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ABSTRACT 

Binary logistic models for credit risk and direct marketing campaigns are generally built on 

large samples and with many classification predictors. It is normal and prudent to bin 

(combine) the levels of a classification predictor to achieve a smaller number of binned 

levels. This reduces parameters, eliminates low frequency levels, and may achieve desirable 

relationships versus the target, such as monotonicity between an ordered binned predictor 

and the sample odds of the target. Although controversial, continuous numeric predictors 

are also binned by some modelers. This paper presents two SAS® macros that perform 

binning. %NOD_BIN applies to nominal predictors. The second, %ORDINAL_BIN, applies to 

ordered predictors. Both methods, according to the modeler’s option, maximize information 

value or minimize entropy when combining, and they handle zero-bins without recourse to 

adding 0.5 to the bin. %ORDINAL_BIN provides optimal results as follows: given k denoting 

a number of bins, the macro is guaranteed to find: (a) the optimal IV or entropy binning 

and (b), if it exists, the optimal monotonic binning. With limitations, these macros can be 

applied to continuous numeric predictors as well. This presentation uses Base SAS and 

SAS/STAT®. 

INTRODUCTION 

Let a classification variable X have L levels (i.e. distinct values) where L is typically ≤ 20. As 

a classification variable, X can be character or numeric and X might be nominal or ordered. 

It is assumed that X is being considered as a predictor for a binary logistic regression model 

with target Y. 

The goal of binning a predictor X with respect to a binary target Y is to simplify X by 

combining some of the levels while maintaining most of the power of X to predict Y. 

For example, suppose X has levels A, B, C, D. After one step the levels of the binned X 

might become {A,B}, {C}, {D}. The first bin contains the levels A and B. After another step 

the binned X might become {A,B,D}, {C}. Here, the first bin contains 3 levels A, B, and D. 

Let k satisfy 2 ≤ k ≤ L. A k-bin solution is an eligible assignment (see below) of the L 

levels into k bins (each bin has at least one level). If the k-binned X has almost as much 

power in predicting Y (as measured by information value or entropy, see the discussion 

below) as the unbinned X, then the binning was successful in simplifying X.1 

An eligible assignment of levels to bins is defined in terms of the ordering of the levels of 

X. There are two alternatives:  

(i) Solutions with ordered bins: the levels within a bin are adjacent (no gaps) with 

respect to the ordering of X 

(ii) Solutions with unrestricted bins: the levels within a bin are unrestricted with respect 

to any ordering of X 

 
1 Two approaches of how to use a k-binned X in a model are: (1) as a group variable (via a CLASS 
variable) or (2) as a weight of evidence coded variable. The pros and cons of (1) and (2) are not 
discussed in this paper. 
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For example: If X has 4 ordered levels A, B, C, D, then the 2-bin solutions with ordered bins 

are {A} {B C D}, {A B} {C, D}, and {A B C} {D}. In contrast, a 2-bin solution which is not 

ordered is {A C} {B D}. 

To preserve the power of binned X to predict Y, the binning is performed using a binning 

algorithm. The purpose of such an algorithm is to conduct the binning process so as to 

optimize a measure of the power of the binned X to predict Y.  

Two such measures of power are Entropy and Information Value (IV). 

TWO MEASURES OF POWER OF BINNED X TO PREDICT Y 

Entropy 

Assume X has been binned to create variable X_binned. The X-saturated 2 logistic model for 

X_binned is: 

PROC LOGISTIC; CLASS X_binned; MODEL Y = X_binned; 

If there are k bins (k ≥ 2), the formula for Log-Likelihood for X-saturated model with 

k-levels is given by: 

Log(L) = ∑j=1 k Gj * log(Gj / (Gj + Bj)) + Bj * log(Bj / (Gj + Bi)) 

 where Gj = count of Y=1 for cell j and Bj = count of Y=0 for cell j and 1 ≤ j ≤ k 

Entropy with base e is given by this formula: 

Entropy = - (Log-Likelihood) / n 

where log-likelihood is from the X-saturated Logistic Model and n is the sample size. 

Whenever two levels of X_binned are combined, the entropy is non-decreasing. The goal of 

an algorithm with the objective function of entropy is to minimize the increase of entropy as 

the binning proceeds. 

Equivalent to entropy is -2*Log(L), with Log(L) as defined above. In all reports, macros 

%NOD_BIN and %ORDINAL_BIN display -2*Log(L) rather than entropy. See the 

discussion below about these macros. 

Information Value 

Information Value is most easily explained by giving an example. Simply work through the 

columns from left to right in Table 1 to obtain the IV of X with target Y. The same 

calculations apply to any X_binned. 

X 

Frequencies Col % 

Y=0 

“bk” 

Col % 

Y=1 

“gk” 

X_woe: 

Log(gk/bk)  
gk - bk 

IV Terms: 

(gk - bk) * 

Log(gk/bk) 
Y = 

0 

Y = 

1 

X1 2 1 25.0% 12.5% -0.69315 -0.125 0.08664 

X2 1 1 12.5% 12.5% 0.00000 0 0.00000 

X3 5 6 62.5% 75.0% 0.18232 0.125 0.02279 

SUM 8 8 100% 100%  IV = 0.10943 

Table 1. Example of calculation of IV for predictor X and target Y 

 
2 Non-standard terminology: I use “X-saturated” to indicate there is a parameter for each level of 

X_binned. 



3 
 

Information Value is used by modelers who work on credit-risk applications. In a well-known 

book by Naeem Siddiqi, Table 2 is presented to give guidelines for the usage of IV in 

evaluating X_binned. 

IV Range Interpretation 

IV < 0.02   “Not Predictive” 

IV in [0.02 to 0.1)   “Weak” 

IV in [0.1 to 0.3)   “Medium” 

IV > 0.3   “Strong” 

Table 2. Siddiqi (2017). Intelligent Credit Scoring, 2nd Ed. p. 179 

Whenever two levels of X_binned are combined, then information value is non-increasing.3 

MONOTONIC ORDERED BIN SOLUTION 

An ordered bin solution is monotonic if the ordered bins are monotonic versus the odds of 

the target where odds = (count Y=1 / count Y=0) given X=x, or equivalently, the 

event-rate of the target. 

For example, consider a predictor X with four levels: 1, 2, 3, 4 and target counts as shown: 

X Y=0 Y=1 

 

Odds 

Odds after 

BINNING 

1 2 1 .50 
.667 

2 1 1 1 

3 3 1 .333 .333 

4 4 1 .25 .250 

 

An ordered 3-bin solution for X is {1 2}, {3}, {4}. This solution is monotonic because odds 

are monotonic: 0.667, 0.333, 0.250. If the odds are monotonic, then the event-rates are 

also monotonic and conversely. Here, the event-rates are: 2/5, 1/4, 1/5. 

Given k > 2 there may not exist a monotonic solution. Consider the table below: 

X Y=0 Y=1 

1 1 4 

2 5 4 

3 5 3 

4 1 4 

The reader can check that no monotonic 3-bin solution exists. 

TWO SAS MACROS FOR BINNING ARE GIVEN IN THIS PAPER 

Two SAS macros are presented for binning a classification predictor X for a binary target Y.4 

1. %NOD_BIN: Modeler specifies whether solutions are ordered (=J) in the ordering of 

predictor X or unrestricted (=A). If (A), then any pair of levels of X can be combined. If 

(J), then only a pair composed of adjacent levels in the ordering of X can be combined. 

The designation “J” or “A” will be called the “MODE”.  

 
3 For a proof see Lund B. and Brotherton D. (2013). Information Value Statistic, MWSUG 2013, 

Proceedings. 
4 A different method of binning is based on decision trees. A decision tree is used by the Interactive 
Grouping Node in the Credit Scoring Application in SAS Enterprise Miner. Decision tree binning is not 
discussed in this paper. 
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Starting with L levels of X, an eligible pair (using "A" or "J") is selected for combining so 

as to maximize IV. This is a stepwise process. The steps are repeated until there are 2 

bins. For each k in the range 2 ≤ k ≤ L the algorithm reports a k-bin solution. 

Alternatively, -2*Log(L) may be minimized at each step. 

The method of stepwise maximization of IV and the method of stepwise minimization of 

-2*Log L can lead to different solutions. An example is given in the Appendix. Moreover, 

%NOD_BIN algorithm, using either IV or -2*Log(L) can lead to suboptimal solutions. An 

example is given in the Appendix. 

Although %NOD_BIN can be applied to ordered X using mode “J”, it should not be used 

when L ≤ 20. In this case the macro %ORDINAL_BIN should be used. For each k, 

%ORDINAL_BIN is guaranteed to find the optimal solution (whether in terms of IV or 

-2*Log(L)). See the discussion below. 

2. %ORDINAL_BIN: This macro is applied only to ordered X and finds ALL k-bin solutions 

with ordered bins where 2 ≤ k ≤ L. The algorithm to produce the binning solutions is 

simply the complete enumeration of all solutions. Therefore, for each k, %ORDINAL_BIN 

finds the optimal solution.  

In particular, if a monotonic ordered solution exists for a given k, then %ORDINAL_BIN 

finds the optimal monotonic solution for that k.  

To illustrate, consider the simple case of a predictor with three levels: 1, 2, 3. There are 

2 ordered bin solutions with 2 bins: {1 2} {3} and {1} {2 3} and one solution with 3 

bins: {1} {2} {3}. %ORDINAL_BIN finds them all, finds which are monotonic with 

respect to odds of the target, and computes IV and -2*Log(L) for each bin solution. 

%ORDINAL_BIN is restricted to X where L ≤ 20. This is due to long run-times for greater 

values of L. The section below discusses the reasons for these long run-times. 

NUMBER OF BIN SOLUTIONS FOR ORDERED X 

For ordered X with L levels the total number of ordered bin solutions across k for 2 ≤ k ≤ L 

is 2(L-1) - 1.  

Here is the explanation of this formula. For k = L there is 1 solution, for k = L-1 there are 

L-1 solutions, and, in general, for k = K, there are (
L − 1
L − K

) solutions. By the binomial formula 

∑ (
L − 1
L − k

)L
k=2  = 2(L-1) - 1. 

For %ORDINAL_BIN, the run-time doubles with each added level since the number of 

solutions doubles.  

%ORDINAL_BIN was run on a data set with 20 levels for X giving 2(L-1) - 1 = 524,287 

binning solution. But the run-time was not long. However, for L = 25, there would be 

16,777,215 solutions. 

If the number of levels L of ordinal X is over 20, then preliminary binning is needed to 

reduce L to a manageable number. Preliminary binning can be performed by PROC HPBIN or 

PROC RANK.  

HOW TO SELECT A BINNING SOLUTION FOR THE LOGISTIC MODEL 

Usually, the modeler will require that no bin appears with a small count in the final binning 

solution. Once this requirement has been met, then the user is guided by various statistics 

in selecting a k-bin solution. One approach is to monitor the change in -2*Log(L) or IV 
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during the binning steps. If IV or -2*Log(L) has a large change in one binning step to the 

next step, then it is reasonable to stop at the current step. 

For ordinal binning by %ORDINAL_BIN, the user may require a monotonic solution. In this 

case, the first k that includes a k-bin monotonic solution is often selected. But it is possible 

for a monotonic solution from a smaller k to have higher IV (or lower -2*Log(L)). 

Some statistical guidelines for the “stopping k” are provided by %NOD_BIN when MODE=A. 

These are discussed in the section on %NOD_BIN.  

The final stopping point ultimately relies on expert and subjective judgment of the modeler. 

SOME OF THE FEATURES OF %ORDINAL_BIN 

BINS OF X WITH A ZERO COUNT FOR Y=0 OR Y=1 

For a predictor X there may be a bin with a count of zero for either Y=0 or Y=1. Such a bin 

will be called a zero-bin. IV cannot be computed due to the logarithm in the formula. But 

-2*Log(L) can be computed since terms involving 0*Log(0) in the formula can be set to 

zero.  

%ORDINAL_BIN does not report binning solutions with a zero-bin. A "solution" with a 

zero-bin, most likely, could not be implemented in a logistic model because maximum 

likelihood estimation would not converge due to quasi-separation. Furthermore, IV would 

not be computed. A zero-bin with a large number of events or non-events might be unusual 

and should be analyzed separately.  

Below there is an example where X has 4 levels and two zero-bins. The complete 

enumeration of binning solutions k = 4, 3, 2 is shown below. Only the 2-bin solution {1,2}, 

{3,4} is reported by %ORDINAL_BIN. 

 k=4 k=3 

X Y=0 Y=1 

 X_bi

n Y=0 Y=1 

 X_bi

n Y=0 Y=1 

 X_bi

n Y=0 Y=1 

1 1 0  1,2 3 1  1 1 0  1 1 0 

2 2 1  3 3 1  2,3 5 2  2 2 1 

3 3 1  4 4 0  4 4 0  3,4 7 1 

4 4 0             

 k=2 

X_bin Y=0 Y=1  X_bin Y=0 Y=1  X_bin Y=0 Y=1 

1,2,3 6 2  1,2 3 1  1 1 0 

4 4 0  3,4 7 1  2,3,4 9 2 

Table 3. Only the X_bin with bins {1 2}, {3 4} will be reported by %ORDINAL_BIN 

SOLUTIONS WITH SMALL BIN COUNTS MAY BE OMITTED FROM REPORTS 

The user may specify the value of a parameter called MIN_PCT which gives the minimum 

percent (0 to 25) of the total sample that the bin must contain in order for the solution to 

be reported. Alternatively, parameter MIN_NUM may be specified which gives minimum 

count requirement for a bin. 

A FREQUENCY VARIABLE MAY BE SPECIFIED 

If the input dataset has been summarized, there is a parameter W (Freq) that designates 

the frequency variable. The entry for W is a SAS variable with positive integer values. 
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SOLUTIONS ARE RANKED BY IV (OR -2*LOG(L)) IN THE PRINTED REPORTS 

The Tables below are based on dataset "level_4" where X is predictor, Y is target, and W is 

frequency. 

DATA level_4; 

do X = 1 to 4; 

 Y = 1; 

  W = floor(200*ranuni(1)) + 1; 

  output; 

  Y = 0; 

  W = floor(250*ranuni(1)) + 1; 

  output; 

  end; 

run;  

Y 

X 

1 2 3 4 Total 

0 243 65 243 133 684 

1 37 80 185 109 411 

Total 280 145 428 242 1095 

Table 4. Counts from dataset Level_4 

Here is the macro call for %ORDINAL_BIN that produces most of the Tables below.  

%ORDINAL_BIN ( 

DATASET = level_4, 

X = X, 

TARGET = Y, 

W = W, 

RANKING = IV, 

ORDER = D, 

MISS = , 

SUMMARYONLY = , 

N_BEST = 3, 

N_MONO = , 

MIN_PCT = , 

MIN_NUM = , 

MIN_BIN = 3, 

MAX_BIN = 3, 

NOPRINT_WOE = , 

PRINT1_WOE = 3, 

PRINT2_WOE = 3, 

RUN_TITLE = TEST A, 

DELETE_PRIOR =  

); 

There are 3 solutions with 3 bins since L = 4. The modeler obtains the report of the best 3 

IV solutions, where each has 3 bins, by these parameters: N_BEST = 3, MAX_BIN = 3, 

MIN_BIN = 3. 

Top 3 solutions are displayed in descending IV order. Solution_num = 3 is the only 

monotonic solution for k = 3. The column “turns” counts number of times the odds changes 

“directions” (increase v. decrease). 

  



7 
 

 

Obs BINS missing best_ 

rank 

best_ 

mono 

solution_ 

num 

turns IV minus2LL L1 L2 L3 

1 3 N *   1 1 0.479 1336.9 1 2 3+4 

2 3 N *   2 1 0.456 1342.9 1 2+3 4 

3 3 N *  * 3 0 0.120 1418.7 1+2 3 4 

Table 5. The "*" in "best_mono" column indicates the best IV (-2*Log(L)) 

monotonic solution at k = 3 

The modeler can print all solutions within MIN_BIN to MAX_BIN by assigning N_BEST a 

high number. 

PROVIDING SAS CODE TO IMPLEMENT A BINNING SOLUTIONS IN A 

LOGISTIC MODEL  

The modeler may obtain SAS code for “Binned weight of evidence” or “Binned classes” for 

selected “k”. For the dataset “level_4” the SAS code is shown below for the best IV 3-bin 

solution. This is obtained by setting N_BEST = 1, PRINT1_WOE = 3, PRINT2_WOE = 3. 

The modeler would copy and paste the code below into the user’s SAS program.  

solution_num WOE Coding 

1 if X in ( 1 ) then X_B_woe = -1.372778828 ; 

1 if X in ( 2 ) then X_B_woe = 0.7170040679 ; 

1 if X in ( 3,4 ) then X_B_woe = 0.2633553271 ; 

solution_num BIN Coding 

1 if X in ( 1 ) then X_B = 1 ; 

1 if X in ( 2 ) then X_B = 2 ; 

1 if X in ( 3,4 ) then X_B = 3 ; 

Table 6. SAS code when N_BEST =1 for k = 3 

OPTIONALLY, MISSING VALUES OF X ARE INCLUDED AS AN UNORDERED 
LEVEL 

The user may specify that the missing level of X is included in the binning. The usual 

complete enumeration of all solutions for non-missing levels is carried out and the 

contribution to these solutions by the missing level is then added to IV or -2*Log(L). 

Binning reports, which are sorted by IV or - 2*Log(L), include the contribution from missing. 

If missing is a zero-bin, then the missing level is ignored. 

SOME OF THE FEATURES OF %NOD_BIN 

First, a brief discussion is given of some of the parameters: 

THE REQUIRED PARAMETERS: 

X: SAS variable: Numeric (“.” or 0 to 999) | Character) … with some restrictions 

TARGET:  SAS variable with exactly 2 non-missing Levels and no Missing 

W: A frequency variable with positive integer levels | 1 (1 if no frequency 

variable is used)  
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METHOD: Method of binning: IV | LL (where LL is -2*Log-Likelihood for X-saturated 

logistic model. 

MODE: A | J: A for unrestricted binning or J for restricted to maintain ordering of X 

within bins 

ORDER: If D, then higher level of TARGET is set to G (“good”) and lower level of 

TARGET is set to B (“bad”). G appears in the numerator of "odds" and 

weight-of-evidence expressions. If A, then the lower level of TARGET is set to 

G, higher is set to B. 

A parameter that is not required is VERBOSE, but it is commonly set to YES, unless the 

number of levels of X is large, which would cause the summary report to wrap around the 

page. 

VERBOSE: YES | <any other>. YES displays all steps of binning as part of the SUMMARY 

REPORT 

Details regarding macro parameters are given in Documentation available from the author. 

Here is an example of %NOD_BIN with the required parameters, in addition to VERBOSE. 

%NOD_BIN( 

DATASET = level_4,  

X =  X, 

TARGET =  Y,  

ZERO_ONE = YES, 

W = W ,  

METHOD = IV,    

MODE = A,      

ORDER = D,     

MISS = ,      

MIN_PCT = ,   

MIN_NUM = ,   

MIN_BIN = ,    

MAX_BIN = ,    

VERBOSE = YES,   

VERBOSE2 = ,  

LL_STAT = ,   

WOE = ,       

ADD = ,    

RUN_TITLE = Required Parameters and VERBOSE 

); 

The macro call sets MODE=A (unrestricted binning) and METHOD=IV. There is a frequency 

variable is W. The ORDER D is descending which specifies that the count of Y=1 forms the 

numerator of the odds.  

The reports are shown below.  
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Required Parameters and VERBOSE 

Dataset= level_4, Predictor= X, Target= Y, Zero_one= YES, Freq= W, Method= IV,  

Mode= A, Miss= , Order= D Min_Pct= 0, Min_Num= 0, ADD= N/A 

Summary Report 

k REASON 

collapse 

row k to 

k-1 

ZERO 

CELL 

IV Like-

Ratio  

Chi_Sq 

-2*Log L X_STAT L1 L2 L3 L4 

4   NO 0.480 112.552 1336.654 0.655 1 2 3 4 

3   NO 0.479 112.345 1336.861 0.652 1 2 3+4   

2   NO 0.456 106.244 1342.962 0.633 1 2+3+4     

Table 7. 

Log-odds Ratio with 95% CI 

Consider stopping at k if +/- 2SD interval after collapse omits zero 

k collapsing_to LO Ratio 

after collapse 

LO Ratio 

Std Dev 
LOminus2SD LOplus2SD 

4 3 -0.074 0.162 -0.398 0.250 

3 2 0.454 0.184 0.085 0.822 

Table 8. 

EXPLANATION OF THE COLUMNS IN TABLE 7 

REASON: This column reports the reason for a combine that relate to zero-bins and 

small-bin counts. A space indicates that the combine was based on normal processing 

(maximize IV or minimize -2*Log(L)). 

ZERO CELL:  If YES, then at this step, one of the bins was a zero-bin 

-2*LOG L: Value from Logistic Model: CLASS X_binned; MODEL Y = X_binned;  

LIKELIHOOD-RATIO CHI_SQ: -2*(G*Log(G/N) + B*Log*(B/N)) - (-2*Log(L)). Depends 

on current k. Notation: N = sample size. G = count of goods in the sample. 

B = count of bads in the sample. 

X_STAT:  The c-Statistic for Logistic Model: CLASS X_binned; MODEL Y = X_binned; 

TABLE 8 GIVES A TEST FOR STOPPING WHEN MODE=A 

When MODE=A, a test of whether to stop the binning process is given in Table 8. The 

notation Bi is used for count of bads in the ith bin and Gi is used for count of goods in the 

ith bin. If levels i and j are selected to be combined, then their log-odds ratio, LO, is given 

by log( (Gi / Bi)  / (Gj / Bj) ). The approximate standard deviation of the LO is 

LO_SD = SQRT (1/Gi + 1/Bi + 1/Gj + 1/Bj ).  

Assuming bin counts in rows i and j are large, then LO is normally distributed and an 

approximate 95% confidence interval is: 

LO  +/-  2 * LO_SD  (approximate 95% confidence interval for true LO). 

If LO = 0, then Gi / Bi  = Gj / Bj and the combining of i and j is a good decision. The more 

that LO deviates from 0, the more that IV decreases (which is undesirable) if a combine is 

performed. A potential guideline for stopping the binning process is when the interval 

(LO  ±  2 * LO_SD) does not include 0. 
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In Table 8 the confidence interval range for k=3 does not include 0. Therefore, the combine 

to two levels ({1} and {2 3 4}) is not recommended. 

FOR MODE=A THERE IS A SECOND STATISTICAL TEST FOR STOPPING 

To perform this test the macro parameter LL_STAT is set to YES. Now the summary report 

has additional columns: “Nested ChiSq” and “Pr > ChiSq”. Nested ChiSq and the associated 

right tail probability Pr > ChiSq perform a test of whether the coefficients of dummy 

variables for the bins about to the combined are statistically equal. The coefficients are 

those in this logistic model:  

PROC LOGISTIC; CLASS X_binned; MODEL Y=X_binned;. 

The combine should not be performed if the coefficients of the dummy variables are 

statistically unequal at the modeler’s preferred value of alpha.  

According to this test the combine from k=3 to k=2 should not be made since the right tail 

probability is 0.01 which indicates that the coefficients for {1} and {2 3 4} are unequal. 

k IV Like-Ratio 

Chi_Sq 

-2*Log L Nested 

ChiSq 

Pr > 

ChiSq 

L1 L2 L3 L4 

4 0.480 112.55 1336.65 N/M N/M 1 2 3 4 

3 0.479 112.35 1336.86 0.21 0.65 1 2 3+4   

2 0.456 106.24 1342.96 6.10 0.01 1 2+3+4     

Table 9. Some columns are omitted to save space on this page. 

See the Appendix for SAS code to conduct a formal test of the equality of these coefficients 

using PROC LOGISTIC. %NOD_BIN performs an equivalent calculation. 

LL_STAT is ignored if MODE=J. I felt that the Nested ChiSq was not meaningful since 

backward selection of dummy variables is compromised by the use of MODE=J. This was 

also the reason for restricting Table 8 to MODE=J. But in my next version, I will report 

Table 8 for both modes. 

PROBLEM WITH ZERO-BINS AND HOW HANDLED BY %NOD_BIN 

Since IV involves a logarithm, IV cannot be computed when there is a zero-bin. A way to 

avoid this problem is add a small positive number to either Gj or Bj (depending on which is 

zero). The METHOD=LL also involves logarithms, but a 0 would appear in a term 0*Log(0). 

This term can simply be set to zero. 

PARAMETER ADD= 0.5 | 0.0001 | “space” 

When using %NOD_BIN the modeler may specify the parameter ADD to have value of 0.5 

or 0.0001 whether or not there actually are zero-bins in the dataset. If a zero-bin is 

encountered, then ADD is applied. Either 0.5 or 0.0001 is added to Gj or Bj, whichever is 

zero for the bin.  

The computational problem with IV is avoided by using ADD. For small samples, adjustment 

by 0.5 can have an undue influence on the values of IV. In the current version of 

%NOD_BIN, 0*Log(0) is not set to zero. For METHOD=LL the usage of ADD=0.0001 

provides a good approximation. 

AFTER ASSIGNING A VALUE FOR ADD 

After assigning 0.5 or 0.0001, a bin could be encountered with either 0 < Gj < 1.0 or 

0 < Bj < 1.0. This bin is immediately forced to combine with another bin according to either 
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the IV or LL criterion. This prevents a bin which initially was a zero-bin from continuing into 

the later steps of binning while retaining a low frequency.5 

ALTERNATIVE TO THE ADD PARAMETER WHEN METHOD IS IV 

X_STAT is the model c (or c-statistic) for the one-variable logistic model: 

 PROC LOGISTIC; CLASS X_binned; MODEL Y = X_binned; 

X_STAT can be computed by the formula shown below: 6 

X_STAT = 0.5 * { ∑i=1 L-1 ∑j=i+1 L | Bi*Gj  - Bj*Gi | / M + 1 } 

where G = ∑j=1 L  Gj and B = ∑j=1 L  Bj and M = G * B 

As bins are combined, X_STAT is decreasing (unless the odds for the two bins to be 

combined are equal in which case X_STAT is unchanged). 

When ADD="space", then X_STAT is used to combine zero-bins. If %NOD_BIN detects a 

zero-bin, the macro forces a combine of that bin with some other bin via X_STAT 

maximization.7  

Here is an example: A zero-bin occurs for X=4. The binning of the zero-bin is by X_STAT 

maximization. 

DATA test;  

input x y w;  

datalines;  

1 1 2  

1 0 5  

2 1 1  

2 0 6  

3 1 5  

3 0 4  

4 1 4  

; 

PROC FREQ data = test; WEIGHT w; 

TABLES x*y / norow nocol nopercent; 

 

 

 

 

 

 

 

 

 

 

 

Table. 10 

 

 
5 The Macro programming does not guarantee that the bin that is combined at a given step gives the 
overall best IV (or entropy) among all remaining bins with G < 1 or B < 1. It is simply the first 
encountered zero-bin that is processed. 
6 See Lund (2019), Logistic Regression, Basics and Beyond, MWSUG 2019. 

https://www.mwsug.org/proceedings/2019/SP/MWSUG-2019-SP-026.pdf 
7 Macro programming does not guarantee that the bin that is combined at a given step would have 
given the overall best X_STAT among all zero-bins. First encountered zero-bin is processed. 

x 
y 

0 1 Total 

1 5 2 7 

2 6 1 7 

3 4 5 9 

4 0 4 4 

Total 15 12 27 
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%NOD_BIN( 

DATASET = test ,  

X =  x, 

TARGET =  y,  

ZERO_ONE = YES, 

W = w ,  

METHOD = IV ,    

MODE = A ,      

ORDER = D ,     

MISS = ,      

MIN_PCT =  ,   

MIN_NUM =  ,   

MIN_BIN = ,    

MAX_BIN = ,    

VERBOSE = YES ,   

VERBOSE2 =  ,  

LL_STAT =  ,   

WOE =  ,       

ADD =  , /* space implies the use of X_STAT for zero bins */   

RUN_TITLE = X-Stat for Zero Bin); 

X-Stat for Zero Bin 

k REASON 

collapse 

row k to k-1 

ZERO  

CELL 

IV Like-Ratio  

Chi_Sq 

-2*Log L X_STAT L1 L2 L3 L4 

4   YES N/M N/M N/M 0.8056 1 2 3 4 

3 X_STAT NO 1.112 6.9302 30.1657 0.7611 1 2 3+4   

2   NO 1.020 6.4994 30.5965 0.7417 1+2 3+4     

Table 11. ADD=”space” 

For comparison, %NOD_BIN is now run twice more using ADD=0.0001 and 0.5. 

k REASON 

collapse 

row k to k-1 

ZERO  

CELL 

IV Like-Ratio  

Chi_Sq 

-2*Log L X_STAT L1 L2 L3 L4 

4   NO 4.286 10.6110  26.4850 0.8056 1 2 3 4 

3 MIN NUM NO 1.112 6.9301 30.1659 0.7611 1 2 3+4   

2   NO 1.020 6.4993 30.5968 0.7417 1+2 3+4     

Table 12A. ADD=0.0001 for Zero Bin 

k REASON 

collapse 

row k to k-1 

ZERO  

CELL 

IV Like-Ratio  

Chi_Sq 

-2*Log L X_STAT L1 L2 L3 L4 

4   NO 1.349 8.0542 29.6222 0.7849 1 2 3 4 

3 MIN NUM NO 1.006 6.3731 31.3033 0.7487 1 2 3+4   

2   NO 0.916 5.9423 31.7341 0.7298 1+2 3+4     

Table 12B. ADD=0.5 for Zero Bin 

In Table 11 the binning from k=4 to k=3 was due to X_STAT maximization. In Table 12A 

the ADD of 0.0001 was added to B4 and in Table 11B the ADD of 0.5 was added to B4 
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In Tables 12A and 12B the REASON = MIN NUM in step 3 refers to the forced binning of 

level 4 as a consequence of B4 < 1. Based on IV, level 4 was combined with level 3 when 

going to Step k=3. All statistics in Tables 12A and 12B are incorrect due to use of ADD. 

Statistics in Table 11 are correct. 

In this contrived, very small example the binning solutions for k=3 and k=2 are the same in 

Table 11 as in Tables 12A and 12B. I can’t say with any confidence how often these 

solutions could differ. 

In my judgment the X_STAT method of handling zero-bins is the better approach when 

using METHOD=IV. However, if METHOD=LL, then ADD=0.0001 is a valid approach. 

%NOD_BIN: FORCING COMBINES OF BINS WITH LOW FREQUENCY 

The following dataset is used in this section. This dataset has low frequency bins as well as 

zero-bins. 

DATA SMALL; 

INPUT X $ Y W; 

DATALINES; 

1 0 3 

1 1 2 

2 0 6 

2 1 1 

3 0 4 

3 1 8 

4 0 10 

5 1 6 

6 0 10 

6 1 10 

; 

run; 

PROC FREQ DATA = SMALL;  

TABLES X*Y / norow nocol nopercent; 

WEIGHT W; 

run; 

Here is the frequency table of X vs. Y. 

X 

Y  

0 1 Total  

1 3 2 5 (NOTE: bin count < 6) 

2 6 1 7  

3 4 8 12  

4 10 0 10 (zero-bin) 

5 0 6 6 (zero-bin) 

6 10 10 20  

Total 33 27 60  

Table 13. Zero-bins and low frequency bins 

Perhaps the modeler requires any bin to have at least 6 observations. The macro parameter 

MIN_NUM is used to specify this minimum. Any bin with a count of 5 or fewer is forced to 

combine before further steps. 

But this is a situation where there are also zero-bins.  

First, X_STAT is used to combine zero-bins. Then MIN_NUM is applied. 
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%NOD_BIN(  

DATASET = SMALL,   

 X =  X,  

TARGET =  Y,   

ZERO_ONE = YES,  

W = W ,   

METHOD = IV,     

MODE = A,       

ORDER = D,      

MISS = ,       

MIN_PCT =  ,    

MIN_NUM = 6,    

MIN_BIN =  ,     

MAX_BIN =  ,     

VERBOSE = YES,    

VERBOSE2 =  ,   

LL_STAT =  ,    

WOE =  ,        

ADD =  ,     

RUN_TITLE = X-Stat for Zero Bin and MIN_NUM < 6);  

k REASON 
collapse 

row k to k-1 

ZERO 
CELL 

IV Like-
Ratio 

Chi_Sq 

-2*Log L X_STAT L1 L2 L3 L4 L5 L6 

6   YES N/M N/M N/M 0.824 1 2 3 4 5 6 

5 X_STAT YES N/M N/M N/M 0.810 1 2 3+5 4 6   

4 X_STAT NO 1.746 N/M 61.13 0.805 1 2+4 3+5 6     

3 MIN NUM NO 1.735 21.28 61.29 0.799 1+6 2+4 3+5       

2   NO 1.432 17.26 65.32 0.724 1+6+3+5 2+4         

Table 14. X-Stat for Zero-Bin and MIN_NUM < 6 

Combining X=3 and X=5 at k=5 is due to X_STAT processing of X=5 zero-bin.  

Likewise, this is true for combining X=2 and X=4 at k=4.  

Then X=1 is combined with X=6 since bin count for X=1 is less than 6. 

SHOWING THE USEFULNESS OF BINNING WITH %ORDINAL_BIN  

Here is an example to illustrate that the preparation of classification predictor is greatly 

facilitated by binning. This example uses %ORDINAL_BIN. The data come from a HELOC 

(home equity) credit-risk example. See https://community.fico.com/s/explainable-machine-

learning-challenge?tabset-3158a=2 

A predictor is "NumTradesOpeninLast12M". It is ordered with 18 levels and has a missing 

level (-9). The target is called RiskPerformance with levels “good” and “bad”.  

The overarching question:  

Is there an ordered bin solution of X which is monotonic versus the event rate of the target, 

and which has a good IV? 

Monotonic binning for this predictor certainly makes sense. Credit risk modelers expect 

more Trades Open in last 12 Months to be associated with higher Bad rates. 
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Here the table of NumTradesOpeninLast12M vs. RiskPerformance. 

NumTradesOpeninLast12M 

RiskPerformance 

Bad Good Total 

(no credit bureau) . 291 165 456 

0 565 618 1183 

1 569 627 1196 

2 511 477 988 

3 343 274 617 

4 210 162 372 

5 97 100 197 

6 57 44 101 

7 40 17 57 

8 18 9 27 

9 8 5 13 

10 8 2 10 

11 4 0 4 

12 1 0 1 

13 2 0 2 

14 2 0 2 

16 1 0 1 

17 1 0 1 

19 1 0 1 

Total 2729 2500 5229 

Table 15. Table of NumTradesOpeninLast12M by RiskPerformance 

In a DATA Step, -9 is reset to . (numeric missing). Minimum bin size is set at 20. Parameter 

MISS is set to MISS, and parameter SUMMARYONLY is set to YES (to greatly reduce the 

printout). 

DATA TRAINx; SET HELOC_2.TRAIN; 

if NumTradesOpeninLast12M = -9 then NumTradesOpeninLast12M = .; run; 

%ORDINAL_BIN( 

DATASET=TRAINx, X=NumTradesOpeninLast12M, TARGET=RiskPerformance, 

W=1, RANKING=IV, ORDER=D, MISS=MISS, SUMMARYONLY=YES, N_BEST=,  

N_MONO=, MIN_PCT=, MIN_NUM=20, MIN_BIN=, MAX_BIN=, NOPRINT_WOE=, 

PRINT1_WOE=, PRINT2_WOE=, RUN_TITLE=HELOC Train, DELETE_PRIOR=); 
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Obs bins_in 

_solution 

Solution 

_num 

IV minus 

2LL 

turns missing best 

_rank 

best 

_mono 

1 10 1 0.0625 7161.3 5 Y *  

2 9 1 0.0625 7161.3 4 Y *  

3 8 1 0.0624 7161.4 4 Y *  

4 7 1 0.0621 7161.7 2 Y *  

5 6 1 0.0611 7163.1 2 Y *  

6 6 4 0.0599 7164.6 0 Y  * 

7 5 1 0.0598 7164.7 0 Y * * 

8 4 1 0.0580 7167.1 0 Y * * 

9 3 1 0.0516 7175.2 0 Y * * 

10 2 1 0.0393 7188.7 0 Y * * 

Table 16. Step by step history of binning is excluded in order to fit to the page. 

A promising solution occurs at k=6. There is a monotonic binning solution (solution_num=4) 

with strong IV of 0.0599. This IV is higher than the IV’s of the monotonic solutions which 

follow at k=5 through k=2.  

The first binning solution occurs at k = 10 (and not k=18) since there are zero-bins in all 

solutions with k > 10. 

The monotonic solution at k=6, as well as WOE SAS code, is obtained by re-running 

%ORDINAL_BIN with MIN_BIN=6, MAX_BIN=6 and PRINT1_WOE=6, PRINT2_WOE=6 

%ORDINAL_BIN( 

DATASET=TRAINx, X=NumTradesOpeninLast12M, TARGET=RiskPerformance, 

W=1,RANKING=IV, ORDER=D, MISS=MISS, SUMMARYONLY=, N_BEST=,  

N_MONO=, MIN_PCT=, MIN_NUM=20, MIN_BIN=6, MAX_BIN=6, NOPRINT_WOE=, 

PRINT1_WOE=6, PRINT2_WOE=6, RUN_TITLE=HELOC Train, DELETE_PRIOR=); 

Bins Sol 

_num 

IV -2LL L1 L2 L3 L4 L5 L6 

6 4 0.060 7164.6 0+1 2 3+4+5 6 7+8+9 10+11+12+13+14+16+17+19 

Table 17. Best Monotonic Bin Solution 

4 if NumTradesOpeninLast12M in ( 0,1 ) then NumTradesOpeninLast12M_B_woe = 0.1810288345 ; 

4 if NumTradesOpeninLast12M in ( 2 ) then NumTradesOpeninLast12M_B_woe = 0.0187914105 ; 

4 if NumTradesOpeninLast12M in ( 3,4,5 ) then NumTradesOpeninLast12M_B_woe = -0.105193692 ; 

4 if NumTradesOpeninLast12M in ( 6 ) then NumTradesOpeninLast12M_B_woe = -0.171217124 ; 

4 if NumTradesOpeninLast12M in ( 7,8,9 ) then NumTradesOpeninLast12M_B_woe = -0.668023028 ; 

4 if NumTradesOpeninLast12M in ( 10,11,12,13,14,16,17,19 ) then 
NumTradesOpeninLast12M_B_woe = -2.214940583 ; 

4 if NumTradesOpeninLast12M= . then NumTradesOpeninLast12M_B_woe = -0.479733283 ; 

Table 18. WOE values are monotonic vs. binned X for the non-missing bins 

MONTONIC BINNING FOR A CONTINUOUS NUMERIC X 

A continuous numeric predictor X has many levels, although “many” is subjective … perhaps 

as few as 10 but, also, as many as thousands. 
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It is sometimes a normal practice of a business to bin any continuous numeric X when 

preparing to fit a logistic model. This practice is founded on the idea that a binned predictor 

(now with multiple degrees of freedom) will better track the event-rate. 

Also, sometimes, the business may believe that "more of X" should imply "high (lower) 

event-rate". In this situation a monotonic binning solution of X is required. Then the 

ordered bins of X must be monotonic with respect to the event-rate of the target. 

%MONOBIN MACRO FOR MONOTONIC BINNING 

WenSui Liu developed a SAS macro named %MONOBIN 8 that performs monotonic binning 

for numeric predictors with few or many levels.  

The core of this macro is a usage of PROC TRANSREG.  

The HELOC dataset is monotonically binned by %MONOBIN after the rows with a missing 

predictor value are removed. A numeric target Y is needed for the macro call. 

DATA TRAINx; SET HELOC_2.TRAIN; 

if NumTradesOpeninLast12M = -9 then delete; 

Y = (RiskPerformance = "Bad"); 

run; 

%MONOBIN(data = TRAINx, y = Y, x = NumTradesOpeninLast12M);  

Lower Upper #Bads #Freq BadRate WoE IV 

0 1 1134 2379 0.47667 -0.13655 0.009293 

2 2 511 988 0.51721 0.02569 0.000137 

3 5 650 1186 0.54806 0.14967 0.005547 

6 6 57 101 0.56436 0.21570 0.000978 

7 9 66 97 0.68041 0.71250 0.009829 

10 19 20 22 0.90909 2.25942 0.016600 

    2438 4773     0.042384 

Table 19. %MONOBIN Binning for NUMTRADESOPENINLAST12M 

This is the same monotonic solution as produced by %ORDINAL_BIN. The missing level can 

be appended to Table 19 by a separate calculation.  

But %ORDINAL_BIN has the advantages of displaying non-monotonic solutions which might 

be good alternatives and has the option to exclude solutions with small bin counts from the 

reporting. 

EXAMPLE OF CONTINUOUS NUMERIC X WITH MANY LEVELS 

The German Credit dataset 9 is often used as an example for fitting a Probability of Default 

(PD) model. It has 1000 rows. Target is binary with levels 0 and 1 where 1 is a payment 

default. There are 3 continuous numeric predictors, including AGE of borrower in years, and 

17 classification predictors. 

Our focus is on AGE. AGE has 53 levels, 5 zero-bins, and no missing values. 

The modeler may try transforms of a predictor X (e.g. Log(X), X and X2) when fitting a 

model. But neither linear X or a common transform (such as Log(X) or a polynomial in X) 

 
8 https://statcompute.wordpress.com/2017/09/24/granular-monotonic-binning-in-sas/ 
9 See https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data. 
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can guaranteed a monotonic relationship between the ordered levels of X and the event-rate 

(or odds) of the target.  

In fact, the idea of a monotonic relationship is ill-defined if some of the levels of X have only 

1 or very few cases. 

Setting aside the 5 zero-bins, AGE is not monotonic vs. the event-rate for the German 

Credit dataset. 

%ORDINAL_BIN is limited by program design to L ≤ 20. Running %ORDINAL_BIN with 

L = 53 is out of the question.  

In contrast %MONOBIN has handle L = 53 without a problem.  

Here is the %MONOBIN macro call. There are only 3 parameters. 

%MONOBIN(data = GERMAN.BANK, y = Y, x = AGE); 

The result of binning includes a bin consisting of AGE=19 with only 2 cases. This is not 

satisfactory. 

Lower Upper #Bads #Freq BadRate WoE IV 

62 75 7 38 0.18421 -0.64078 0.01343 

35 61 101 414 0.24396 -0.28378 0.03135 

30 34 55 177 0.31073 0.05061 0.00046 

26 29 57 181 0.31492 0.07007 0.00090 

20 25 79 188 0.42021 0.52540 0.05654 

19 19 1 2 0.50000 0.84730 0.00161 

    300 1000     0.10429 

Table 20. %MONOBIN Binning for AGE  

%MONOBIN would need re-programming to enforce a minimum bin count for the final 

solution. But, here, post-processing to combine of AGE=19 with AGE=20_to_25 easily 

removes the problem. The IV is slightly lower after the combine. 

Lower Upper #Bads #Freq BadRate WoE IV 

62 75 7 38 0.18421 -0.64078 0.01343 

35 61 101 414 0.24396 -0.28378 0.03135 

30 34 55 177 0.31073 0.05061 0.00046 

26 29 57 181 0.31492 0.07007 0.00090 

19 25 80 190 0.42105 0.52884 0.05792 

    300 1000     0.10406 

Table 21. %MONOBIN Binning for AGE after post-processing 

An alternative is pre-processing of AGE to recode 19 as 20 before running %MONOBIN. In 

general such pre-processing requires ad hoc judgments by the modeler.  

After such pre-processing the same binning result is obtained. 

%NOD_BIN FOLLOWED BY %ORDINAL_BIN FOR MONOTONIC BINNING 

%NOD_BIN with specification MODE=J finds an ordered solution for each k. When 

MODE=J, an X with a large numbers of levels can be run through %NOD_BIN within a short 

time period. %NOD_BIN has been run successfully on a predictor X with 100 levels. 
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However, %NOD_BIN does not guarantee that the optimal solution is found for any of the 

k’s except k = L-1. 

%NOD_BIN combined with %ORDINAL_BIN provides an approach to binning ordinal X when 

L ≤ 100. Preliminary binning by %NOD_BIN provides an ordered bin solution with L = 20. 

This 20-bin solution can then be processed by %ORDINAL_BIN. 

This two-step approach was applied to AGE from German Credit. A 20-bin solution from 

%NOD_BIN was found where, additionally, MIN_NUM was set at 10 to combine low 

frequency bins.  

Zero-bins were handled by X_STAT maximization.  

Then the 20-bin solution was processed by %ORDINAL_BIN to find good monotonic binning 

solutions. Here is the code for the two-step process. 

%NOD_BIN(DATASET=GERMAN.BANK, X=AGE, TARGET=Y, ZERO_ONE=YES,  

W=1, METHOD=IV, MODE=J, ORDER=D, MISS= , MIN_PCT= , MIN_NUM=10,    

MIN_BIN=20, MAX_BIN=20, VERBOSE= , VERBOSE2= , LL_STAT= ,    

WOE= WOE, ADD= , RUN_TITLE= 20 bin solution for ORDINAL_BIN); 

%NOD_BIN provides the 20-bin solution as SAS code: 

DATA TEMP; SET GERMAN.BANK;       

if AGE in ( 19,20,21 ) then AGE_B = 001 ; 

if AGE in ( 22,23,24,25 ) then AGE_B = 002 ; 

if AGE in ( 26,27 ) then AGE_B = 003 ; 

if AGE in ( 28,29 ) then AGE_B = 004 ; 

if AGE in ( 30,31,32 ) then AGE_B = 005 ; 

if AGE in ( 33,34 ) then AGE_B = 006 ; 

if AGE in ( 35,36 ) then AGE_B = 007 ; 

if AGE in ( 37 ) then AGE_B = 008 ; 

if AGE in ( 38 ) then AGE_B = 009 ; 

if AGE in ( 39,40,41 ) then AGE_B = 010 ; 

if AGE in ( 42,43,44 ) then AGE_B = 011 ; 

if AGE in ( 45,46,47,48 ) then AGE_B = 012 ; 

if AGE in ( 49 ) then AGE_B = 013 ; 

if AGE in ( 50 ) then AGE_B = 014 ; 

if AGE in ( 51,52 ) then AGE_B = 015 ; 

if AGE in ( 53,54 ) then AGE_B = 016 ; 

if AGE in ( 55,56,57 ) then AGE_B = 017 ; 

if AGE in ( 58,59,60,61 ) then AGE_B = 018 ; 

if AGE in ( 62,63,64 ) then AGE_B = 019 ; 

if AGE in ( 65,66,67,68,70,74,75 ) then AGE_B = 020 ; 

Now %ORDINAL_BIN is applied to the predictor AGE_B.  

%ORDINAL_BIN(DATASET=TEMP, X=AGE_B, TARGET=Y, W=1, RANKING=IV, ORDER=D, 

MISS=, SUMMARYONLY=YES, N_BEST=, N_MONO=, MIN_PCT=, MIN_NUM=, MIN_BIN=, 

MAX_BIN=, NOPRINT_WOE=, PRINT1_WOE=, PRINT2_WOE=,  

RUN_TITLE=20 bin solution for ORDINAL_BIN, DELETE_PRIOR=); 
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Here is the report from %ORDINAL_BIN: 

Obs 
bins_in_ 

solution 

solution 

_num 
IV minus2LL turns missing 

best_ 

rank 

best_ 

mono 

1 20 1 0.23602 1175.43 16 N *   

2-13 Obs 2 to 13 are omitted. 

14 7 1 0.16953 1187.42 4 N *   

15 6 1 0.15168 1190.63 2 N *   

16 6 5204 0.08337 1204.10 0 N   * 

17 5 1 0.13436 1193.70 2 N *   

18 5 205 0.10406 1199.87 0 N   * 

19 4 1 0.12394 1196.28 1 N *   

20 4 12 0.10402 1199.88 0 N   * 

21 3 1 0.10015 1200.60 0 N * * 

22 2 1 0.07317 1206.09 0 N * * 

Table 22. 

A promising monotonic solution is found at k=5 with solution_num = 205. The IV is 

0.10406. There is a monotonic solution for k=6 but the IV is much lower at IV = 0.08337.  

The bins that comprise the k=5 solution are obtained by an additional run of 

%ORDINAL_BIN. Set MIN_BIN=5 and MAX_BIN=5 to exclude other k. To obtain SAS 

code for the 5-bin monotonic solution, set PRINT1_WOE=5 and PRINT2_WOE=5. 

%ORDINAL_BIN(DATASET=TEMP, X=AGE_B, TARGET=Y, W=1, RANKING=IV, ORDER=D, 

MISS=, SUMMARYONLY=, N_BEST=, N_MONO=, MIN_PCT=, MIN_NUM=, MIN_BIN=5, 

MAX_BIN=5, NOPRINT_WOE=, PRINT1_WOE=5, PRINT2_WOE=5,  

RUN_TITLE=20 bin solution for ORDINAL_BIN, DELETE_PRIOR= ); 

solution_num BIN Coding Counts 

Age 

Range 

205 if AGE_B in ( 1,2 ) then AGE_B_B = 1 ; 190 19-25 

205 if AGE_B in ( 3,4 ) then AGE_B_B = 2 ; 181 26-29 

205 if AGE_B in ( 5,6 ) then AGE_B_B = 3 ; 177 30-34 

205 
if AGE_B in ( 7,8,9,10,11,12,13,14,15,16,17,18 ) 

then AGE_B_B = 4 ; 

414 35-61 

205 if AGE_B in ( 19,20 ) then AGE_B_B = 5 ; 38 62+ 

Table 23. Columns “Counts” and “Age Range” were added by a manual process. 

This table is identical to Table 21 from %MONOBIN. Admittedly, the method of using the 

“%NOD_BIN 20-bin solution followed by %ORDINAL_BIN” is a bit messy and is a somewhat 

ad hoc approach.  

But this method has the advantage of displaying other monotonic solutions and alternative 

non-monotonic solutions. The MIN_NUM parameter in %NOD_BIN can prevent solutions 

with small bin counts. 
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HOW MONOTONIC BINNING WORKS WITH TRANSREG 

An explanation of how PROC TRANSREG implements monotonic regression is given in 

SAS/STAT® 15.1 User’s Guide The TRANSREG Procedure, pp. 10357-10358.10 The predictor 

X is numeric and the target Y is numeric and not restricted to be binary. 

I think, in principle, %MONOBIN, using TRANSREG, accomplishes this:  

a) Identifies all monotonic binning of X v. binary Y … I'll call them generically: X_bin 

b) For each, R-Square is computed for the linear model which can be depicted by:  

PROC GLM; CLASS X_bin; MODEL Y= X_bin; 

c) The optimal solution is the one with largest R-square.11 

HISTORY OF THE TWO BINNING MACROS AND REQUESTS FOR 

MACRO CODE 

%NOD_BIN appeared as %BEST_COLLAPSE in Lund and Brotherton (2013), Information 

Value Statistic, MWSUG. Complete code appears in the Appendix of that paper. There were 

272 lines of code with 20 lines of comments.  

%ORDINAL_BIN was introduced in 2016 and also %BEST_COLLAPSE became %NOD_BIN. 

See Lund (2016), Weight of Evidence Coding and Binning of Predictors in Logistic 

Regression, MWSUG.  

Today, %ORDINAL_BIN has about 1,600 lines of code of which about 350 are comments. 

%NOD_BIN also has about 1,600 lines of which about 300 are comments. Much of the new 

code is devoted to input parameter error checking and the rest to new functionality.  

I think the current macro code would not be accessible to a new user without a considerable 

effort. The code becomes a "black box". So cautioned, I will provide the macro code and 

user documentation to any requester. 

SESUG 2023, Charlotte, NC 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author Bruce Lund 

at: blund_data@mi.rr.com or blund.data@gmail.com.  

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration. 

Other brand and product names are trademarks of their respective companies. 

  

 
10 https://support.sas.com/documentation/onlinedoc/stat/151/transreg.pdf 
11 R-square, when applied to a binary target, is not the same measure as either IV or entropy. I 

assume it would be strongly correlated. I have not investigated the correlation between R-square and 
IV or entropy. 
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APPENDIX 

EXAMPLE TO SHOW SUBOPTIMAL %NOD_BIN WITH MODE=A AND 
METHOD=IV 

An example is given for MODE=A and METHOD=IV where the binning solution by 

%NOD_BIN is non-optimal for, at least, level k= 2. In general, there is no indicator 

provided by %NOD_BIN that a k-bin solution is suboptimal. Suboptimal solutions can also 

occur for METHOD=LL.  

The example "INCOME1" given in this Appendix was found by chance. The IV value for the 

2-bin solution is 0.0844. See the %NOD_BIN Summary Report. In the 2-bin solution the 

first bin is {01, 02, 03} and the second is {04, 05, 06, 07, 08, 09, 10, 11, 12}.  

A second %NOD_BIN is run on data set "INCOME2". In INCOME2 the levels “01”, “02”, “03”, 

“04” are forced together in the DATA Step which creates INCOME2. A better solution (not 

necessarily optimal) for k= 2 is {01, 02, 03, 04} and {05, 06, 07, 08, 09, 10, 11, 12}. This 

is shown in the second %NOD_BIN Summary Report where IV is 0.0888.  

The %NOD_BIN algorithm on INCOME1 “goes bad” at k= 5 when “04” is combined with 

“05”. Once combined, “04” cannot be split off to join {01, 02, 03}. In passing, it is noted 

that the modeler would likely stop the combining process at k= 7 based on the drop off in 

IV from k= 7 to k=6.  

DATA Income;   

INPUT Income Y W @@;  

DATALINES;  

01 0 1393 01 1 218  

02 0 6009 02 1 890  

03 0 5083 03 1 932  

04 0 4519 04 1 1035  

05 0 8319 05 1 2284  

06 0 4841 06 1 1593  

07 0 2689 07 1 1053  

08 0 2090 08 1 872  

09 0 729  09 1 311  

10 0 292  10 1 136  

11 0 253  11 1 120  

12 0 294  12 1 142  

;  

DATA INCOME1; SET Income;  

   length Income_c $2;  

   Income_c = put(income,Z2.);  

run;  

%NOD_BIN(  

DATASET = INCOME1, X = Income_c, TARGET = Y, ZERO_ONE = YES,  

W = W, METHOD = IV, MODE = A, ORDER = D, MISS = , MIN_PCT = ,  

MIN_NUM = , MIN_BIN = , MAX_BIN = , VERBOSE = YES, VERBOSE2 = ,  

LL_STAT = , WOE = , ADD = , RUN_TITLE = Suboptimum Solution);  

DATA INCOME2; SET income;  

  length Income_c $11;  

  Income_c = put(income,Z2.);     

  if Income_c in ("01" "02" "03" "04") then Income_c = "01_02_03_04";  

run;  
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%NOD_BIN(  

DATASET = INCOME2, X = Income_c, TARGET = Y, ZERO_ONE = YES,  

W = W, METHOD = IV, MODE = A, ORDER = D, MISS = , MIN_PCT = ,  

MIN_NUM = , MIN_BIN = , MAX_BIN = , VERBOSE = YES, VERBOSE2 = ,  

LL_STAT = , WOE = , ADD = ,   

RUN_TITLE = Force combine of 01 02 03 04 and get Better Solution);  

Suboptimum Solution 

Dataset= Income1, Predictor= income_c, Target= Y, Zero_one= YES, Freq= W,  

Method= IV, Mode= A, Miss= , Order= D 

Min_Pct= 0, Min_Num= 0, ADD= N/A 

Summary Report 

k IV -2* 

Log L 

X_ 

STAT 

L1 L2 L3 L4 

to L12 

omitted 

12 0.1214 46223.0 0.5980 01 02 03  

11 0.1214 46223.0 0.5980 01 02 03  

10 0.1214 46223.0 0.5979 01 02 03  

9 0.1214 46223.1 0.5979 01 02 03  

8 0.1214 46223.6 0.5978 01+02 03 04  

7 0.1211 46225.5 0.5975 01+02 03 04  

6 0.1205 46231.0 0.5971 01+02 03 04  

5 0.1179 46250.1 0.5946 01+02 03 04+05  

4 0.1151 46267.8 0.5928 01+02+03 04+05 06  

3 0.1103 46307.4 0.5890 01+02+03 04+05 06+07+08+09+ 

10+11+12 

 

2 0.0844 46512.9 0.5646 01+02+03 04+05+06+07+ 

08+09+10+11+12 

 
 

Table 24. A Suboptimum Solution with METHOD=IV 
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Force combine of 01 02 03 04 and get Better Solution 

Dataset= Income2, Predictor= income_c, Target= Y, Zero_one= YES, Freq= W,  

Method= IV, Mode= A, Miss= , Order= D 

Min_Pct= 0, Min_Num= 0, ADD= N/A 

Summary Report 

k IV -2* 

Log L 

X_ 

STAT 

L1 (forced at 

start) 

L2 L3 L4 

to L12 

omitted 

9 0.1092 46304.3 0.5908 01_02_03_04 05 06  

8 0.1092 46304.4 0.5908 01_02_03_04 05 06  

7 0.1092 46304.4 0.5907 01_02_03_04 05 06  

6 0.1092 46304.5 0.5907 01_02_03_04 05 06  

5 0.1090 46306.4 0.5904 01_02_03_04 05 06  

4 0.1083 46311.9 0.5900 01_02_03_04 05 06  

3 0.1053 46335.3 0.5868 01_02_03_04 05+06 07+08+09+ 

10+11+12 

 

2 0.0888 46468.6 0.5725 01_02_03_04 05+06+07+08+ 

09+10+11+12 

   

Table 25. A Better Solution with METHOD=IV after forced combine of 01 02 03 04 

EXAMPLE TO SHOW %NOD_BIN MAY HAVE DIFFERENT BINS FOR 

METHOD=IV VS. LL 

%NOD_BIN with METHOD=LL may be run and compared to METHOD=IV. The reader can 

verify that the 5-bin solutions are different. 

%NOD_BIN(  

DATASET = Income1, X = Income_c, TARGET = Y, ZERO_ONE = YES,  

W = W, METHOD = LL, MODE = A, ORDER = D, MISS = , MIN_PCT = ,  

MIN_NUM = , MIN_BIN = , MAX_BIN = , VERBOSE = YES, VERBOSE2 = ,  

LL_STAT = , WOE = , ADD = , RUN_TITLE = Different LL solution);  

PARAMETER LL_STAT IN %NOD_BIN WHEN MODE=A 

When LL_STAT=YES is selected by the user, then a nested ChiSq and the associated right 

tail probability Pr > ChiSq perform a test of whether the coefficients of dummy variables for 

the bins about to the combined are statistically equal. It is best to give an example to 

illustrate this feature: 

DATA TEST_A;   

INPUT X $ Y W @@;   

datalines;   

AA   0 500  C 1 310   

AA   1 330  D 0 400   

BA   0 300  D 1 210   

BA   1 270  E 0 550   

C    0 400  E 1 400   

;  
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Summary Report 

Consider stopping at k+1 if (Pr > ChiSq) < 0.05, or other alpha, at k 

k IV Like-

Ratio 

Chi_Sq 

-2*Log L Nested 

ChiSq 

Pr > ChiSq L1 L2 L3 L4 L5 

5 0.0264 23.36 4955.65 N/M N/M AA BA C D E 

4 0.0259 22.96 4956.06 0.402 0.526 AA BA C+E D   

3 0.0236 20.89 4958.13 2.069 0.150 AA+C+E BA D     

2 0.0170 14.98 4964.04 5.910 0.015 AA+C+E+BA D       

Table 26. With LL_STAT=YES 

Because Pr > ChiSq is 0.015 for k = 2 (well below 0.05), the combine of {AA C E} with 

{BA} should not be performed.  

Now, the %NOD_BIN result is compared with PROC LOGISTIC. 

DATA dummies; SET TEST_A;  

dum_AA_C_E = (X = "AA" or X = "C" or X = "E");  

dum_BA = (X = "BA");  

dum_D = (X = "D");  

PROC LOGISTIC DATA = dummies;  

MODEL Y = dum_AA_C_E dum_BA /* dum_D is reference */;  

TEST dum_AA_C_E = dum_BA;  

FREQ W;  

run;  

Linear Hypotheses Testing Results 

Label 
Wald 

Chi-Square DF Pr > ChiSq 

Test 1 5.9300 1 0.015 

Table 27. PROC LOGISTIC TEST of EQUALITY of COEFFICIENTS 

The coefficients of the dummy variables for {AA C E} and {BA} are statistically unequal.   


