
SESUG 2012

1

 Paper BB-02

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset

Tricia Aanderud, And Data, Raleigh, NC
Angela Hall, SAS Institute, Cary, NC

ABSTRACT

One of the major benefits of using SAS Stored Processes is extendibility. SAS stored processes are one of the most
customizable products; there are several advantages, such as the ability to set up reports that can run in various
locations, enhance out-of-the box functionality with custom widgets, and all the while leveraging server options and
power. In this discussion, you will learn tips and tricks for using stored processes within SAS BI clients.

INTRODUCTION

When you first learn to use the SAS Business Intelligence toolset, you might realize some obvious ways to use the
stored processes. As you advance your skills, you will find situations where you need one of the tools to do
something just a little different or a little more. In this paper, you will learn some common ways to use the stored
processes and some advanced ways.

COMMON USES

SAS stored processes offer a lot of flexibility to BI content developers. Using a stored process, you can perform a
variety of tasks, such as generating data sets, creating complex reports from other SAS procedures, and even
building web applications.

Some examples for stored processes include the following:

 Deliver lists or charts to Microsoft Office applications through the SAS Add-In for Microsoft Office. The user
can rerun the stored process later to have updated data.

 Add charts or tables to the Information Delivery Portal using the Stored Process Portlet or the URL Display
Portlet.

 Deliver data to the BI Dashboard by using the stored process as the source for the data indicator.

 Enable user drill-down from Web Report Studio reports or BI Dashboard indicator into additional information
that is more detailed or output the source data.

 Create a custom display for BI Dashboard to provide a non-supported indicator. For instance, you can
create a geographical map.

 Leverage a stored process from an information map to reduce rework of existing SQL code into the
‘Relationship’ tab.

 Add a prompt group to an information map by using the stored process to hold the prompts.

 Use a stored process to create a highly customized report that you can link to from BI Dashboard or Web
Report Studio.

 Enable additional functionality from OLAP based Web Report Studio reports, such as passing values into a
subsequent prompted report.

 Develop custom applications for user interaction via chained stored processes.

 Reduce the impact of multiple queries/drill-downs on the same data source by utilizing session control in a
stored process.

 Generate a custom graphic element for display in a Web Report or Add-in to MS Office when the available
tasks are not licensed or unavailable.

 Submit queries to run in the background and email results at a later time.

 Output packaged results for permanent or temporary storage and retrieval.

 Allow users to choose what output device to print the results out to, whether an MS Excel file, PDF, RTF,
etc.

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

2

WEB REPORT STUDIO: ADDING A DASHBOARD DIAL

You can easily add sliders, dials, and speedometers to your report using a stored process and the SAS GKPI
procedure. In Figure 1, the report has a sample of the different gadgets you can add. In addition, notice – there is not
any data (cube, info map) being used – it’s all stored processes.

Figure 1. Adding a KPI Dial to Web Report Studio

WRITE THE CODE

This example explains how to create the Avg Fix Response Time speedometer shown in Figure 1. The code was
based on the examples from the GKPI Procedure, see reference 1.

Code Comments

/*Replace LET statement with code to

create the needed values*/

%let YOUR_PCT=.72;

Place your code to set the value in this area. For this
example, the value is hard-coded using a macro variable to
demonstrate how the PROC GKPI works with the stored
process.

%let _gopt_device=javaimg; For this output to work properly, the graphic device must be
set to Java Image. You can use a macro variable to set this
value.

%STPBEGIN;

goptions reset=all

 xpixels=210 ypixels=200;

proc gkpi mode=raised;

 speedometer actual= &YOUR_PCT.

 bounds=(0 .40 .60 1)

 /target=.85

 lfont=(f=”Albany AMT” height=.5cm)

 label=”Avg Fix Response Time”

 format=”percent8.0″;

run;

%STPEND;

Ensure your LET statements are outside of the
%STPBEGIN/%STPEND macros. When you register the
stored process, ensure you turn off the Stored Process
Macros (%STPBEGIN/ %STPEND) in the SAS Code pane.
Your stored process will not work as expected if the macro
variables are not assigned outside of the macros.

Notice the &YOUR_PCT macro variable is used for the actual
calculation.

REGISTER AND TEST THE STORED PROCESS

When you register the stored process, make sure you check that the SAS Result Type is Package. Add the stored
process to the Web Report Studio report using the stored process icon on the Edit menu.

http://support.sas.com/documentation/cdl/en/graphref/63022/HTML/default/viewer.htm#a003163556.htm

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

3

USE AN OLAP CUBE AS A DATA SOURCE

When an OLAP Cube is used as the data source, some BI client tools disable functionality, such as cascading
prompts and linking to other prompted reports. You can quickly generate the PROC SQL code and parameterize for
use in a prompted stored process report by leveraging SAS Enterprise Guide.

CREATE THE CODE

You can quickly create the SQL code for extracting OLAP cube data by copying a sample of the code from SAS
Enterprise Guide.

1. Open and slice the OLAP Cube in SAS Enterprise Guide. This allows you to navigate through the cube,
generate the tedious MDX code for that specific view, and limit all of your typing. Note: The slice should
match the dimension/hierarchy that you will prompt on in the report.

2. Select the Edit View -> Edit in MDX Viewer from the menu to see the MDX code.

Figure 2. OLAP Cube Slice

3. Now you can view all of the MDX code associated with this view. Copy this entire code for the next step.

Figure 3. MDX Editor

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

4

4. Place the MDX code in a PROC SQL statement as shown.

Code Notes

proc sql;

connect to olap (host="machine" port=5451

 user="username" pass="pwd");

CREATE TABLE stp_datasource as

 select * from connection to olap

Connect to the OLAP cube.

(

SELECT {[Measures].[UnitsSUM] } PROPERTIES

MEMBER_CAPTION, PARENT_UNIQUE_NAME

ON COLUMNS, {

[DateDimension].[Fiscal_Month_Num].Members

}

 PROPERTIES MEMBER_CAPTION,

PARENT_UNIQUE_NAME

ON ROWS FROM [SalesSummary]

WHERE ([ProductDimension].[All

ProductDimension].[Wholesale].[Carob N

Almonds])

Paste the MDX code here

WHERE ([ProductDimension].[All

ProductDimension].[&type].[&product])

);

<optional> Use a WHERE clause to build

cascading filters. Add the macro variables in the
appropriate locations in the code, as shown.

quit;

REGISTER AND TEST THE STORED PROCESS

Register and test your process. In Figure 4 you can see an example of the cascading prompt.

Figure 4. Create a cascading prompt from an OLAP Cube

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

5

USE HTML AND JAVASCRIPT TO BUILD YOUR OWN PROMPTS

If you want to add an interactive map to your output, you can do it easily with HTML and JavaScript. This stored
process uses PROC GMAP to create a heat map based on data from the SASHELP.DEMOGRAPHICS data set. To
use the stored process, the user selects a variable from a drop-down box, which immediately updates the chart.
Using JavaScript, you can implement this type code quickly.

Figure 5. Using a drop-down box with a SAS graph

When a SAS procedure is in a stored process, the %STPBEGIN/%STPEND macros ensure that the output displays
properly. Using HTML code in a stored process ensures that the output goes to the _WEBOUT file location.

HTML code requires a set of tags to start a Web page (<HTML>, <BODY>) and another set of tags to end the page
(</BODY>, </HTML). Both %STPBEGIN/%STPEND macros and ODS HTML statements write this HTML code for
you when creating output. To create the example above, you must control the creation of the HTML starting and
ending tags so that you can use the JavaScript and SAS procedure together.

Adding JavaScript to a Stored Process

The following code creates the stored process shown in Figure 5. The first time the stored process runs, it uses a
default value to display the chart. In subsequent applications, the user can select a value from the drop-down menu
and the stored process is updated immediately. Add the JavaScript code to submit the stored process when the user
makes a selection from the drop-down menu.

Code Notes

%global VarPrompt;

Create a global macro variable for the default
value and user selection.

The drop-down menu on the top left of the page
uses the prodprompt macro variable.

goptions device=actximg CBACK=WHITE; Define the graphics device.

ods html

 body=_webout(no_bottom_matter)

 style=sasweb

 path=&_tmpcat (url=&_replay);

ods html close;

Open the _WEBOUT location using an ODS
HTML statement. Use the no_bottom_matter
option to write the file to the stream without
writing the closing HTML tags.

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

6

Code Notes

%macro view;

data _null_;

 file _webout;

Create the VIEW macro to control what displays
on the page. Use FILE to output to the _webout
location.

put '<script type="text/javascript"

 language="JavaScript">';

put ' function UpdateChart() {';

put ' document.DoubleOut.submit();';

put ' }';

put ' </script>';

The JavaScript UpdateChart() function
automatically submits the DoubleOut form
therefore no Run or Submit button is needed.

put " <FORM NAME='DoubleOut'

 ACTION='&_URL' method='post'

 enctype='multipart/form-data'>";

Add the code to create the drop-down menu.
The form is named DoubleOut so the
JavaScript document submit function above
works as expected.

put "<INPUT TYPE='HIDDEN'

 NAME='_program'

 VALUE='&_PROGRAM'>";

put '<table border="0" cellpadding="5">';

put '<TR>

 <TD valign=TOP>

 <SELECT Name="VarPrompt"

 onChange="UpdateChart();">';

Create the prodprompt drop-down menu and
call the UpdateChart() JavaScript function when
the user makes a different selection.

put '<option value="">Select a value

 </option>';

put '<OPTION VALUE="pop"';

 %if "&VarPrompt"="pop"

 %then put " SELECTED";

put '>Population</OPTION>';

put '<OPTION VALUE="totalfr"';

%if "&VarPrompt"="totalfr"

 %then put " SELECTED";

put '>Fertility Rate</OPTION>';

put '<OPTION VALUE="gni"';

%if "&VarPrompt"="gni"

 %then put " SELECTED";

put '>Gross National Income</OPTION>';

put '</SELECT></TD>';

Add an option for each product value. This code
replaces a prompt.

If the &VarPrompt macro value was previously
selected, the drop-down menu maintains that
selection by adding SELECTED to the OPTION
tag.

 %if %length(&VarPrompt) = 0 %then %do;

 %let VarPrompt=pop;

 %end;

run;

If this is the initial run or if &VarPrompt is empty,
use pop as the default value.

ods html

 body=_webout(no_top_matter

 no_bottom_matter)

 path=&_tmpcat

 (url=&_replay);

Use the ODS HTML statement to open the
_WEBOUT stream for the PROC statements.

Use the no_top_matter and no_bottom_matter
options to prevent the system from writing
HTML starting or ending tags to the_WEBOUT
stream.

Also note that ods html close is NOT included
here, this keeps the html output area open for
other PROCS to send output into.

Title "Europeon Demographics by Country";

PROC GMAP GOUT=MAPCHART

 DATA=SASHELP.DEMOGRAPHICS

 MAP=MAPS.EUROPE;

where region = 'EUR';

ID CONT ID;

CHORO &VarPrompt / WOUTLINE=1 ;

Add a TITLE statement and use the prodprompt
macro variable so that the user knows which
product is showing.

The macro variable determines what variable is
used for the map.

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

7

Code Notes

RUN;

QUIT;

ods html close; Close the ODS output statement.

data _null_;

 file _webout;

 put '</TR>';

 put ' </table>';

 put '</FORM>';

 put '</BODY>';

 put '</HTML>';

 run;

%mend view;

%view;

Close the _WEBOUT stream with the HTML
closing tags.

Run the %view macro.

Note: When you register the stored process, make sure the %STPBEGIN/%STPEND marcos are turned off.

USING STORED PROCESSES FROM INFORMATION MAPS

There are so many uses for stored processes within information maps. Some examples of possible stored process
use within Information Maps:

 Leveraging explicit pass-thru SQL when connecting to RDBMS

 Querying an OLAP Cube to allow for prompting (pre 9.2)

 Utilizing existing SQL queries rather than going through the Information Map Relationship tab builder

 Taking prompted values into account to refine the resulting database query

The problem for many developers however is that the setup resembles a typical information map layout because the
metadata table definitions are permanently stored. Questions developers have include: What keeps the stored
process flexible enough to handle multiple and concurrent users? How is the data removed/replaced on subsequent
requests? The trick is redirecting the data output to a WORK location.

libname libref (work);

That’s right – what can fix your headache from thinking through this is just one line of code. Let’s walk through the
four steps. First, set up the metadata for this stored process created data table then develop and register the stored
process and finally define the information map.

Step 1. Setup the Metadata

Of course, you can manually define a data table in SAS Management Console but importing an existing table is much
easier. What I do is create a data table with 0 records that represents the output of the stored process as well as the
input into the information map.

1) Create a temporary folder c:\sas\data\tempout. This entire folder structure will be deleted later.
2) From SAS Enterprise Guide or BASE SAS, run the following code to create a sample dataset. The WHERE

statement must generate an empty table. This is useful for systems with limited data space because only the
metadata is needed for subsequent steps.

libname tempout "c:\sas\data\tempout";

data tempout.salesdetail;

 set booksamp.salesdetail2011(where=(date="01oct74"d));

run;

3) From SAS Management Console (or SAS Enterprise Guide’s Update Library Tool):

a) Register a BASE SAS library called TempOut that points to the c:\sas\data\tempout folder.

b) Register the SalesDetail dataset.

4) Delete SalesDetail.sas7bdat from the c:\sas\data\tempout folder.

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

8

Step 2. Create the stored process

Develop a stored process that performs the task at hand. The important aspect of this stored process, independent of
what task you wish it to undertake is that it generates a data table named the same as the registered data table
SalesDetail. In the stored process below, we are choosing which detail table to retrieve based on a date range
prompt and then returning the desired data records.

IMAP Dynamic Table Notes

%stpbegin;

libname tempout (work); Create a library reference called tempout that is
redirecting to the temporary WORK file folder.

You must use the exact LIBREF name as the
metadata library that you created in the previous
step 1.

libname booksamp meta

 library="STP Book Sample Data"

 metaout=data;

data _null_;

year1=substr("&date_range_min", 6, 4);

year2=substr("&date_range_max", 6, 4);

call symput('start', year1);

call symput('end', year2);

year3=year(today());

call symput('current', strip(year3));

run;

%macro join;

Assign the metadata library where the detail
source data is located.

Create two temporary macros (Start and End) that
only contain the 4-digit year (for example, 2012).
When the stored process runs, these macro
variables come from a date_range prompt.

Create a macro for the current year to reduce the
maintenance of the do loop in the next step.

data tempout.SalesDetail; Create the SalesDetail table in the WORK folder
structure.

Set

 %do i=2008 %to ¤t;

 %if &i >= &start and &i <= &end

 %then booksamp.salesdetail&i ;

 %end;

; run;

Loop through all years available (in this case 2008
to the current year) and set the necessary data
sets.

%mend;

%join;

%stpend;

Stop the data step, end the join macro, run the
JOIN macro and close the stored process.

Step 3. Register the stored process

Register this stored process by following these steps.

1) In the Execution tab, ensure that the Result capabilities: checkboxes are not checked.

2) Add a date range prompt for the DATE_RANGE macro referenced in the stored process code.

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

9

Step 4. Create the information map

In SAS Information Map Studio, create a
new information map using the metadata
table that you defined in step 1.

After a table is created in the information
map, you can add the stored process.

1. Select Tables  from the Show menu.

2. Navigate to the table location in
TEMPout library and add the
SALESDETAIL table.

3. Now change the Show: selection box
to Stored processes 

4. Select the stored process name
registered in Step 3 above.

When testing the information map, use
the Show Server Log to review the

code. (Note that the View SQL button is
misleading, as it shows the tempout
permanent location and then the SQL
code – when in fact the Server Log
shows that the tempout location is
pointing to WORK.)

Figure 6. View the Server Log

Server Log Notes

2 LIBNAME tempout BASE

"C:\SAS\Data\TempOut";

NOTE: Libref TEMPOUT was successfully

assigned as follows:

 Engine: BASE

 Physical Name: C:\SAS\Data\TempOut

Notice that first the information map defines the
TEMPOUT library using the metadata definition.

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

10

Server Log Notes

4 /* v2 (9.3) stored process support

*/

5 PROC STP program='/User

Folders/Angela Hall/My

Folder/07_a_IMAPDynamicTableTEST(StoredProces

s)';

6 inputParam date_range='March

01, 2007 -- November 25, 2009';

7 run;

NOTE: PROC_STP: ====== Proc STP Execution

Starting ======

NOTE: PROC_STP: ====== Stored Process: /User

Folders/Angela Hall/My

Folder/07_a_IMAPDynamicTableTEST(StoredProces

s) ======

In SAS 9.3, all stored processes are called
using PROC STP.

NOTE: %INCLUDE (level 1) file

c:\SAS\Stps93\TEST_Example_7a_IMAPDynamicTabl

e.sas is file

c:\SAS\Stps93\TEST_Example_7a_IMAPDynamicTabl

e.sas.

2 +%stpbegin;

3 +

The Stored Process raw code is then submitted.

4 +libname tempout (work);

NOTE: Libref TEMPOUT was successfully

assigned as follows:

 Levels: 1

 Engine(1): V9

 Physical Name(1):

C:\Users\sassrv\AppData\Local\Temp\SAS

Temporary Files_TD7992_L73453_\Prc9

TEMPOUT is reassigned to a work location.

The remaining steps produce the
tempout.salesdetail table in that work location.

5 +libname booksamp meta

6 + library="STP Book Sample Data"

7 + metaout=data;

NOTE: Libref BOOKSAMP was successfully assigned as follows:

 Engine: META

 Physical Name: C:\SAS\Data\STPSamples

8 +data _null_;

9 + year1=substr("&date_range_min", 6, 4);

10 + year2=substr("&date_range_max", 6, 4);

11 + call symput('start', year1);

12 + call symput('end', year2);

13 +

14 + year3=year(today());

15 + call symput('current', strip(year3));

16 +run;

NOTE: Numeric values have been converted to character values at the places given by:

(Line):(Column).

 15:31

NOTE: DATA statement used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

17 +%macro join;

18 +data tempout.salesdetail;

19 +

20 +set

21 + %do i=2008 %to ¤t;

22 + %if &i >= &start and &i <= &end

23 + %then booksamp.salesdetail&i ;

24 + %end;

25 +;

 The

SAS System

SAS© Stored Processes: Swiss Army Knife of the Business Intelligence Toolset, continued SESUG 2012

11

Server Log Notes

26 +

27 +run;

28 +%mend;

29 +

30 +%join;

NOTE: There were 3036 observations read from the data set BOOKSAMP.SALESDETAIL2008.

NOTE: There were 2968 observations read from the data set BOOKSAMP.SALESDETAIL2009.

NOTE: The data set TEMPOUT.SALESDETAIL has 6004 observations and 17 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

31 +%stpend;

If you still do not believe me, open a BASE SAS session
to open the tempout.salesdetail data table in the initial
folder location where you created the 0 record file. When
I tested it myself, I received the following note, which in
this instance made me quite pleased.

Figure 7. Result

CONCLUSION

SAS stored processes offer a lot of flexibility to BI content developers. You can use the stored process to add the
extra functionality that may not be readily available in the other SAS BI tools.

REFERENCES

1. The GKPI Procedure, SAS/Graph 9.3 Reference Manual, Second Edition. SAS Institute.

2. Aanderud & Hall, The 50 Keys to Learning SAS Stored Processes, Siamese Publishing, Raleigh, NC, April 2012.

RECOMMENDED READING

 Aanderud & Hall, Building Business Intelligence with SAS: Content Development Examples, SAS Press, Cary,

NC, February 2012.

 SAS 9.3 Stored Processes Developer’s Guide, SAS Institute.

 Business Intelligence Notes for SAS BI Users blog, http://www.bi-notes.com

 Real BI for Real Users, http://blogs.sas.com/content/bi

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Tricia Aanderud, tricia.aanderud@and-data.com
Angela Hall, angela.hall@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/graphref/64854/HTML/default/viewer.htm#p1u9s4qiheb63in1bk969uzu46q7.htm
http://www.bi-notes.com/
http://blogs.sas.com/content/bi
mailto:tricia.aanderud@and-data.com?subject=Paper:%20Your%20First%20SAS%20Stored%20Process
mailto:angela.hall@sas.com?subject=Paper:%20Your%20First%20SAS%20Stored%20Process

