_offset = -1;
 c_offset = 1 ;
 end;
 when (3) do;
 er = r_rnd;
 ec = c_rnd+wlength-1;
 r_offset = 0;
 c_offset = 1;
 end;
 when (4) do;
 er = r_rnd+wlength-1;
 ec = c_rnd+wlength-1;
 r_offset = 1;
 c_offset = 1;
 end;
 when (5) do;
 er = r_rnd+wlength-1;
 ec = c_rnd;
 r_offset = 1;
 c_offset = 0;
 end;
 when (6) do;
 er = r_rnd+wlength-1;
 ec = c_rnd-wlength+1;
 r_offset = 1;
 c_offset = -1;

Let's Play a Game: A SAS® Program for Creating a Word Search Matrix, continued SESUG 2012

5

 end;
 when (7) do;
 er = r_rnd;
 ec = c_rnd-wlength+1;
 r_offset = 0;
 c_offset = -1;
 end;
 when (8) do;
 er = r_rnd-wlength+1;
 ec = c_rnd-wlength+1;
 r_offset = -1;
 c_offset = -1;
 end;
 otherwise;
 end;

 if er > 0 and ec > 0 and
 er <= &row and ec <= &col then valid = 1;

 if valid then
 do;
 * Check to make sure we aren't
 overwriting an existing letter;
 cr = r_rnd; cc = c_rnd;
 do j = 1 to wlength;
 if m{cr,cc} ne '' and
 m{cr,cc} ne substr(w{i},j,1) then
 valid=0;
 cr = cr+r_offset;
 cc = cc+c_offset;
 end;
 end;

 lcount+1;
 if lcount > 20 then
 do;
 r_rnd = round(ranuni(0) * &row,1);
 if r_rnd = 0 then r_rnd = 1;

 c_rnd = round(ranuni(0) * &col,1);
 if c_rnd = 0 then c_rnd = 1;
 lcount=1;
 end;
 end; * DO UNTIL;

 * Insert each letter into the
 appropriate cell in the matrix;

 cr = r_rnd; cc = c_rnd;
 do j = 1 to wlength;
 m{cr,cc} = substr(w{i},j,1);
 cr = cr+r_offset;

 cc = cc+c_offset;
 end;
 end;

 link print; * print "BEFORE" matrix (answer key);

 * fill in empty cells with random letters;
 do r=1 to &row;
 do c=1 to &col;
 if m{r,c} = '' then
 do;
 m_rnd = int(ranuni(0) * 26 + 1);
 m{r,c} = substr(alphabet, m_rnd, 1);
 end;
 end;
 end;

 put _page_ @;
 link print ; * print "AFTER" matrix;
return;

print:
 * print matrix;
 file print;
 wcount=1;

 put '- Word List ' 28*'-'
 ' Word Search Matrix ' 17*'-' /;

 do r=1 to &row;
 do c=1 to &col;
 if c = 1 then
 do;
 if wcount <= count then
 do;
 put @3 w{wcount} @;
 wcount+1;
 end;

 put @20 '| ' @;
 end;

 put m{r,c} ' ' @;
 end;
 put @20 '|';
 end;
 put 79*'-';

 * put // 'Additional text can be placed on these lines. ' /
 'It will be printed below each table. ';
run;

	Abstract
	Introduction
	DESIGN
	Conclusion
	Contact Information
	APPENDIX I APPENDIX II

