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ABSTRACT  

Over the years, cancer has increasingly become a global health problem. For successful treatment, early 
detection and diagnosis are critical. Radiomics is the use of CT, PET, MRI, or Ultrasound imaging as input 
data, extracting features from image-based data, and then using machine learning for quantitative analysis 
and disease prediction. Feature reduction is critical as most quantitative features can have unnecessary 
redundant characteristics. This research aims to use machine learning techniques to reduce the number of 
dimensions, thereby rendering the data manageable. Radiomics steps include Imaging, segmentation, 
feature extraction, and analysis. For this research, large-scale CT data for Lung cancer diagnosis collected 
by scholars from Medical University in China is used to illustrate the dimension reduction techniques via 
SAS and Python. The data is available on The Cancer Imaging Archive (TCIA). PyRadiomics through 3D 
Slicer medical software was used to extract 110 features for 74 out of 130 patients. This research's 
proposed reduction and analysis techniques entailed; Principal Component Analysis and Clustering 
analysis (Hierarchical Clustering and K-means). To achieve results for the analyses SAS codes 
PRINCOMP, CLUSTER, and, FASTCLUS were used. These techniques were equally augmented by 
computing threshold values and using them to filter out the most salient features using the R program. For 
the PCA the eigenvalues indicated that three principal components provided a good summary of the data 
accounting for 98.10% of the total variance. The number of features selected was 39, of which 4 were 
intensity, 7 were shaped, and 28 were texture-based. For clustering analysis, the agglomerative hierarchical 
clustering algorithm clustered the features into 3 clusters, 21 features were selected whereby 3 were 
intensity, 3 were shaped and 15 were texture-based features. K-means clustering algorithm with an initial 
cluster optimum cluster of 3, selected 21 features, of which 4 were intensity, 1 shape, and 15 texture-based 
features. Overall, all the analyses clearly outlined texture-based features as the most salient category of 
features. 
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INTRODUCTION  

The field of radiomics has rapidly emerged as an important and influential area of contemporary cancer 
research. It offers a range of potential benefits, particularly in standardizing the analysis of complex imaging 
data, which ultimately allows for comparative studies across multiple patients and investigations [2]. 
Identifying key imaging biomarkers through radiomics can significantly improve the accuracy of cancer 
diagnosis and staging, which can have life-saving implications for patients. Furthermore, the quantitative 
information that radiomics extracts from images can offer valuable insights into the underlying biology of a 
tumor, providing clues as to its aggressiveness or how it might respond to different treatments [9]. This 
information, in turn, can be used to develop tailored treatment plans for patients, identifying those most 
likely to benefit from specific therapies and those at a greater risk for recurrence or progression. The non-
invasive nature of radiomics offers distinct advantages in reducing the need for invasive procedures and 
enhancing the efficiency of clinical trials [17]. Different types of non-invasive imaging include Molecular 
imaging which allows clinicians to not only see where a tumor is located in the body but also visualizes the 
expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes 
(e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy, 
Anatomical imaging enables the detection of a phenotypic(physical expression of DNA(Deoxyribonucleic 
Acid)) alteration that is sometimes, but not invariably, associated with cancer, and finally, functional imaging 
used to study tumor physiology, probe tumor molecular processes, and study tumor molecules and 
metabolites in vitro and in vivo. These attributes make radiomics an exciting and promising field poised to 
contribute significantly to advancing cancer research and treatment. Radiomics often encompasses the 
extraction and analysis of quantitative features from medical images, including but not limited to CT and 
PET scans. By evaluating tumor size, shape, texture, and density, radiomics offers a promising avenue for 
advancing personalized medicine [1]. CT and PET scans are widely employed in medical imaging 
techniques that play an essential role in diagnosing and monitoring cancer. While similar in that they are 
both non-invasive, the two methods differ in how they generate images. CT scans use X-rays to create 
detailed, cross-sectional images of internal organs and structures, which can help doctors identify the 
location and size of tumors. On the other hand, PET scans involve injecting a small amount of radioactive 
material into the body, which is then used to produce images that reveal the functional activity of tissues 
(John Hopkins Medicine, 2021). Doctors can analyze these images to assess how cancer cells metabolize 
nutrients, grow, and spread. Together, these two imaging techniques provide a comprehensive way to 
monitor cancer without requiring invasive procedures. One critical step in the radiomics workflow is feature 
extraction, which involves identifying and quantifying the various characteristics of tumors. To accomplish 
this, segmentation is typically performed to isolate the tumor region, and then multiple methods are used 
to extract features based on tumor intensity, texture, and shape [18]. Dimension reduction techniques, such 
as PCA and clustering, are often used to help process and analyze these features. These techniques help 
to simplify the data by reducing the number of variables and identifying key patterns. More advanced 
methods have been developed for dimension reduction, such as contrastive Principal Component Analysis 
(cPCA) and Joint and Individual Variation Explained (JIVE). The cPCA approach can identify low-
dimensional structures unique to a particular data set by comparing them to a reference data set. On the 
other hand, JIVE decomposes variation across multiple data types into joint and individual components 
[13]. Both methods can help analyze complex medical imaging data. Some of the software tools used for 
feature extraction include PyRadiomics, 3D Slicer, LIFEx, IBEX, QIFE, and RayPlus. Each device has 
strengths and limitations, so researchers must carefully consider which best meets their needs. 

Overall, the implications of radiomics as a field of study are substantial, particularly as they pertain to 
diagnosing, treating, and monitoring cancer. By utilizing quantitative data extraction methods from medical 
images, radiomics can allow researchers to discern patterns in tumor biology that might otherwise remain 
obscured. This may help shed light on various aspects of a tumor’s behavior, such as its aggressiveness 
or responsiveness to different treatment modalities. As such, radiomics has the potential to contribute 
significantly to our overall understanding of cancer and to facilitate the development of more effective and 
personalized therapies. 

The goal of studying cancer is to develop safe and effective methods to prevent, detect, diagnose, treat, 
and, ultimately, cure the collections of diseases we call cancer. The better we understand this disease, the 
more progress we will make toward diminishing the tremendous human and economic tolls of cancer. 
Recent advances in medical imaging, such as radiomics, have shown great potential in this regard. 
Radiomics allows for the extraction and analysis of large data sets from imaging techniques such as CT 
and PET scans. This, in turn, provides a more comprehensive understanding of tumor growth and 
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development. As such, using radiomics in cancer detection and analysis represents a promising avenue for 
future research, potentially leading to significant improvements in diagnosis, treatment, and patient 
outcomes. The process may however turn out to be very hectic given the features obtained from radiological 
images are so immense. Therefore, there is a dire need to have the data matrix in its simplest form to give 
way for prognosis, therapy, and any other objective such kinds of research would intend to accomplish. To 
accomplish this, the research intended to answer the following questions;  

RQ 1. Is there a way to reduce the number of variables from 110 to a lesser number that would make the 
process of working with the data simple? 

RQ 2. Is any of the feature categories most significant for our analysis? 

Overall, the ultimate intention of the analysis would be to generate a data matrix with fewer and very 
significant features that can be used in the future as new predictor variables to do predictions on the Lung 
Cancer data. 

RESEARCH METHODOLOGY 

The techniques used to address the research question included data description and analysis techniques. 

DATA DESCRIPTION 

The data was collected by Huiping Han, Funing Yang, and Rui Wang of Harbin from the Medical University 
in Harbin in China [18]. This data is available on The Cancer Imaging Archive (TCIA). The workflow of 
radiomics includes; medical imaging, segmentation of the tumor region, feature extraction based on 
intensity, texture, and shape [11], finally, analysis of the features, Figure 1. 
 

 
Figure 1: The Radiomics Workflow 

Source: https://wiki.cancerimagingarchive.net 
 
This dataset consists of CT DICOM images of 130 patients with lung cancer. The XML Annotation files 
which include the location of the tumor were provided by five academic radiologists with high expertise in 
lung cancer. To visualize the annotation boxes on the tumor of the DICOM images [11], python codes 
through the terminal were used to pull out the images and put the location of tumor in a box, Figure 2. 
 

https://wiki.cancerimagingarchive.net/
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Figure 2:Visualization of the annotation box on the CT-DICOM images. 

Source: https://wiki.cancerimagingarchive.net 
 
The process of data acquisition is a outlined; 
 
a) Software tools for extracting features: 
 
There are massive software tools available for extracting tumor features from medical images. Some 
standard options include PyRadiomics, 3D Slicer, LIFEx, IBEX, QIFE, and RayPlus. Each of the devices 
has its drawbacks and advantages. It is therefore at the researcher’s discretion to identify which best aligns 
with his intended objectives. For example, PyRadiomics is a flexible open-source platform capable of 
extracting a wide array of features, but it requires some programming knowledge in Python [9]. 3D Slicer, 
on the other hand, is a free and open-source application designed to facilitate the development of new 
functionality in 3D Slicer extensions [5], Figure 3. LIFEx is another option that offers a user-friendly interface 
and powerful features for tumor segmentation, feature extraction, and radiomics analysis. Ultimately, the 
choice of software tool depends on the researcher’s goals and expertise. 
 

 

Figure 3:Loading Lung-CT-PET Images. 

Source: https://wiki.cancerimagingarchive.net 
 
b) Extracting features from CT medical images of lung cancer. 
 
Features that are extracted can be generally classified into three main categories [2]: First-order radiomics 
which has Intensity-based features and Shape based features, second-order radiomics which has Texture-
based features extracted based on different descriptive matrices (Gray level co-occurrence matrix (GLCM), 
Gray level run length matrix (GLRLM), Neighborhood gray-tone difference matrix (NGTDM), Gray level 
zone length matrix (GLZLM), Figure 4. 
 

https://wiki.cancerimagingarchive.net/
https://wiki.cancerimagingarchive.net/
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Figure 4: Texture Features (Parekh and Jacobs (2016)). 

The last category, higher-order radiomics applies the use of filters to extract features from images through 
Wavelet which decomposes tumor images into different frequency domains (such as horizontal, vertical, 
and diagonal) and then extracts the tumor shape, intensity, texture, and other information. Fourier features 
capture gradient information while Minkowski Functional (MF) is a common higher-order feature extractor 
considering the patterns of pixels with intensities above a predefined threshold. 
 

 

Figure 5: Categories of Features 

Source: https://wiki.cancerimagingarchive.net. 

 
c) Extraction process: Out of the 130 patients under consideration, the extraction of features was done on 
74 patients because the provided annotation files did not work for all 130 patients. A 3D slicer was used to 
do the segmentation process as indicated by the yellow circle around the tumor, Figure 6. 

 

Figure 6: A 3D slicer segmenting the Tumor 

The PyRadiomics package is available in the 3D slicer was then used to extract features from the tumor 
segmentations for all patients, Figure 7. 
 

https://wiki.cancerimagingarchive.net/
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Figure 7: PyRadiomics package extracting features. 

 

d) Resulting Data Matrix 
 
After the whole process of extraction, an unsupervised data matrix was obtained with a dimension of 74 by 
110. Each row represented the patient, and each column was for the extracted feature depending on the 
categories earlier discussed. The 110 features acquired were quantitative variables. Finally, the data matrix 
was normalized according to the min-max normalization approach as it is robust to any feature distributions 
and leads to making unitless measurements for each feature [11]. The features on the columns were 
renamed since the original names were too long to enable data visualization through graphs.The column 
names range from diagnostics_Image.original_Maximum_CT,…, original_ngtdm_Strength_CT were 
renamed to 𝑉1, … , 𝑉110. Since the resulting matrix has 74 rows by 110 columns, most reduction techniques 
algorithms such as PCA, hierarchical and even k-means clustering cannot handle such a data format 
successfully, it is for this reason that the normalized data set was transformed into a square correlation 
matrix such that the new dimension was 108 by 108. It is after this transformation the data matrix was finally 
ready for applying dimension reduction techniques. 

Analysis Techniques 

As dictated by the research objective, dimension-reduction techniques are applied to render the data more 
manageable. These approaches included feature extraction and selection [16]. Feature extraction 
techniques are further categorized into; supervised and unsupervised learning. Supervised learning is a 
technique that considers the relation of features with class labels and features are selected mostly based 
on their contribution to distinguish classes, while, unsupervised learning does not consider the class labels 
and its objective is to remove redundant features [3]. Because the obtained data matrix is unsupervised, 
therefore a further linear exploration into the classification of unsupervised learning techniques Principal 
Component Analysis (PCA) was done to transform the original data into a new set of features that retain 
most of the original dataset’s information. Selecting the appropriate dimension reduction technique is a 
function of the specific dataset and research objectives. Employing these techniques allows researchers to 
improve computational efficiency, avoid the curse of dimensionality, and pinpoint the most salient features 
in the dataset. 

Reduction Technique in Radiomics 

1. Principal Component Analysis (PCA) 

A feature transformation technique that reduces the correlation between sampled variables [1 4] say 
𝑥1, 𝑥2, … , 𝑥𝑝. Using an orthogonal transformation, PCA generates new variables referred to as principal 

components 𝑃𝑐1, 𝑃𝑐2, … , 𝑃𝑐𝑚 that retains many of the properties of the original variables given 𝑚 < 𝑝. This 
approach enables the creation of various features through linear combinations of the main components, 
which maximize variance and improve predictability [6], Figure 8. 
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Figure 8: Principal Component Analysis 
Source: (Rencher and Christensen (2012)). 
 
There are five main steps to conducting PCA: 
 
(a) Standardize the data: Calculate the mean of all the dimensions of the data set, except the labels. Scale 
the data so that each variable contributes equally to the analysis. In the equation given below, z is the 
scaled value, x is the initial, and μ and σ are the mean and standard deviation, respectively. 

𝑍 =
𝑥 − µ

𝜎
 , 

 
(b) Compute the covariance matrix: Identifying highly correlated variables is a crucial step in data analysis. 
These variables often contain redundant information, which can hinder the accuracy of statistical models 
and analyses. Utilizing a covariance matrix allows for the examination of correlations between all possible 
variable pairs within a given data set and 
facilitates the removal of any superfluous variables. 
 

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥)𝑛

𝑖=1 (𝑦𝑖 − 𝑦), 

 
where x is the mean of the predictor variables, y is the mean of the response variables, n is the sample size 
and i refers to each observation. 
Basing the PCA on the covariance matrix would however lead to variables with large variances dominating 
the most important principal components. Also, changing the units of measurement (e.g., from ounces to 
pounds, or from feet to inches) would change the PCA solution. For this reason, it is often preferred to base 
the PCA solution on the eigenvectors and eigenvalues of the correlation matrix rather than the covariance 
matrix. This is equivalent to initially standardizing all variables and then performing the PCA is based on a 
correlation matrix [14]. 
 
(c) Calculate the eigenvectors and eigenvalues: Using concepts originating from linear algebra enables 
determining principal components stemming from the covariance matrix. An eigenvalue is a scalar that is 
used to transform (stretch) an eigenvector. The relevant equation is as follows: 
      𝐴𝑣 = λ𝑣, 
where A is the square covariance matrix, v is an eigenvector, λ is a scalar which is the eigenvalue 
associated with the eigenvector of A matrix. A solution of this equation would yield λ eigenvalue: 

det(𝐴 − λІ) = 0, 

where det is the determinant, A is the covariance matrix, 𝜆І is a scalar multiplying an identity matrix. 
 
(d) Choose k eigenvectors with the largest eigenvalues: Sort the eigenvalues corresponding to eigenvalues 
from highest to lowest. In case the goal is to decrease the dimension to two, take the first two eigenvectors 
which are corresponding to the first two highest eigenvalues. 
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(e) Remodel the data: The final step uses the information from the eigenvectors of the covariance matrix to 
reorient data from the original axes to the ones that are now represented by the principal components: 

𝑦 = 𝑊𝑇𝑋 

where 𝑊𝑇 is the transpose of the matrix W, X is the eigenvector matrix and y is the transformed data set. 
Assuming our set of variables in the original data is 𝑥1, 𝑥2, … , 𝑥𝑝 after transformation the first principal 

component will be 𝑍1 = 𝑎11𝑥1 + 𝑎21𝑥2 + ⋯ + 𝑎𝑝1𝑥𝑝, where 𝑎11, 𝑎21, … , 𝑎𝑝1 are the loadings of the first 

principal component. As earlier illustrated the loadings are values of the eigenvector of the covariance 
matrix. Since the eigenvalues are variances of the principal components, we can speak of “the proportion 

of variance explained” by the first k components [11]: proportion of variance  
𝜆1+𝜆2+⋯+𝜆𝐾

𝜆1+𝜆2+⋯+𝜆𝑃
, where 𝜆1 refers to 

the variation explained by the first component, and so on [14]. 
 
To be able to come up with these principal components according to [14]; 

i. We can retain the first m components sufficient to explain a specified percentage (70% 80% 90% 
of the total variance of the original variables). 

ii. Keep components whose eigenvalues are at least ∑
𝜆𝑖

𝑝
 which is the average eigenvalue and also 

the average sample variance of the original variables, where 𝜆𝑖  𝑖𝑠 a constant λ multiplying the 
number of factors 𝑖 and 𝑝 is the total number of observations in the data set. 

iii. Use a scree plot of the eigenvalues 𝜆𝑖, where λ is a constant and 𝑖 is the number of factors. It 
always displays a downward curve. The point where the slope of the curve is leveling off (the elbow) 
indicates the number of factors that should be generated by the analysis as, Figure 10. 

 
Figure 10: Scree Plot 
Source: (Rencher and Christensen (2012)). 
 
2. Clustering Analysis: It separates individual observations into groups based on the values for the p 

variables measured on each individual. 
 

a) Hierarchical Clustering 
 

Agglomerative hierarchical clustering begins with n clusters, each containing a single object. At each stage, 
the two clusters that are “closest” are merged. As the stages iterate, there are n clusters, then n-1, and so 
on. By the last stage, there is 1 cluster containing all n objects, Figure 14. 
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Figure 8: Hierarchical Clustering 

Source: https://www.slideserve.com/lenci/partitional-clustering. 
 
There are four common types of linkage: complete, average, single (Ward’s), and centroid. A summary of 
these linkages is as follows [7 and 11]; 
 
• Complete: In this approach, all pairwise dissimilarities between the observations in the clusters are 
computed and the maximum one will be recorded [11]. 
• Single (Ward’s): In this method, all pairwise dissimilarities between the clusters are computed and the 
minimum one will be recorded [11]. 
• Average: In this approach, all pairwise dissimilarities between the clusters are computed and the average 
of dissimilarities will be recorded. 
• Centroid: In this technique, the dissimilarities between the mean vector of for cluster. A (centroid) and the 
mean vector for cluster B (centroid) are computed [11].  
 
Steps in the agglomerative hierarchical clustering algorithm for grouping N objects according to [22]; 
 

➢ Start with N clusters, each containing a single entity and an N x N symmetric matrix of distances 
(or similarities) 𝐷 = 𝑑𝑖𝑘 

➢ Search the distance matrix for the nearest (most similar) pair of clusters. Let the distance between 
“most similar” clusters U and V be 𝑑𝑢𝑣 

➢ Merge clusters U and V. Label the newly formed cluster (UV). Update the entries in the distance 
matrix by, 

• deleting the rows and columns corresponding to clusters U and V and 

• adding a row and column gives the distances between cluster (UV) and the remaining 
clusters. 

➢ Repeat steps 2 and 3 a total of N −1 times. (All objects will be in a single cluster after the algorithm 
terminates.) Record the identity of clusters that are merged and the levels (distances or similarities) 
at which the mergers take place. 

 
b) K-means 

 
The k-means algorithm [10] begins by randomly allocating the n objects into k clusters (or randomly 
specifying k centroids). One at a time, the algorithm moves each object to the cluster whose centroid is 
closest to it, using the measure of closeness. When an object is moved, the centroids are immediately 
recalculated for the cluster gaining the object and the clutter losing it. The method repeatedly cycles through 
the objects until no reassignments of objects take place. The final clustering result will somewhat depend 
on the initial configuration 
of the objects. 
The k-means clustering results from a fundamental mathematical idea; Assume that 𝐶1, 𝐶2, … , 𝐶𝐾 represents 

sets including the observations clustered into 𝐾 subgroups of the original data. These sets meet two 
properties [7 and 11]; 

a) 𝐶1𝑈 𝐶2 𝑈, … , 𝑈𝐶𝐾′ = (1, … , 𝑛). It means the union of all clusters leads to the whole observation [11]. 

https://www.slideserve.com/lenci/partitional-clustering
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b) 𝐶𝑘𝑛 𝐶𝑘 =  ∅ for all 𝑘 ≠ 𝑘′. It means clusters are pairwise and mutually exclusive [11]. 
 

The algorithm behind k-means clustering techniques [11] includes; 
a) Randomly assign a number to each observation from 1 to 𝐾. This calls for an initial clustering of 

the observations [11]. 
b) Repeat the following process till the cluster assignments stop changing [11]. 

i. For each of the 𝐾 clusters, calculate the 𝑘𝑡ℎ cluster centroid which is the vector of the p 

feature means for the observations in the 𝑘𝑡ℎ cluster [11]. 
ii. Use Euclidean distance for assigning each observation to the nearest Centroid [11]. 

 
 

 

 

Figure 9: K-Means Clustering 

Source: https://www.slideserve.com/lenci/partitional-clustering. 
 

RESULTS FOR ANALYSES 

a. Principal Component Analysis 

With the data set on 108 features extracted from tumors of CT images of lung cancer patients, an illustration 
of how the reduction techniques were executed is shown. This particular analysis entailed both the use of 
SAS and partly R “softwares”. The data was standardized through SAS such that each variable had a mean 
of zero and a standard deviation of one. Principal components are computed from the correlation matrix, 
so the total variance is equal to the number of variables which is 108, Figure 10. 

https://www.slideserve.com/lenci/partitional-clustering
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Figure 10: Number of Observations and Simple Statistics 

SAS software computes the principal components from the correlation matrix. By using eigenvalues as a 
way of selecting principal components, a summary table generated by the software informed the conclusion 
that the first, second and third principal components accounted for about 63.17%, 32.99% and 1.94% of 
the total variance respectively. Note that the sum of the eigenvalues is the total variance. The eigenvalues 
indicated that the first three components provide a good summary of the data accounting for 98.10% of the 
total variance while the rest of the components only account for less than 1.5% each, Figure 11. 
 

 

Figure 11: Principal Component Analysis of the first 26 features 

A graphical representation of how many principal components should be retained to 
summarize our data was used. The graph is a scree plot of the eigenvalues 𝜆𝑖 against factor 𝑖. It always 
displays a downward curve. The point where the slope of the curve is clearly leveling off (the elbow) 
indicates the number of factors that should be generated by the analysis. The first three eigenvalues form 
a steep curve, followed by a bend and then a straight-line trend with a shallow slope [18]. The 
recommendation is to retain those eigenvalues in the steep curve before the first one on the straight line 
[11]. The scree plot confirmed an earlier conclusion made by the eigenvalues that 3 principal components 
were enough to explain variations from the original data which was about 98.10% in total. Additionally, the 
variance explained plot confirms that three components explain enough number of variations from the 
original data which is about 98.10% in total, Figure 12. 



12 

 

 

Figure 12: Scree Plot 

To clearly specify which variables contributed most to the principal components, from the eigenvector’s 
matrix, the first principal component Prin1 was written as a linear combination of the original variables, 
Figure 13. 
 

𝑃𝑟𝑖𝑛1 = 0.114850𝑣1 − 0.046767𝑣2 + ⋯ − 0.014141𝑣110 
The second principal component of Prin2 was, 

𝑃𝑟𝑖𝑛2 = −0.040924𝑣1 − 0.122847𝑣2 + ⋯ − 0.162658𝑣110 
Finally, the third principal component of Prin3 was, 

𝑃𝑟𝑖𝑛3 = −0.121797𝑣1 − 0.152864𝑣2 + ⋯ + 0.098449𝑣110 
 

 
 

Figure 13: Feature Loadings for 15 Principal Components 

Also, we can illustrate the pairwise component score plots for the first components, with a 95% prediction 
ellipse overlaid on each scatter plot, Figures, 14,15 and 16. Figures 14 and 16 show the plot of the first 
components. The plots indicate regional trends in the plot of the first two components. Assuming 
components 2 and 3 are from a bivariate normal distribution, the ellipse identifies extracted features 39 
which is the original_glcm_Contrast_CT as a possible outlier. 
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Figure 14:Plot of the First Two Component Scores 

 

 

Figure 15:Plot of the First and Third Component Scores 

 

 

Figure 16: Plot of the Second and Third Component Scores 
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Since the main objective of the research was to end up with a smaller number of variables based on the 
principal components chosen, a low loadings filter was used based on the five-number summary for each 
variable in the principal components, a threshold value of 0.1 based on the maximum value of the loadings 
was chosen and features with loadings below 0.1 removed. This finally resulted in 39 features out of the 
110 in the original data set with the texture-based being the most important. A summary of the selected 
features was, Table 1.  
 

 

 

Table 1: Features Selected through PCA 

 
b. Clustering Analysis 

 
i. Hierarchical Clustering 

 
Examining the agglomerative hierarchical approach on the extracted features from lung cancer data by 
complete, average, and ward’s minimum-variance clustering methods, SAS software was used. The results 
of cluster history are summarized in Figure 17. This displays the last 15 generations of the cluster history. 
 

 

Figure 17: Cluster History 

 
A figure summary, Figure 17 of the information includes the number and names of the clusters formed in 
the analysis. Each variable is identified either by a unique ID value or by CLn, where n corresponds to the 
cluster number. Figure 17 provides additional details, such as the count of observations in each new cluster 
and the semi-partial R square, which represents the reduction in variance resulting from merging two 
clusters. The R square, a measure of the proportion of variance explained by the clusters, is also displayed. 
For instance, when the data is divided into three clusters, the clusters account for approximately 63.7% of 
the variance. The ERSq column presents an approximate expected value of R square, which is calculated 
under the null hypothesis that the data exhibit a uniform distribution instead of distinct clusters. The next 
three columns display the values of the Cubic Clustering Criterion (CCC), Pseudo F (PSF), and 𝑡" (PST2) 
statistics which assist in estimating the optimal number of clusters. The final column in Figure 17 indicates 
ties for minimum distance; a blank value implies no ties, whereas a tie suggests that the clusters could 
change by altering the order of observations 
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Interpretation of the CCC involves examining its values and patterns in relation to the number of clusters 
considered. The CCC assesses the fit of a clustering solution by considering the within-cluster sum of 
squares and the between-cluster sum of squares. It quantifies the trade-off between the compactness of 
clusters (minimizing within-cluster variation) and the separation between clusters (maximizing between-
cluster variation). Since the CCC approach involves comparing the R-square obtained from a specific set 
of clusters with the R-square that would be obtained by clustering a uniformly distributed set of points. By 
examining the figure, it becomes apparent that there are two distinct maximum peaks observed at cluster 
number 5 and cluster number 13. Based on this observation, it is recommended to select the number of 
clusters between 5 and 13 which in this case is 5 clusters. To interpret the values of the pseudo 𝑡" statistic, 
look down the column or look at the plot from right to left until you find the first value that is markedly larger 
than the previous value, then move back up the column or to the right in the plot by one step in the cluster 
history. For this case, good clustering levels are observed at 3 clusters. 

 
 

Figure 18: A plot of Statistics for Estimating the Number of Clusters 

 
A dendrogram is a graphical representation of the hierarchy of clusters that shows the distance between 
clusters and the order in which they were merged. The height of the branches on the dendrogram 
represents the distance between the clusters. The closer the branches are to each other, the more similar 
the clusters are. As the number of branches grows to the left from the root, the R square approaches 1; the 
first three clusters (branches of the tree) account for over half of the variation (about 63.7%, from Figure 
19). In other words, only three clusters are enough to explain over half of the variation. 
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Figure 19: Dendrogram of Clusters versus R-Square Values 

 
It was observed that cluster 1 started grouping with feature 𝑉93 and then 𝑉104 as it was trying to cluster 
features with the closest distance and the iteration continued till all the features were clustered. After 
determining the number of clusters, further analysis was undertaken to understand each cluster’s 
characteristics. This was realized by identifying variables in each cluster and identifying any patterns or 
similarities. Through R software, the analysis progressed into using a variance filter on each cluster to 
identify features within each cluster with the most similarity. A five number summary on the selected feature 
matrix identified the 25th percentile averaging as 0.01 as an adequate threshold which was to drop every 
feature with a variance higher than 0.02. A summary of the selected features was as shown, Table 2. The 
most salient features observed are texture-based. 

 
Table 2: Summary table of features selected through Hierarchical Clustering. 
 

ii. K-means 
 
For the k-means analysis, it is very important to find the optimal number of clusters 
beforehand before doing an analysis of the data set in this case by previous PCA and hierarchical clustering, 
the optimal number of clusters would be 3. When interpreting the output, it is important to consider the 
following: 
 
➢ Cluster Assignments: Look at the cluster assignment of each observation, typically represented by a 

cluster ID or label. This indicates which cluster each observation belongs to. Analyze the distribution of 
observations across clusters to understand how they are grouped together. 
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➢ Cluster Profiles: Examine the cluster profiles or characteristics. This includes analyzing the means or 
centroids of the variables within each cluster. Look for variables with distinct values or large differences 
in means between clusters. These variables contribute the most to the separation of clusters and can 
help interpret the differences between them. The "within std" statistic helps understand the variability 
of the variables within each cluster. A higher "within std" value indicates that the data points within the 
cluster are more spread out or have greater variability for that particular variable. Conversely, a lower 
"within std" value suggests that the data points within the cluster are more tightly clustered or have less 
variability for that variable. Finally, RSQ/(1-RSQ) measure is often used as an indicator of how well a 
variable differentiates or separates the clusters. It can be thought of as a measure of the proportion of 
variation in the variable that is explained by the clustering. Higher values of "RSQ/(1-RSQ)" suggest 
that the variable has a stronger discriminatory power and is more effective in distinguishing the cluster 

 

 

Figure 20: Statistics for Variables. 

➢ Cluster Sizes: Assess the sizes of the clusters to understand their relative representation in the 
data set. Larger clusters may indicate dominant groups, while smaller clusters might represent 
more specific or unique patterns. Consider whether the cluster sizes align with your expectations 
or if there are imbalances that might require further investigation. SAS grouped 50 features in 
Cluster 1, 33 features in Cluster 2, and 25 features in Cluster 3. The table summary has a column 
for the Root Mean Square Standardized Distance (RMSSTD) whereby a lower RMSSTD value 
indicates that the observations within a cluster are more similar to each other, suggesting a tighter 
and more cohesive cluster such as cluster 3. Conversely, a higher RMSSTD value implies that the 
observations within a cluster are more dissimilar or scattered, indicating a less compact cluster 
seen in cluster 1.  The same interpretation applies for the other columns for Maximum Distance 
from seed to observation and lastly for Distance between Cluster Centroids. 

 

 

Figure 21: Cluster Summary. 
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The most salient features observed were texture-based. A summary table of features selected under k-

means clustering, Table 3.  

Table 3: Selected Features in k-means clustering. 

CONCLUSION 

The conclusion of any research is to ascertain if the research questions asked at the beginning of the 
research were successfully answered. This particular research was to find out if the number of variables 
could be reduced from 110 to a lesser number. The conclusion that the first, second and third principal 
components accounted for about 63.17%, 32.99% and 1.94% of the total variance respectively. The three 
components provided a good summary of the data accounting for 98.10% of the total variance. This finally 
resulted in 39 features out of the 110 in the original data set. A summary of the selected features was as 
follows; principal component one had a total of 17 features whereby 1 was the intensity and 16 were texture-
based features, principal component two had a total of 13 features whereby 2 were shape, 4 intensity, and 
7 texture-based features, and principal component three had a total of 9 features whereby 1 was the shape, 
3 intensity, and 5 texture-based features. For clustering analysis, the agglomerative hierarchical clustering 
algorithm clustered the features into 3 clusters, 21 features were selected whereby 3 were intensity, 3 were 
shaped and 15 were texture-based features. K-means clustering algorithm with an initial cluster optimum 
cluster of 3, selected 21 features out of which 4 were intensity, 1 shape, and 15 texture-based features. 
Overall, all the analyses clearly outlined texture-based features as the most salient category of features. 
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APPENDIX 

Abbreviations 

For the sake of readability, the following is a list of the main abbreviations used in this paper: 

mailto:KIRETA@etsu.edu
mailto:zahedm@etsu.edu
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CT  Computed Tomography 

PET   PET Positron Emission Tomography 

MRI  Magnetic Resonance Imaging 

DICOM  Digital Imaging and Communications in Medicine 

XML  Extensible Mark-up Language 

OS  Overall Survival 

PFS  Progression-Free Survival 

NSCLS  Non-Small Cell Lung Cancer 

PD-L1  Programmed Death L1igand 1 

GLCM  Gray Level Co-occurrence Matrix 

GLRLM  Gray Level Run Length Matrix 

GLZLM  Gray Level Zone Length Matrix 

NGTDM  Neighborhood Gray Tone Difference Matrix 

MF  Minkowski Functional 

LDA  Linear Discriminant Analysis 

CCA  Canonical Correlation Analysis 

NMF  Non-negative Matrix Factorization 

FSA  Feature Selection Algorithm 

FEA  Feature Extraction Algorithm 

 

SAS CODE 

FILENAME REFFILE '/home/u62120431/SAS JAN/corLung_Norm_mod.csv'; 

 

PROC IMPORT DATAFILE=REFFILE 

 DBMS=CSV 

 OUT=COR; 

 GETNAMES=YES; 

RUN; 

 

PROC CONTENTS DATA=COR; RUN; 

 

PROC PRINCOMP DATA=COR; 

RUN; 

 

proc princomp DATA=COR plots= score(ellipse ncomp=3); 

run; 

 

/*Hierachical clustering*/ 
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/* Perfoming Cluster Analysis */ 

ods graphics on; 

proc cluster data=corrLung method = centroid ccc pseudo  print=15  

outtree=Tree plots=den(height=rsq); 

*var can1-can3; 

*var diagnostics_Image.original_Maxim--original_ngtdm_Strength_CT; 

run; 

 

proc tree data=Tree out=New nclusters=3 noprint; 

height_rsq_; 

run; 

 

ods graphics off; 

/* Retaining 9 clusters */ 

proc tree data=Tree noprint ncl=6 out=out; 

*copy diagnostics_Image.original_Maxim--original_ngtdm_Strength_CT; 

run; 

proc print data=out; 

run;  

 

/*k-means clustering*/ 

/* Run the  procedure */ 

proc fastclus data=corrLung out=output_data maxclusters=3; run; 


