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ABSTRACT

Over the years, cancer has increasingly become a global health problem. For successful treatment, early
detection and diagnosis are critical. Radiomics is the use of CT, PET, MRI, or Ultrasound imaging as input
data, extracting features from image-based data, and then using machine learning for quantitative analysis
and disease prediction. Feature reduction is critical as most quantitative features can have unnecessary
redundant characteristics. This research aims to use machine learning techniques to reduce the number of
dimensions, thereby rendering the data manageable. Radiomics steps include Imaging, segmentation,
feature extraction, and analysis. For this research, large-scale CT data for Lung cancer diagnosis collected
by scholars from Medical University in China is used to illustrate the dimension reduction techniques via
SAS and Python. The data is available on The Cancer Imaging Archive (TCIA). PyRadiomics through 3D
Slicer medical software was used to extract 110 features for 74 out of 130 patients. This research's
proposed reduction and analysis techniques entailed; Principal Component Analysis and Clustering
analysis (Hierarchical Clustering and K-means). To achieve results for the analyses SAS codes
PRINCOMP, CLUSTER, and, FASTCLUS were used. These techniques were equally augmented by
computing threshold values and using them to filter out the most salient features using the R program. For
the PCA the eigenvalues indicated that three principal components provided a good summary of the data
accounting for 98.10% of the total variance. The number of features selected was 39, of which 4 were
intensity, 7 were shaped, and 28 were texture-based. For clustering analysis, the agglomerative hierarchical
clustering algorithm clustered the features into 3 clusters, 21 features were selected whereby 3 were
intensity, 3 were shaped and 15 were texture-based features. K-means clustering algorithm with an initial
cluster optimum cluster of 3, selected 21 features, of which 4 were intensity, 1 shape, and 15 texture-based
features. Overall, all the analyses clearly outlined texture-based features as the most salient category of
features.
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INTRODUCTION

The field of radiomics has rapidly emerged as an important and influential area of contemporary cancer
research. It offers a range of potential benefits, particularly in standardizing the analysis of complex imaging
data, which ultimately allows for comparative studies across multiple patients and investigations [2].
Identifying key imaging biomarkers through radiomics can significantly improve the accuracy of cancer
diagnosis and staging, which can have life-saving implications for patients. Furthermore, the quantitative
information that radiomics extracts from images can offer valuable insights into the underlying biology of a
tumor, providing clues as to its aggressiveness or how it might respond to different treatments [9]. This
information, in turn, can be used to develop tailored treatment plans for patients, identifying those most
likely to benefit from specific therapies and those at a greater risk for recurrence or progression. The non-
invasive nature of radiomics offers distinct advantages in reducing the need for invasive procedures and
enhancing the efficiency of clinical trials [17]. Different types of non-invasive imaging include Molecular
imaging which allows clinicians to not only see where a tumor is located in the body but also visualizes the
expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes
(e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy,
Anatomical imaging enables the detection of a phenotypic(physical expression of DNA(Deoxyribonucleic
Acid)) alteration that is sometimes, but not invariably, associated with cancer, and finally, functional imaging
used to study tumor physiology, probe tumor molecular processes, and study tumor molecules and
metabolites in vitro and in vivo. These attributes make radiomics an exciting and promising field poised to
contribute significantly to advancing cancer research and treatment. Radiomics often encompasses the
extraction and analysis of quantitative features from medical images, including but not limited to CT and
PET scans. By evaluating tumor size, shape, texture, and density, radiomics offers a promising avenue for
advancing personalized medicine [1]. CT and PET scans are widely employed in medical imaging
techniques that play an essential role in diagnosing and monitoring cancer. While similar in that they are
both non-invasive, the two methods differ in how they generate images. CT scans use X-rays to create
detailed, cross-sectional images of internal organs and structures, which can help doctors identify the
location and size of tumors. On the other hand, PET scans involve injecting a small amount of radioactive
material into the body, which is then used to produce images that reveal the functional activity of tissues
(John Hopkins Medicine, 2021). Doctors can analyze these images to assess how cancer cells metabolize
nutrients, grow, and spread. Together, these two imaging techniques provide a comprehensive way to
monitor cancer without requiring invasive procedures. One critical step in the radiomics workflow is feature
extraction, which involves identifying and quantifying the various characteristics of tumors. To accomplish
this, segmentation is typically performed to isolate the tumor region, and then multiple methods are used
to extract features based on tumor intensity, texture, and shape [18]. Dimension reduction techniques, such
as PCA and clustering, are often used to help process and analyze these features. These techniques help
to simplify the data by reducing the number of variables and identifying key patterns. More advanced
methods have been developed for dimension reduction, such as contrastive Principal Component Analysis
(cPCA) and Joint and Individual Variation Explained (JIVE). The cPCA approach can identify low-
dimensional structures unique to a particular data set by comparing them to a reference data set. On the
other hand, JIVE decomposes variation across multiple data types into joint and individual components
[13]. Both methods can help analyze complex medical imaging data. Some of the software tools used for
feature extraction include PyRadiomics, 3D Slicer, LIFEX, IBEX, QIFE, and RayPlus. Each device has
strengths and limitations, so researchers must carefully consider which best meets their needs.

Overall, the implications of radiomics as a field of study are substantial, particularly as they pertain to
diagnosing, treating, and monitoring cancer. By utilizing quantitative data extraction methods from medical
images, radiomics can allow researchers to discern patterns in tumor biology that might otherwise remain
obscured. This may help shed light on various aspects of a tumor’s behavior, such as its aggressiveness
or responsiveness to different treatment modalities. As such, radiomics has the potential to contribute
significantly to our overall understanding of cancer and to facilitate the development of more effective and
personalized therapies.

The goal of studying cancer is to develop safe and effective methods to prevent, detect, diagnose, treat,
and, ultimately, cure the collections of diseases we call cancer. The better we understand this disease, the
more progress we will make toward diminishing the tremendous human and economic tolls of cancer.
Recent advances in medical imaging, such as radiomics, have shown great potential in this regard.
Radiomics allows for the extraction and analysis of large data sets from imaging techniques such as CT
and PET scans. This, in turn, provides a more comprehensive understanding of tumor growth and



development. As such, using radiomics in cancer detection and analysis represents a promising avenue for
future research, potentially leading to significant improvements in diagnosis, treatment, and patient
outcomes. The process may however turn out to be very hectic given the features obtained from radiological
images are so immense. Therefore, there is a dire need to have the data matrix in its simplest form to give
way for prognosis, therapy, and any other objective such kinds of research would intend to accomplish. To
accomplish this, the research intended to answer the following questions;

RQ 1. Is there a way to reduce the number of variables from 110 to a lesser number that would make the
process of working with the data simple?

RQ 2. Is any of the feature categories most significant for our analysis?

Overall, the ultimate intention of the analysis would be to generate a data matrix with fewer and very
significant features that can be used in the future as new predictor variables to do predictions on the Lung
Cancer data.

RESEARCH METHODOLOGY

The techniques used to address the research question included data description and analysis techniques.

DATA DESCRIPTION

The data was collected by Huiping Han, Funing Yang, and Rui Wang of Harbin from the Medical University
in Harbin in China [18]. This data is available on The Cancer Imaging Archive (TCIA). The workflow of
radiomics includes; medical imaging, segmentation of the tumor region, feature extraction based on
intensity, texture, and shape [11], finally, analysis of the features, Figure 1.
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Figure 1: The Radiomics Workflow

Source: https://wiki.cancerimagingarchive.net

This dataset consists of CT DICOM images of 130 patients with lung cancer. The XML Annotation files
which include the location of the tumor were provided by five academic radiologists with high expertise in
lung cancer. To visualize the annotation boxes on the tumor of the DICOM images [11], python codes
through the terminal were used to pull out the images and put the location of tumor in a box, Figure 2.
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Figure 2:Visualization of the annotation box on the CT-DICOM images.

Source: https://wiki.cancerimagingarchive.net

The process of data acquisition is a outlined,;
a) Software tools for extracting features:

There are massive software tools available for extracting tumor features from medical images. Some
standard options include PyRadiomics, 3D Slicer, LIFEX, IBEX, QIFE, and RayPlus. Each of the devices
has its drawbacks and advantages. It is therefore at the researcher’s discretion to identify which best aligns
with his intended objectives. For example, PyRadiomics is a flexible open-source platform capable of
extracting a wide array of features, but it requires some programming knowledge in Python [9]. 3D Slicer,
on the other hand, is a free and open-source application designed to facilitate the development of new
functionality in 3D Slicer extensions [5], Figure 3. LIFEX is another option that offers a user-friendly interface
and powerful features for tumor segmentation, feature extraction, and radiomics analysis. Ultimately, the
choice of software tool depends on the researcher’s goals and expertise.
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Figure 3:Loading Lung-CT-PET Images.

Source: https://wiki.cancerimagingarchive.net

b) Extracting features from CT medical images of lung cancer.

Features that are extracted can be generally classified into three main categories [2]: First-order radiomics
which has Intensity-based features and Shape based features, second-order radiomics which has Texture-
based features extracted based on different descriptive matrices (Gray level co-occurrence matrix (GLCM),
Gray level run length matrix (GLRLM), Neighborhood gray-tone difference matrix (NGTDM), Gray level
zone length matrix (GLZLM), Figure 4.
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Figure 4. Texture Features from left to right: GLCM (gray level co-occurrence
matrix), GLRLM (gray level run length matrix) and NGTDM (neighborhood gray
tone difference matrix) (Parekh and Jacobs (2016))

Figure 4: Texture Features (Parekh and Jacobs (2016)).

The last category, higher-order radiomics applies the use of filters to extract features from images through
Wavelet which decomposes tumor images into different frequency domains (such as horizontal, vertical,
and diagonal) and then extracts the tumor shape, intensity, texture, and other information. Fourier features
capture gradient information while Minkowski Functional (MF) is a common higher-order feature extractor
considering the patterns of pixels with intensities above a predefined threshold.

Radiomic Feature Set (current release ~1600 features)
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Radiomic features can capture phenotypic details

Figure 5: Categories of Features

Source: https://wiki.cancerimagingarchive.net.

c¢) Extraction process: Out of the 130 patients under consideration, the extraction of features was done on
74 patients because the provided annotation files did not work for all 130 patients. A 3D slicer was used to
do the segmentation process as indicated by the yellow circle around the tumor, Figure 6.
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Figure 6: A 3D slicer segmenting the Tumor

The PyRadiomics package is available in the 3D slicer was then used to extract features from the tumor
segmentations for all patients, Figure 7.
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Figure 7: PyRadiomics package extracting features.

d) Resulting Data Matrix

After the whole process of extraction, an unsupervised data matrix was obtained with a dimension of 74 by
110. Each row represented the patient, and each column was for the extracted feature depending on the
categories earlier discussed. The 110 features acquired were quantitative variables. Finally, the data matrix
was normalized according to the min-max normalization approach as it is robust to any feature distributions
and leads to making unitless measurements for each feature [11]. The features on the columns were
renamed since the original names were too long to enable data visualization through graphs.The column
names range from diagnostics_Image.original_Maximum_CT,..., original_ngtdm_Strength_CT were
renamed to V, ...,V 10. Since the resulting matrix has 74 rows by 110 columns, most reduction techniques
algorithms such as PCA, hierarchical and even k-means clustering cannot handle such a data format
successfully, it is for this reason that the normalized data set was transformed into a square correlation
matrix such that the new dimension was 108 by 108. It is after this transformation the data matrix was finally
ready for applying dimension reduction techniques.

Analysis Techniques

As dictated by the research objective, dimension-reduction techniques are applied to render the data more
manageable. These approaches included feature extraction and selection [16]. Feature extraction
techniques are further categorized into; supervised and unsupervised learning. Supervised learning is a
technique that considers the relation of features with class labels and features are selected mostly based
on their contribution to distinguish classes, while, unsupervised learning does not consider the class labels
and its objective is to remove redundant features [3]. Because the obtained data matrix is unsupervised,
therefore a further linear exploration into the classification of unsupervised learning technigues Principal
Component Analysis (PCA) was done to transform the original data into a new set of features that retain
most of the original dataset’s information. Selecting the appropriate dimension reduction technique is a
function of the specific dataset and research objectives. Employing these techniques allows researchers to
improve computational efficiency, avoid the curse of dimensionality, and pinpoint the most salient features
in the dataset.

Reduction Technique in Radiomics

1. Principal Component Analysis (PCA)

A feature transformation technique that reduces the correlation between sampled variables [1 4] say
X1, Xz, .., X,. Using an orthogonal transformation, PCA generates new variables referred to as principal
components Pcy, Pc,, ..., Pc,, that retains many of the properties of the original variables given m < p. This
approach enables the creation of various features through linear combinations of the main components,
which maximize variance and improve predictability [6], Figure 8.



(%
[~
N\
\

.\\ L3
, o\ P 2 °
\ °
o\
) ° Pah ¥
Y _/. “ \ %
i )
) T %

n

Figure 8: Principal Component Analysis
Source: (Rencher and Christensen (2012)).

There are five main steps to conducting PCA:

(a) Standardize the data: Calculate the mean of all the dimensions of the data set, except the labels. Scale
the data so that each variable contributes equally to the analysis. In the equation given below, z is the
scaled value, x is the initial, and p and o are the mean and standard deviation, respectively.
x —
Z = ll'
(o

(b) Compute the covariance matrix: Identifying highly correlated variables is a crucial step in data analysis.
These variables often contain redundant information, which can hinder the accuracy of statistical models
and analyses. Utilizing a covariance matrix allows for the examination of correlations between all possible
variable pairs within a given data set and

facilitates the removal of any superfluous variables.

1 — —
Cov(x,y) = —y = =) i — ),

where X is the mean of the predictor variables, y is the mean of the response variables, n is the sample size
and i refers to each observation.

Basing the PCA on the covariance matrix would however lead to variables with large variances dominating
the most important principal components. Also, changing the units of measurement (e.g., from ounces to
pounds, or from feet to inches) would change the PCA solution. For this reason, it is often preferred to base
the PCA solution on the eigenvectors and eigenvalues of the correlation matrix rather than the covariance
matrix. This is equivalent to initially standardizing all variables and then performing the PCA is based on a
correlation matrix [14].

(c) Calculate the eigenvectors and eigenvalues: Using concepts originating from linear algebra enables
determining principal components stemming from the covariance matrix. An eigenvalue is a scalar that is
used to transform (stretch) an eigenvector. The relevant equation is as follows:

Av = Av,
where A is the square covariance matrix, v is an eigenvector, A is a scalar which is the eigenvalue
associated with the eigenvector of A matrix. A solution of this equation would yield A eigenvalue:

det(4 — Al) =0,

where det is the determinant, A is the covariance matrix, Al is a scalar multiplying an identity matrix.

(d) Choose k eigenvectors with the largest eigenvalues: Sort the eigenvalues corresponding to eigenvalues
from highest to lowest. In case the goal is to decrease the dimension to two, take the first two eigenvectors
which are corresponding to the first two highest eigenvalues.



(e) Remodel the data: The final step uses the information from the eigenvectors of the covariance matrix to
reorient data from the original axes to the ones that are now represented by the principal components:
y=WTXx

where WT is the transpose of the matrix W, X is the eigenvector matrix and y is the transformed data set.
Assuming our set of variables in the original data is x;,x,, ..., x, after transformation the first principal
component will be Z; = a;1x; + az1x; + -+ + ap1x,, Where a;y,a,y, ..., a,, are the loadings of the first
principal component. As earlier illustrated the loadings are values of the eigenvector of the covariance
matrix. Since the eigenvalues are variances of the principal components, we can speak of “the proportion

of variance explained” by the first k components [11]: proportion of variance % where 4, refers to
1TAT I TAP

the variation explained by the first component, and so on [14].

To be able to come up with these principal components according to [14];

i.  We can retain the first m components sufficient to explain a specified percentage (70% 80% 90%
of the total variance of the original variables).

ii. Keep components whose eigenvalues are at least Z% which is the average eigenvalue and also
the average sample variance of the original variables, where A4; is a constant A multiplying the
number of factors i and p is the total number of observations in the data set.

iii. Use a scree plot of the eigenvalues 4;, where A is a constant and i is the number of factors. It

always displays a downward curve. The point where the slope of the curve is leveling off (the elbow)
indicates the number of factors that should be generated by the analysis as, Figure 10.

Eigenvalue Number

Figure 10: Scree Plot
Source: (Rencher and Christensen (2012)).

2. Clustering Analysis: It separates individual observations into groups based on the values for the p
variables measured on each individual.

a) Hierarchical Clustering
Agglomerative hierarchical clustering begins with n clusters, each containing a single object. At each stage,

the two clusters that are “closest” are merged. As the stages iterate, there are n clusters, then n-1, and so
on. By the last stage, there is 1 cluster containing all n objects, Figure 14.
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Figure 8: Hierarchical Clustering

Source: https://www.slideserve.com/lenci/partitional-clustering.

There are four common types of linkage: complete, average, single (Ward’s), and centroid. A summary of
these linkages is as follows [7 and 11];

» Complete: In this approach, all pairwise dissimilarities between the observations in the clusters are
computed and the maximum one will be recorded [11].

* Single (Ward’s): In this method, all pairwise dissimilarities between the clusters are computed and the
minimum one will be recorded [11].

» Average: In this approach, all pairwise dissimilarities between the clusters are computed and the average
of dissimilarities will be recorded.

+ Centroid: In this technique, the dissimilarities between the mean vector of for cluster. A (centroid) and the
mean vector for cluster B (centroid) are computed [11].

Steps in the agglomerative hierarchical clustering algorithm for grouping N objects according to [22];

» Start with N clusters, each containing a single entity and an N x N symmetric matrix of distances
(or similarities) D = d;,
» Search the distance matrix for the nearest (most similar) pair of clusters. Let the distance between
“most similar” clusters U and V be d,,,,
» Merge clusters U and V. Label the newly formed cluster (UV). Update the entries in the distance
matrix by,
e deleting the rows and columns corresponding to clusters U and V and
e adding a row and column gives the distances between cluster (UV) and the remaining
clusters.
» Repeat steps 2 and 3 a total of N —1 times. (All objects will be in a single cluster after the algorithm
terminates.) Record the identity of clusters that are merged and the levels (distances or similarities)
at which the mergers take place.

b) K-means

The k-means algorithm [10] begins by randomly allocating the n objects into k clusters (or randomly
specifying k centroids). One at a time, the algorithm moves each object to the cluster whose centroid is
closest to it, using the measure of closeness. When an object is moved, the centroids are immediately
recalculated for the cluster gaining the object and the clutter losing it. The method repeatedly cycles through
the objects until no reassignments of objects take place. The final clustering result will somewhat depend
on the initial configuration
of the objects.
The k-means clustering results from a fundamental mathematical idea; Assume that C,, C,, ..., Cx represents
sets including the observations clustered into K subgroups of the original data. These sets meet two
properties [7 and 11];

a) GUC,U,..,UCy = (1,..,n). It means the union of all clusters leads to the whole observation [11].
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b) CnC, = @ forall k # k. It means clusters are pairwise and mutually exclusive [11].

The algorithm behind k-means clustering techniques [11] includes;
a) Randomly assign a number to each observation from 1 to K. This calls for an initial clustering of
the observations [11].
b) Repeat the following process till the cluster assignments stop changing [11].
i. For each of the K clusters, calculate the k" cluster centroid which is the vector of the p
feature means for the observations in the k" cluster [11].
ii. Use Euclidean distance for assigning each observation to the nearest Centroid [11].
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Figure 9: K-Means Clustering

Source: https://www.slideserve.com/lenci/partitional-clustering.

RESULTS FOR ANALYSES
a. Principal Component Analysis

With the data set on 108 features extracted from tumors of CT images of lung cancer patients, an illustration
of how the reduction techniques were executed is shown. This particular analysis entailed both the use of
SAS and partly R “softwares”. The data was standardized through SAS such that each variable had a mean
of zero and a standard deviation of one. Principal components are computed from the correlation matrix,
so the total variance is equal to the number of variables which is 108, Figure 10.
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The PRINCOMP Procedure I

Observations = 108
Variables 108

diagnostics_Image.original_Maxi | diagnostics Mask.original_Volum | original_shape_Flatness_CT | original_shape_LeastAxisLength_ | original_shape_MajorAxisLength_ | original_shape_Maximum2
Mean 0.0866558007 - 0502812437 00427817497 00427817497 01617528265 X
StD 05919940805 0.2757035408 02191457194 02191457194 05756473691 05

diagnostics_Image.original Maxi | diagnostics Mask.original Volum | original_shape Flatness CT | original_shape LeastAxisLength_ | original_shape_MajorAxisLengtl

diagnostics_Image.original_Maxi 1.0000 1973 0.4267 0.4257 0.44¢
diagnostics_Mask.original_Volum -1973 1.0000 -1226 -1226 -30
original_shape_Flatness_CT 0.4257 -1226 1.0000 1.0000 066
original_shape_LeastAxisLength_ 0.4257 -1226 1.0000 1.0000 0566
original_shape_MajorAxisLength_ 0.4404 -8022 06618 06618 1.000
original_shape_Maximum2DDiamete 0.4742 -7827 06870 0.6870 0.99
VARS 0.4219 -8052 06600 0.6600 0.9%
VAR 01987 -8363 05745 0.5745 096t
original_shape_Maximum3DDiamete 0.2179 -8129 06156 0.6156 057
original_shape_MeshVolume_CT 0.4650 -8252 06225 0.6225 099
original_shape_MinorAxisLength_ 0.4026 8272 06323 06323 099
original_shape_Sphericity_CT -3301 08393 -6153 -6153 -99
original_shape_SurfaceArea_CT 0.4627 -8252 06226 06226 0.99
original_shape_SurfaceVolumeRat 1817 08553 -5642 - 5642 -951
original_shape_VoxelVolume_CT 0.4643 -8248 06231 06231 0.99
original_firstorder_{0Percentil -B867 -4019 01144 01144 028

Figure 10: Number of Observations and Simple Statistics

SAS software computes the principal components from the correlation matrix. By using eigenvalues as a
way of selecting principal components, a summary table generated by the software informed the conclusion
that the first, second and third principal components accounted for about 63.17%, 32.99% and 1.94% of
the total variance respectively. Note that the sum of the eigenvalues is the total variance. The eigenvalues
indicated that the first three components provide a good summary of the data accounting for 98.10% of the
total variance while the rest of the components only account for less than 1.5% each, Figure 11.

Eigenvalues of the Correlation Matrix

Eigenvalue | Difference | Proportion | Cumulative
1| 63.2268847 32.5974454 0.6317 0.6317
2 | 356294393  33.5361032 0.3299 0.9616
3| 20933361 0.6282700 0.0124 0.9810
4| 14650661 09785719 0.0136 0.9945
5| 04864941  0.4020532 0.0045 0.9991
6 00844409 0.0779595 0.0008 0.9999
7 | 0.0064814  0.0016573 0.0001 0.9999
8 | 0.0048241  0.0024410 0.0000 1.0000
9 | 00023832 0.0020682 0.0000 1.0000

10 | 0.0003150  0.0001183 0.0000 1.0000

11 | 0.0001967  0.0001253 0.0000 1.0000

12 | 00000714  0.0000158 0.0000 1.0000

13 | 00000557  0.00004%8 0.0000 1.0000

14 | 00000059  0.0000036 0.0000 1.0000

15 0.0000022 0.0000010 0.0000 1.0000

16 | 0.0000012  0.0000001 0.0000 1.0000

17 0.0000012 0.0000008 0.0000 1.0000

18 | 0.0000003  0.0000001 0.0000 1.0000

19 | 0.0000002  0.0000001 0.0000 1.0000

20 | 0.0000001 | 0.0000000 0.0000 1.0000

21| 00000001 | 0.0000000 0.0000 1.0000

22 | 0.0000000 | 0.0000000 0.0000 1.0000

23 | 00000000 | 0.0000000 0.0000 1.0000

24 | 0.0000000 | 0.0000000 0.0000 1.0000

25 | 0.0000000 | 0.0000000 0.0000 1.0000

26 0.0000000 0.0000000 0.0000 1.0000

Figure 11: Principal Component Analysis of the first 26 features

A graphical representation of how many principal components should be retained to

summarize our data was used. The graph is a scree plot of the eigenvalues A; against factor i. It always
displays a downward curve. The point where the slope of the curve is clearly leveling off (the elbow)
indicates the number of factors that should be generated by the analysis. The first three eigenvalues form
a steep curve, followed by a bend and then a straight-line trend with a shallow slope [18]. The
recommendation is to retain those eigenvalues in the steep curve before the first one on the straight line
[11]. The scree plot confirmed an earlier conclusion made by the eigenvalues that 3 principal components
were enough to explain variations from the original data which was about 98.10% in total. Additionally, the
variance explained plot confirms that three components explain enough number of variations from the
original data which is about 98.10% in total, Figure 12.
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Figure 12: Scree Plot

To clearly specify which variables contributed most to the principal components, from the eigenvector’'s
matrix, the first principal component Prinl was written as a linear combination of the original variables,
Figure 13.

Prin, = 0.114850v; — 0.046767v, + --- — 0.014141v,,,
The second principal component of Prin2 was,

Prin, = —0.040924v, — 0.122847v, + -+ — 0.162658v,,
Finally, the third principal component of Prin3 was,

Pring = —0.121797v, — 0.152864v, + -+ + 0.098449v,,

Prin1 Prin2 Prin3 Prind PrinG PrinG Prini Pring Pring Prin10 Prin11 Prin12 Prin13 Prin14, Prin15
diagnostics_lmage.or 0114850 040924 121797 074809 036111 0057606 0043114 0093167 | 0073545 058373 | 0 824731 129121 0199145 0349452  0.093354
diagnostics_Mask.original_Volum ~046767 | -122847 | 152864 0394297 0233040 -333262 0241923 - 1176156 | - 144243 | 0.517692 | -182180 -177183 0079643 0309936 0.072307
original_shape_Flatness_CT 0065797 | 0069055 265755 0492915 0233236 0228387 068162 = 0.050050 | 0.029357 175010 | 0.063191  0.063692 024555 110606 0.011104
original_shape_LeastAxisLength_ 0.065797 | 0.069055 | -265755 0.492915 0.233236 0.228387 -068162 0050050 | 0.029357 -175010 | 0.063191 0.063692 -024555 -.110606 0.011104
original_shape_MajorAxislLength_ 0.079511 | 0125493 | 0000093 022970 0117342  -028372 0029247 0045066 0026702 | 0050366 0037054 0063206 0041778 0072999 -208770
original_shape_Maximum2DDiamete = 0082683 | 0121670 | -018461 -007560 0.104206 -010266 0.047369 0041622 | 0.065475 -018978 | -035771 0.041322 019278  0.020932 | 0.001551
VARS 0077032 | 0128066 -014832 -033190 0133516 -018083 -036160 0041203 | 0028791 0023393 | -034303 0029371 -053501 0063987 0.036462
VAR 0.054483 | 0.148250 | 0.048490 -026512 0.120484 -120603 0.142353 0083485 | 0.005633 0078794 | 0.075242 -.015630 0.069294 0.028498 -247352
original_shape_Maximum3DDiamete = 0.056564 0147051 | 0.030107 0.005226 0.130561 -101873 0132811 0083506 | 0.007255 0.064947  0.076389 -011076 0065188 0.020538 -237469
original_shape_MeshVolume_CT 0080889 | 0122602 | -011587 - 084892 0119220 -0615683 0010620 0069098 | 0111053 | -019037 | -062417 00368561 -026964 0015830 0049692
original_shape_MinorAxisLength_ 0.074903 | 0130503 | -007347 -056177 0.106860 -036376 0003836 0012691 | 0.053310 -002058 | - 042908 0027361 -065980 0.045665 0081496
original_shape_Sphericity_CT ~068479 | -137536 | 031147 0029924 - 074088 -002924 -038382 0089513 | 0104861 | 0.005300 | - 002259 -005627 0036530 - 112167  0.014229
original_shape_SurfaceArea_CT 0080683 | 0122871 | -010684 -083911 0120875 -052071 0.009315 0071146 | 0.109686 -015795  -052765 0.038135 -028222 0.020041  0.063166
original_shape_SurfaceVolumeRat -051856 | - 150924 | -032024 0036150 -027090 -051433 -031021 0202426 0220490 | 0114808 | -039250 0.084417 0012399 0108331 0366112
original_shape_VoxelVolume_CT 0080832 | 0122696 | -011545 -0B84001 0119568 -051450  0.010582 0069043 | 0.109494 -018762 | -052803 0035778 -026697 0.017277 | 0.048565
original_firstorder_10Percentil 061936 | 0141447 092150 0.008949 123388 | 0.036837 | 0.001496 | 0.012981 | 0.045194 | 0.088582 029189 0.006941 042554 0028316  0.006794
original_firstorder_90Percentil 0104257 | 0079742 | - 070934 -029178 - 150590 0294736 0130405 0212772 | -034768 0160671 - 121003 0134507 0107199 0090219  -139007
original_firstorder_Energy_CT 0108688 | 0.064954 | 0.056792 -091443 0223519 -060563 -085151 0079422 | 0039988 0047663 | 0021081 -147625 0159094 -107177  0.050407
original_firstorder_Entropy_CT 0114389 | -054831 | 0000217 - 008405 0007725 -010124 0000405 -030836  -017717 | - 047850 | -039430 0015213 0076252 0003923 0018892
original_firstorder_Interquarti 0074416 | -131751 | 0.023125 -025906 0.051167 0.044532  0.149095 0058551 | 0007648 -088481 | -044636 0.174044 -150050 -041808 -091363
original_firstorder_Kurtosis_CT -022791 | 0161148 | 0072621 0111953  -139893  -054489 0111597 -066957 0056113 | 0.098509 | 0159294 -233249 -3965090 -204484 0.150659
original_firstorder_Maximum_CT 0118138 | 0.034145 | -042811 -030705 -035098 0022975 0148007 | -172172 | 0107383 | 0.394570 | 0178411 03492089 0212994 -464950 0.187586
original_firstorder_MeanAbsolut 0091684 | - 108063 | 0065266 - 005988 0049397 0051647 0071608 0039586 | -024170 | - 026642 | -012157 0070803 -012371 0019267 -014777
original_firstorder_Mean_CT -014830 | 0163765  -076259 -003367 -165501 0.193654 0.003537 0150792  -025228 | 0.185209  -057615 0.088738 0090513 0080675 -060893
original_firstorder_Madian_CT 0.000074 | 0165468 | -044481 0.005984 -176054 0.242682  -018353 0.206211 | -050604 0196139 | - 077381 0118941 0133114  0.131307 | 0.000661
original_firstorder_Minimum_cCT - 119408 | -017266 | -077688 -046801 0035268 0018484 -043670 0.136211 | -044242 | 0.098416 0029625 0.075280 0033003 -026579 -067252

Figure 13: Feature Loadings for 15 Principal Components

Also, we can illustrate the pairwise component score plots for the first components, with a 95% prediction
ellipse overlaid on each scatter plot, Figures, 14,15 and 16. Figures 14 and 16 show the plot of the first
components. The plots indicate regional trends in the plot of the first two components. Assuming
components 2 and 3 are from a bivariate normal distribution, the ellipse identifies extracted features 39
which is the original_glcm_Contrast_CT as a possible outlier.
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Figure 14:Plot of the First Two Component Scores
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Figure 15:Plot of the First and Third Component Scores
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Figure 16: Plot of the Second and Third Component Scores
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Since the main objective of the research was to end up with a smaller number of variables based on the
principal components chosen, a low loadings filter was used based on the five-number summary for each
variable in the principal components, a threshold value of 0.1 based on the maximum value of the loadings
was chosen and features with loadings below 0.1 removed. This finally resulted in 39 features out of the
110 in the original data set with the texture-based being the most important. A summary of the selected
features was, Table 1.

Reduction Principal Categories Number of Percentage
Technique Component variables selected
Intensity 1 2.6
PC1 Shape 0 0
Texture 16 41
Principal Intensity 2 5.2
Component PC2 Shape 4 10.3
Analysis Texture 7 17.9
(PCA) Intensity 1 2.6
PC3 Shape 3 7.7
Texture 5 12.8
Total 39 100

Table 1: Features Selected through PCA

b. Clustering Analysis
i. Hierarchical Clustering
Examining the agglomerative hierarchical approach on the extracted features from lung cancer data by

complete, average, and ward’s minimum-variance clustering methods, SAS software was used. The results
of cluster history are summarized in Figure 17. This displays the last 15 generations of the cluster history.

Cluster History

Number Approximate Cubic Nom

of Semipartial Expected | Clustering | Pseudo F Pseudo = Centroid
Clusters = Clusters Joined | Freq R-Square = R-Square R-Square Criterion Statistic  t-Squared | Distance @ Tie

15 | CL33 0B71 4 0.00m 974 942 8.85 245 80 0.2829

14 | OB16 | OB66 2 0.0008 873 937 939 258 02992

13 CL14 | CLze k] 0.0028 870 932 925 256 66 0.3099

12 | CL16 CcL19 26 0.0130 957 926 619 194 £59.6 0.3367

11 CL2s cL21 27 0.0148 942 919 394 158 850 03409

10  CL23 CcLig 33 0.0251 917 910 095 121 617 0.4049

9 | CL107 | 0B53 3 0.0021 915 900 196 133 0.4074

8 | 0B2 cL7 5 0.0028 812 887 305 148 46 04354

7 CLs CL15 9 0.0083 504 870 369 158 96 0.4478

6| CL9 0B39 4 0.0030 901 848 539 188 29 0.4628

5| CL6 CL10 37 0.0218 879 817 545 187 184 05723

4| CL5 CL13 46 0.0571 822 7 355 160 363 06497

3 CLn CL4 73 0.1853 637 695 28 92.0 90.6 07634

2 cu CL12 35 0.0846 552 527 0.85 131 853 0.8226

1 CL3 cL2 108 0.5521 .000 000 0.00 131 11174

Figure 17: Cluster History

A figure summary, Figure 17 of the information includes the number and names of the clusters formed in
the analysis. Each variable is identified either by a unique ID value or by CLn, where n corresponds to the
cluster number. Figure 17 provides additional details, such as the count of observations in each new cluster
and the semi-partial R square, which represents the reduction in variance resulting from merging two
clusters. The R square, a measure of the proportion of variance explained by the clusters, is also displayed.
For instance, when the data is divided into three clusters, the clusters account for approximately 63.7% of
the variance. The ERSq column presents an approximate expected value of R square, which is calculated
under the null hypothesis that the data exhibit a uniform distribution instead of distinct clusters. The next
three columns display the values of the Cubic Clustering Criterion (CCC), Pseudo F (PSF), and t" (PST2)
statistics which assist in estimating the optimal number of clusters. The final column in Figure 17 indicates
ties for minimum distance; a blank value implies no ties, whereas a tie suggests that the clusters could
change by altering the order of observations
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Interpretation of the CCC involves examining its values and patterns in relation to the number of clusters
considered. The CCC assesses the fit of a clustering solution by considering the within-cluster sum of
squares and the between-cluster sum of squares. It quantifies the trade-off between the compactness of
clusters (minimizing within-cluster variation) and the separation between clusters (maximizing between-
cluster variation). Since the CCC approach involves comparing the R-square obtained from a specific set
of clusters with the R-square that would be obtained by clustering a uniformly distributed set of points. By
examining the figure, it becomes apparent that there are two distinct maximum peaks observed at cluster
number 5 and cluster number 13. Based on this observation, it is recommended to select the number of
clusters between 5 and 13 which in this case is 5 clusters. To interpret the values of the pseudo t" statistic,
look down the column or look at the plot from right to left until you find the first value that is markedly larger
than the previous value, then move back up the column or to the right in the plot by one step in the cluster
history. For this case, good clustering levels are observed at 3 clusters.

Criteria for the Number of Clusters
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Figure 18: A plot of Statistics for Estimating the Number of Clusters

A dendrogram is a graphical representation of the hierarchy of clusters that shows the distance between
clusters and the order in which they were merged. The height of the branches on the dendrogram
represents the distance between the clusters. The closer the branches are to each other, the more similar
the clusters are. As the number of branches grows to the left from the root, the R square approaches 1; the
first three clusters (branches of the tree) account for over half of the variation (about 63.7%, from Figure
19). In other words, only three clusters are enough to explain over half of the variation.
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Cluster Analysis
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Figure 19: Dendrogram of Clusters versus R-Square Values

It was observed that cluster 1 started grouping with feature V,; and then V,,, as it was trying to cluster
features with the closest distance and the iteration continued till all the features were clustered. After
determining the number of clusters, further analysis was undertaken to understand each cluster’s
characteristics. This was realized by identifying variables in each cluster and identifying any patterns or
similarities. Through R software, the analysis progressed into using a variance filter on each cluster to
identify features within each cluster with the most similarity. A five number summary on the selected feature
matrix identified the 25™ percentile averaging as 0.01 as an adequate threshold which was to drop every
feature with a variance higher than 0.02. A summary of the selected features was as shown, Table 2. The
most salient features observed are texture-based.

Reduction | Clusters | Categories Number of Percentage
Technique Variables selected
Intensity 1 4.7
Clst1 Shape 2 9.5
Texture 1 4.7
Hierarchical Intensity 2 9.5
Clustering | (st2 Shape 1 4.7
Texture 0 0
Intensity 0 0
Clst3 Shape 0 0
Texture 14 67
Total 21 100

Table 2: Summary table of features selected through Hierarchical Clustering.
ii. K-means

For the k-means analysis, it is very important to find the optimal number of clusters

beforehand before doing an analysis of the data set in this case by previous PCA and hierarchical clustering,
the optimal number of clusters would be 3. When interpreting the output, it is important to consider the
following:

» Cluster Assignments: Look at the cluster assignment of each observation, typically represented by a

cluster ID or label. This indicates which cluster each observation belongs to. Analyze the distribution of
observations across clusters to understand how they are grouped together.
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Cluster Profiles: Examine the cluster profiles or characteristics. This includes analyzing the means or
centroids of the variables within each cluster. Look for variables with distinct values or large differences
in means between clusters. These variables contribute the most to the separation of clusters and can
help interpret the differences between them. The "within std" statistic helps understand the variability
of the variables within each cluster. A higher "within std" value indicates that the data points within the
cluster are more spread out or have greater variability for that particular variable. Conversely, a lower
"within std" value suggests that the data points within the cluster are more tightly clustered or have less
variability for that variable. Finally, RSQ/(1-RSQ) measure is often used as an indicator of how well a
variable differentiates or separates the clusters. It can be thought of as a measure of the proportion of
variation in the variable that is explained by the clustering. Higher values of "RSQ/(1-RSQ)" suggest
that the variable has a stronger discriminatory power and is more effective in distinguishing the cluster

Statistics for Variables

Variable Total STD | Within STD | R-Square = RSQ/(1-RSQ)
diagnostics_Image.original_Maxi 0.59199 0.27479 0.788572 3.729741
diagnostics_Mask.original_Volum 0.27570 0.23461 | 0.289435 0.407331
original_shape_Flatness_CT 0.21915 0,47105 = 0402140 0,672632
original_shape_LeastAxisLength_ 0.21915 0.17105 | 0402140 0.672632
original_shape_MajorAxisLength_ 0.57565 0.35447 | 0.627203 1.687474
original_shape_Maximum2DDiamete 0.57903 034872 = 0.644077 1.809597
VARS 0.56772 0.35587 = 0.614414 1,593453
VAR9 0.54166 0.37666 = 0.525488 1.107428
original_shape_Maximum3DDiamete 0.54265 037045 = 0.542688 1.186691
original_shape_MeshVolume_CT 0.56641 0.35413 0.616408 1.606939
original_shape_MinorAxisLength_ 0.57358 036747 | 0597225 1.482774
ariginal_shape_Sphericity_CT 0.57389 037803 | 0574204 1,348543

Figure 20: Statistics for Variables.

» Cluster Sizes: Assess the sizes of the clusters to understand their relative representation in the
data set. Larger clusters may indicate dominant groups, while smaller clusters might represent
more specific or unique patterns. Consider whether the cluster sizes align with your expectations
or if there are imbalances that might require further investigation. SAS grouped 50 features in
Cluster 1, 33 features in Cluster 2, and 25 features in Cluster 3. The table summary has a column
for the Root Mean Square Standardized Distance (RMSSTD) whereby a lower RMSSTD value
indicates that the observations within a cluster are more similar to each other, suggesting a tighter
and more cohesive cluster such as cluster 3. Conversely, a higher RMSSTD value implies that the
observations within a cluster are more dissimilar or scattered, indicating a less compact cluster
seen in cluster 1. The same interpretation applies for the other columns for Maximum Distance
from seed to observation and lastly for Distance between Cluster Centroids.

Cluster Summary
Maximum Distance
from Seed Radius Distance Between
Cluster = Frequency | RMS Std Deviation to Observation | Exceeded | Nearest Cluster | Cluster Centroids
1 50 0,3229 §,4360 3 6,6029
2 33 0.3157 5,3734 3 8.9507
3 25 0.2769 5.0471 1 6.6029

Figure 21: Cluster Summary.
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The most salient features observed were texture-based. A summary table of features selected under k-

Reduction Clusters | Categories Number of Percentage
Technique Variables Selected
Intensity 3 14
Clst1 Shape 0 0
Texture 0 0
Intensity 1 4.7
k-meansclustering | Clst2 Shape 1 4.7
Texture 1 4.7
Intensity 0 0
Clst3 Shape 1 4.7
Texture 14 67
Total 21 100

means clustering, Table 3.

Table 3: Selected Features in k-means clustering.

CONCLUSION

The conclusion of any research is to ascertain if the research questions asked at the beginning of the
research were successfully answered. This particular research was to find out if the number of variables
could be reduced from 110 to a lesser number. The conclusion that the first, second and third principal
components accounted for about 63.17%, 32.99% and 1.94% of the total variance respectively. The three
components provided a good summary of the data accounting for 98.10% of the total variance. This finally
resulted in 39 features out of the 110 in the original data set. A summary of the selected features was as
follows; principal component one had a total of 17 features whereby 1 was the intensity and 16 were texture-
based features, principal component two had a total of 13 features whereby 2 were shape, 4 intensity, and
7 texture-based features, and principal component three had a total of 9 features whereby 1 was the shape,
3 intensity, and 5 texture-based features. For clustering analysis, the agglomerative hierarchical clustering
algorithm clustered the features into 3 clusters, 21 features were selected whereby 3 were intensity, 3 were
shaped and 15 were texture-based features. K-means clustering algorithm with an initial cluster optimum
cluster of 3, selected 21 features out of which 4 were intensity, 1 shape, and 15 texture-based features.
Overall, all the analyses clearly outlined texture-based features as the most salient category of features.
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APPENDIX

Abbreviations

For the sake of readability, the following is a list of the main abbreviations used in this paper:
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CT Computed Tomography

PET PET Positron Emission Tomography
MRI Magnetic Resonance Imaging
DICOM Digital Imaging and Communications in Medicine
XML Extensible Mark-up Language
0S Overall Survival
PFS Progression-Free Survival
NSCLS Non-Small Cell Lung Cancer
PD-L1 Programmed Death Lligand 1
GLCM Gray Level Co-occurrence Matrix
GLRLM Gray Level Run Length Matrix
GLZLM Gray Level Zone Length Matrix
NGTDM Neighborhood Gray Tone Difference Matrix
MF Minkowski Functional
LDA Linear Discriminant Analysis
CCA Canonical Correlation Analysis
NMF Non-negative Matrix Factorization
FSA Feature Selection Algorithm
FEA Feature Extraction Algorithm
SAS CODE

FILENAME REFFILE ''home/u62120431/SAS JAN/corLung_Norm_mod.csV';

PROC IMPORT DATAFILE=REFFILE
DBMS=CSV
OUT=COR;
GETNAMES=YES,;

RUN;

PROC CONTENTS DATA=COR; RUN;

PROC PRINCOMP DATA=COR;
RUN;

proc princomp DATA=COR plots= score(ellipse hcomp=3);

run;

[*Hierachical clustering*/
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/* Perfoming Cluster Analysis */

ods graphics on;

proc cluster data=corrLung method = centroid ccc pseudo print=15
outtree=Tree plots=den(height=rsq);

*var canl-can3;

*var diagnostics_Image.original_Maxim--original_ngtdm_Strength_CT;

run;

proc tree data=Tree out=New nclusters=3 noprint;
height_rsq_;

run;

ods graphics off;

/* Retaining 9 clusters */

proc tree data=Tree noprint ncl=6 out=out;

*copy diagnostics_Image.original_Maxim--original_ngtdm_Strength_CT;
run;

proc print data=out;

run;
/*k-means clustering*/

/* Run the procedure */

proc fastclus data=corrLung out=output_data maxclusters=3; run;
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