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ABSTRACT  

In a randomized clinical trial, participant responses to treatments may be measured on an ordinal, rather 
than interval, scale. The trial may also have a stratified design, such as randomization within clinics, and 
information may be collected across multiple visits to evaluate the treatment efficacy. Due to 
randomization, random imbalances for baseline measurements and covariates between treatment groups 
are expected to be minimal. Nevertheless, baseline covariates may be strongly associated with the 
outcome, and so adjustment for baseline covariates can improve the power for assessing the treatment 
effect. The win ratio (ignores ties) and the win odds (accounts for ties) can be useful when analyzing 
these types of clinical trial data. This work provides a SAS macro which implements randomization-based 
methodology for covariance and stratified adjustment of the win ratio and the win odds for ordinal 
outcomes from a multi-visit clinical trial with stratified randomization. Large and small sample within strata 
methodology is made available. The software is illustrated for two multi-visit clinical trials with ordinal 
outcomes.  

INTRODUCTION  

A multi-visit clinical trial may collect participant responses to treatment on an ordinal, rather than interval, 
measurement scale. The trial may also have a stratified design, such as randomization within clinics, and 
information may be collected across multiple visits to evaluate the treatment efficacy. Due to 
randomization, random imbalances for baseline measurements and covariates between treatment groups 
are expected to be minimal. Nevertheless, baseline covariates may be strongly associated with the 
outcome, and so adjustment for baseline covariates can improve the power for assessing the treatment 
effect. The win ratio (ignores ties) and the win odds (accounts for ties) can be useful when analyzing 
these types of clinical trial data. A SAS macro for these methods is illustrated for two multi-visit clinical 
trials with ordinal outcomes, for which one has stratified randomization and the other has missing data.  

METHODS 

Methods for an ordinal endpoint include the Mann-Whitney probability (win proportion, WP), the win ratio 
(WR), and the win odds (WO), defined as follows:  

 

𝑊𝑃 = 𝑃(𝑇 > 𝐶) + 0.5𝑃(𝑇 = 𝐶) (1) 

 

𝑊𝑅 = 𝑃(𝑇 > 𝐶)/𝑃(𝐶 > 𝑇) (2) 

 

𝑊𝑂 = 𝑊𝑃/(1 − 𝑊𝑃) (3) 

 

In the above, 𝑃(𝑇 > 𝐶) is the probability of a better outcome for a patient on test treatment (𝑇) compared 

to a patient on control treatment (𝐶); and for (1), ties are managed as half wins. Of note, (𝑊𝑅 −
1)/(𝑊𝑅 + 1) equals the Goodman-Kruskal gamma, a measure of rank correlation, and 
(𝑊𝑂 − 1) (𝑊𝑂 + 1)⁄ = (2 × 𝑊𝑃 + 1) = [𝑃(𝑇 > 𝐶) − 𝑃(𝐶 > 𝑇)] equals the Somers’ D, a measure of 

association between two ordinal variables, in this case outcome and assigned treatment. The win ratio 
was popularized by Pocock et al. (2012) for analyzing composite outcomes in clinical trials based on 
clinical priorities. 
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STRATIFICATION ADJUSTMENT 

Let 𝑤ℎ denote the van Elteren (1960) weight for the ℎ-th stratum in (4), where the sum of the weights 

across strata is 1 for 𝑛ℎ𝑇 participants in the ℎ-th stratum of the treatment arm and 𝑛ℎ𝐶 participants in the 

ℎ-th stratum of the control arm. 

 

𝑤ℎ =
{

𝑛ℎ𝑇𝑛ℎ𝐶
𝑛ℎ𝑇 + 𝑛ℎ𝐶 + 1}

{∑
𝑛ℎ′𝑇𝑛ℎ′𝐶

𝑛ℎ′𝑇 + 𝑛ℎ′𝐶 + 1
𝑞
ℎ′=1

}
(4) 

 

Then, for random outcomes 𝑦𝑇ℎ𝑖𝑗 and 𝑦𝐶ℎ𝑖′𝑗 for patients 𝑖 and 𝑖′ in the test treatment and control arms 

attending their 𝑗-th visit and where 𝐼(⋅) is the indicator function for whether (⋅) applies or not, the win ratio 

(5) and win odds (6) can be estimated at each visit. 

 

𝑊�̂�𝑗 =
∑

𝑤ℎ
𝑛ℎ𝑇𝑛ℎ𝐶

∑ ∑ 𝐼(𝑦𝑇ℎ𝑖𝑗 > 𝑦𝐶ℎ𝑖′𝑗)
𝑛ℎ𝐶
𝑖′=1

𝑛ℎ𝑇
𝑖=1

𝑞
ℎ=1

∑
𝑤ℎ

𝑛ℎ𝑇𝑛ℎ𝐶
∑ ∑ 𝐼(𝑦𝑇ℎ𝑖𝑗 < 𝑦𝐶ℎ𝑖′𝑗)

𝑛ℎ𝐶

𝑖′=1

𝑛ℎ𝑇
𝑖=1

𝑞
ℎ=1

(5) 

𝑊�̂�𝑗 =
∑

𝑤ℎ
𝑛ℎ𝑇𝑛ℎ𝐶

∑ ∑ [𝐼(𝑦𝑇ℎ𝑖𝑗 > 𝑦𝐶ℎ𝑖′𝑗) + 0.5𝐼(𝑦𝑇ℎ𝑖𝑗 = 𝑦𝐶ℎ𝑖′𝑗)]
𝑛ℎ𝐶
𝑖′=1

𝑛ℎ𝑇
𝑖=1

𝑞
ℎ=1

∑
𝑤ℎ

𝑛ℎ𝑇𝑛ℎ𝐶
∑ ∑ [𝐼(𝑦𝑇ℎ𝑖𝑗 < 𝑦𝐶ℎ𝑖′𝑗) + 0.5𝐼(𝑦𝑇ℎ𝑖𝑗 = 𝑦𝐶ℎ𝑖′𝑗 )]

𝑛ℎ𝐶

𝑖′=1

𝑛ℎ𝑇
𝑖=1

𝑞
ℎ=1

(6) 

 

In this regard, there is adjustment for strata through the weighted average of within stratum two-sample U 
statistics for numerators and denominators for both the win ratio and win odds.  

RANDOMIZATION-BASED COVARIANCE ADJUSTMENT 

For randomized multi-visit clinical trials, there can be covariance adjustment of the win ratio and win odds 
(or their stratified counterparts) by constraining baseline covariate differences to zero in the joint vector 
with logarithms of win ratios or win odds. Such adjustment has no formal assumptions about the 
distributions of response variables or covariates or the relationships of covariates to response variables; 
but the resulting adjusted stratified win ratios or win odds have narrower confidence intervals than their 
unadjusted counterparts when covariates have at least moderately strong associations with response 
variables. Methodology for covariance adjustment for the stratified win ratio and win odds is provided in 
the Appendix. 

INTRODUCTION TO EXAMPLES 

RESPIRATORY DISORDER 

The first illustrative example is for a dataset from a randomized clinical trial comparing a test treatment to 
control in the treatment of a chronic respiratory disorder (Koch et al., 1989; Stokes et al., 2012).  In this 
trial, 111 patients (54 active, 57 placebo) at two centers were evaluated at baseline and four follow-up 
visits, and their respiratory status was assessed at every visit using an ordinal global rating (0 for terrible, 
1 for poor, 2 for fair, 3 for good, and 4 for excellent). The two centers correspond to a stratification factor; 
and baseline covariables for patients enrolled in the respiratory study are age, sex, and baseline 
respiratory status.  

Table 1 summarizes the number randomized at each center within each treatment arm and provides 
descriptive statistics for distributions of baseline covariates for the respiratory disorder dataset.  
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 Arm  

 Treatment 
(N=54) 

Control 
(N=57) 

Total 
(N=111) 

Age    

N 54 57 111 

Mean (SD) 32.9 (14.0) 33.6 (13.5) 33.3 (13.7) 

Median 30.0 35.0 31.0 

Range 11.0, 68.0 11.0, 66.0 11.0, 68.0 

    

Sex, n (%)    

F 6 (11.1) 17 (29.8) 23 (20.7) 

M 48 (88.9) 40 (70.2) 88 (79.3) 

    

Center, n (%)    

1 27 (50.0) 29 (50.9) 56 (50.5) 

2 27 (50.0) 28 (49.1) 55 (49.5) 

    

Baseline, n (%)    

0=Terrible 3 (5.6) 0 (0.0) 3 (2.7) 

1=Poor 9 (16.7) 11 (19.3) 20 (18.0) 

2=Fair 18 (33.3) 20 (35.1) 38 (34.2) 

3=Good 13 (24.1) 19 (33.3) 32 (28.8) 

4=Excellent 11 (20.4) 7 (12.3) 18 (16.2) 

Table 1. Descriptive Statistics for Baseline Covariates for the Respiratory Disorder Dataset 

SKIN CONDITIONS DISORDER 

The second illustrative example is for a dataset from a randomized clinical trial comparing a test treatment 
to control for skin conditions (Stanish et al., 1978).  In this trial, 172 patients (88 test, 84 placebo) at six 
clinics were evaluated at three follow-up visits, and their extent of improvement for their skin condition 
was recorded on a five-point scale (1 for rapidly improving, 2 for slowly improving, 3 for stable, 4 for 
slowly worsening, and 5 for rapidly worsening).  Since clinic 9 only enrolled 4 patients, patients in clinics 8 
and 9 are pooled.  This pooling is further justified by clinics 8 and 9 having the smallest stratum sample 
sizes. The baseline covariable for patients enrolled in the skin conditions study is disease stage recorded 
at baseline (3 = Fair, 4 = Poor, 5 = Exacerbation). Unlike the respiratory dataset, this dataset is subject to 
missing data at the follow-up visits, and the extent of the missing data increases at each visit, with 3 (2%) 
missing observations at visit 1, 16 (9%) at visit 2, and 30 (17%) at visit 3. 

Table 2 summarizes the number randomized at each clinic by treatment arm and provides descriptive 
statistics for the distribution of the baseline covariate for the skin conditions disorder dataset.  
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 Arm  

 Treatment 
(N=88) 

Placebo 
(N=84) 

Total 
(N=172) 

Initial Disease Stage, n (%)    

3 = Fair 40 (45.5) 41 (48.8) 81 (47.1) 

4 = Poor 40 (45.5) 35 (41.7) 75 (43.6) 

5 = Exacerbation 8 (9.1) 8 (9.5) 16 (9.3) 

    

Clinic1, n (%)    

5 19 (21.6) 18 (21.4) 37 (21.5) 

6 17 (19.3) 16 (19.0) 33 (19.2) 

8-9 18 (20.5) 16 (19.0) 34 (19.8) 

10 18 (20.5) 17 (20.2) 35 (20.3) 

11 16 (18.2) 17 (20.2) 33 (19.2) 

Table 2. Descriptive Statistics for Baseline Covariates for the Skin Condition Study 

1Clinic 8-9 pools data from clinics 8 and 9 since clinic 9 enrolled only 4 patients. 

MACRO INTRODUCTION 

Two SAS macros are provided to implement the methodology described in Methods and in the Appendix. 
%Adj_WinRatio computes the randomization-based stratified adjusted win ratio, while %Adj_WinOdds is 
the counterpart for the win odds. The arguments for each macro are the same, so they will only be 
described for %Adj_WinRatio, but %Adj_WinOdds follows similarly. The call to %Adj_WinRatio is 
described as follows with details for each argument provided in Table 3: 

%Adj_WinRatio( DSNIN,  

DSNOUT, 

   PID, 

   OUTCOMES, 

   ARM, 

   BASELINE = NONE, 

   COVARS = NONE, 

   STRATA = NONE, 

   METHOD = SMALL, 

   DEBUG = 0); 
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Argument Description 

DSNIN 
SAS dataset containing the analysis data. Must be in wide format such that a 
participant’s repeated responses are in a single row and each response is a separate 
column. 

DSNOUT Name for output dataset. 

PID Variable corresponding to unique participant ID.  

OUTCOMES 

List of the variables (each separated by a space) corresponding to outcomes 
measured at each visit. The outcomes must have at least an ordinal measurement 
scale with larger values being better than smaller values. Thus, the outcome can be 
ordered categories or continuous measurements or dichotomies such as 0 or 1 or “no” 
or “yes.” 

ARM 
Variable for treatment arm.  Required to be a positive integer such that the test 
treatment arm is ALWAYS higher in value than the control arm. 

BASELINE 
Variable corresponding to outcome measurement at baseline. If not specified, no 
baseline adjustment is employed (which is default). 

COVARS 

List of the variables corresponding to the covariates (measured at baseline) to be used 
for adjustment.  These covariates must be numeric, and can be measured on a binary, 
categorical, ordered categorical, or continuous scale. If not specified, no covariate 
adjustment is employed (which is default). 

STRATA 
Variable used for stratification.  If not specified, no stratification is utilized (which is 
default). 

METHOD 

SMALL or LARGE used to denote the method employed. The small sample size 
method is recommended unless within-stratum sample size is reasonably large (e.g., 
>= 50), number of visits is small (e.g., <=6), and number of covariates is small (e.g., 
<=4). If not specified, the default is SMALL. 

DEBUG 
0 does not print analysis details to the log and 1 prints analysis details to the log. If not 
specified, the default is 0. 

Table 3. Arguments for Macros %Adj_WinRatio and %Adj_WinOdds 

APPLICATIONS TO ILLUSTRATIVE DATASETS 

RESPIRATORY DISORDER DATASET 

For the respiratory disorder dataset, suppose we wish to compute the win ratio at each of the four follow-
up visits without any adjustment for stratification or baseline covariates, the call to %Adj_WinRatio 

would be as follows:   

%Adj_WinRatio( DSNIN = RESP,  

DSNOUT = OUT, 

   PID = UniqID, 

   OUTCOMES = Visit1 Visit2 Visit3 Visit4, 

   ARM = Trt); 

 

Table 4 provides the results produced by %Adj_WinRatio without any adjustment for stratification or 
baseline covariates for the respiratory dataset. 
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Visit log(WR) SE log(WR) Chi-square P-value WR WR 95% CI 

Visit1 0.507 0.293 2.99 0.084 1.66 (0.93,2.95) 

Visit2 1.218 0.308 15.66 <.001 3.38 (1.85,6.18) 

Visit3 0.906 0.297 9.31 0.002 2.47 (1.38,4.43) 

Visit4 0.629 0.286 4.85 0.028 1.88 (1.07,3.28) 

Table 4. Unadjusted Win Ratio Results for the Respiratory Disorder Dataset 

Suppose instead we wish to estimate the win ratio at each of the four follow-up visits with adjustment for 
center as a stratification factor and randomization-based adjustment for baseline as the baseline 
measurement and age and sex as baseline covariates. For this purpose, the call to %Adj_WinRatio would 
be as follows:   

%Adj_WinRatio( DSNIN = RESP,  

DSNOUT = OUT, 

   PID = UniqID, 

   OUTCOMES = Visit1 Visit2 Visit3 Visit4, 

   ARM = Trt, 

   BASELINE = Baseline, 

   COVARS = Age SexNum, 

   STRATA = Center); 

 

Table 5 provides the fully adjusted (i.e., stratification adjusted with randomization-based adjustment for 
baseline as the baseline measurement and age and sex as baseline covariates) results produced by 
%Adj_WinRatio. 

Visit log(WR) SE log(WR) Chi-square P-value WR WR 95% CI 

Visit1 0.603 0.252 5.71 0.017 1.83 (1.11,3.00) 

Visit2 1.315 0.282 21.74 <.001 3.72 (2.14,6.47) 

Visit3 0.982 0.266 13.61 <.001 2.67 (1.58,4.50) 

Visit4 0.754 0.275 7.52 0.006 2.13 (1.24,3.64) 

Table 5. Fully Adjusted Win Ratio Results for the Respiratory Disorder Dataset 

In comparing Table 4 and Table 5, we note that the standard error estimates for the log of the win ratios 
at each follow-up visit are smaller in Table 5 which yields smaller p-values and narrower confidence 
intervals for the fully adjusted win ratios compared to the unadjusted win ratios. 

For the fully adjusted win odds at each of the four follow-up visits, the call to %Adj_WinOdds would be as 
follows: 

%Adj_WinOdds( DSNIN = RESP,  

DSNOUT = OUT, 

   PID = UniqID, 

   OUTCOMES = Visit1 Visit2 Visit3 Visit4, 

   ARM = Trt, 

   BASELINE = Baseline, 

   COVARS = Age SexNum, 

   STRATA = Center); 

 

Table 6 provides the results produced by %Adj_WinOdds. 
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Visit log(WO) SE log(WO) Chi-square P-value WO WO 95% CI WP 

Visit1 0.437 0.185 5.57 0.018 1.55 (1.08,2.22) 0.607 

Visit2 0.965 0.210 21.10 <.001 2.63 (1.74,3.96) 0.724 

Visit3 0.726 0.200 13.13 <.001 2.07 (1.40,3.06) 0.674 

Visit4 0.528 0.197 7.17 0.007 1.70 (1.15,2.50) 0.629 

Table 6. Fully Adjusted Win Odds Results for the Respiratory Disorder Dataset 

SKIN CONDITIONS DISORDER DATASET 

For the skin conditions disorder dataset, suppose we wish to compute the win ratio at each of the three 
follow-up visits with adjustment for center as a stratification factor and randomization-based adjustment 
for stage as a baseline covariate. For this purpose, the call to %Adj_WinRatio would be as follows:   

%Adj_WinRatio( DSNIN = SKIN,  

DSNOUT = OUT, 

   PID = ID, 

   OUTCOMES = R1 R2 R3, 

   ARM = Trt, 

   COVARS = Stage, 

   STRATA = Center); 

 

Table 7 provides the results produced by %Adj_WinRatio. 

Visit log(WR) SE log(WR) Chi-square P-value WR WR 95% CI 

R1 1.937 0.301 41.35 <.001 6.94 (3.85,12.52) 

R2 2.349 0.344 46.75 <.001 10.48 (5.34,20.55) 

R3 2.383 0.37 41.45 <.001 10.84 (5.25,22.39) 

Table 7. Fully Adjusted Win Ratio Results for the Skin Disorder Dataset 

As mentioned previously, the skin conditions dataset includes missing data at follow-up visits, which is 
managed in the macro by introducing additional ties for missing data (i.e., missing values are managed as 
tied with observed values). Kawaguchi & Koch (2015) provide an R package, sanon, for stratified analysis 
with nonparametric covariable adjustment. For the skin dataset, sanon was invoked (with neither 
stratification nor covariable adjustment) and the same method for managing missing data via the use of 
‘replace’ with the following call: 

sanon( cbind(R1, R2, R3) ~ grp(Trt, ref = “test”),  

data = skin,  

res.na.action = “replace”) 

 

Output 1 provides the results produced by sanon for this call. 
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Output 1. Output from Sanon R Package for the Skin Disorder Dataset 

Table 8 provides the corresponding results (with neither stratification nor covariable adjustment) produced 
by %Adj_WinOdds for the corresponding call:  

%Adj_WinOdds( DSNIN = SKIN,  

DSNOUT = OUT, 

   PID = ID, 

   OUTCOMES = R1 R2 R3, 

   ARM = Trt); 

 

Visit log(WO) SE log(WO) Chi-square P-value WO WO 95% CI WP 

R1 1.326 0.199 44.55 <.001 3.76 (2.55,5.56) 0.790 

R2 1.288 0.170 57.19 <.001 3.62 (2.60,5.06) 0.784 

R3 1.020 0.143 50.77 <.001 2.77 (2.09,3.67) 0.735 

Table 8. Unadjusted Win Odds Results for the Skin Disorder Dataset 

Note that the results in the “WP” column from the results for the %Adj_WinOdds macro are exactly 0.5 
larger than the results in the “Estimate” column from sanon, in correspondence to the note that sanon 
provides as “estimates of responses are for the (MW estimate – 0.5),” where “MW estimate” means 
Mann-Whitney probability or win proportion (WP). Moreover, the following SAS code takes the results 
produced by %Adj_WinOdds in OUT and produces the corresponding standard error, chi-square value, 
and p-value for (WP-0.5) to compare to the results from sanon: 

data out_sanon; 

 set out; 

 SE_WP = SE_logWO * WP * (1-WP); 

 Chi_Square_WP = ((WP-0.5) / SE_WP)**2; 

 p_WP = 1-probchi(Chi_Square_WP, 1); 

run; 
 

The corresponding results for the win proportion are shown in Table 9. A reason why SE WP and Chi-
square (WP) in Table 9 differ slightly from their counterparts in Figure 1 from sanon is that those in Table 
9 are based on estimated variances corresponding to the use of two-sample U statistics as described in 
the Appendix whereas those from sanon are based on estimated variances corresponding to one-sample 
U statistics. 
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Visit WP SE WP Chi-square (WP) P-value (WP) 

R1 0.790 0.033 77.58 <.001 

R2 0.784 0.029 96.68 <.001 

R3 0.735 0.028 70.99 <.001 

Table 9. Unadjusted Win Proportion Results for the Skin Disorder Dataset 

Although the chi-square statistics in Table 9 that pertain to the win probability are much larger than those 
that pertain to the win odds (in Table 8), they essentially have the same interpretation in the sense of 
having two-sided p<0.001 for contradicting the null hypothesis of no difference between the two 
treatments. In this regard, simulations in Carr et al. (1989) and discussion in Kawaguchi et al. (2011) 
support that the statistical properties of methods pertaining to the natural logarithm of the win odds are 
better than those pertaining to the win probability for the intended coverage of confidence intervals and 
control of Type I error. 

CONCLUSIONS 

Many multi-visit randomized clinical trials for the comparison of two treatments have ordinal outcomes. 
The presented methods are potentially useful for such clinical trials through enabling the comparisons 
between the two treatments to have adjustment for stratification factors and baseline covariates; and for 
the illustrated examples, the fully adjusted CIs were narrower and had lower limits further above 1.0 in 
comparison to the other methods. Moreover, the results from such comparisons can be straightforward to 
interpret through the win ratio or the win odds; and although all estimates of the win ratios for the 
illustrated example exceed those for the corresponding win odds, interpretations for the extent to which 
lower limits of the CIs exceed 1.0 are similar for the win ratios and the win odds. 
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The macros described in this paper are available on GitHub: https://github.com/elaineek/adj-wrwo.  

APPENDIX 
Estimators are produced for a vector of two-sample 𝑈 statistics for each stratum in (7),  

 

𝑼ℎ =
1

𝑛ℎ𝑇𝑛ℎ𝐶
∑ ∑(𝑼𝒙ℎ𝑖𝑖′

′ , 𝑼1ℎ𝑖𝑖′
′ , 𝑼2ℎ𝑖𝑖′

′ )
′

𝑛ℎ𝐶

𝑖′=1

𝑛ℎ𝑇

𝑖=1

(7) 

 

where 𝑼𝒙ℎ𝑖𝑖′ = (𝒙ℎ𝑇𝑖 − 𝒙ℎ𝐶𝑖′) is a vector of differences in baseline covariates; for the win ratio, 𝑼1ℎ𝑖𝑖′ =
(𝑈1ℎ𝑖𝑖′0, 𝑈1ℎ𝑖𝑖′1,  … ,  𝑈1ℎ𝑖𝑖′𝑟)′ is a vector of indicators 𝑈1ℎ𝑖𝑖′𝑗 = 𝐼(𝑦𝑇ℎ𝑖𝑗 > 𝑦𝐶ℎ𝑖′𝑗), and 𝑼2ℎ𝑖𝑖′ =

(𝑈2ℎ𝑖𝑖′0, 𝑈2ℎ𝑖𝑖′1,  … ,  𝑈2ℎ𝑖𝑖′𝑟)′ is a vector of indicators 𝑈2ℎ𝑖𝑖′𝑗 = 𝐼(𝑦𝑇ℎ𝑖𝑗 < 𝑦𝐶ℎ𝑖′𝑗) for visits 𝑗 = 0, … , 𝑟; 

whereas, 0.5𝐼(𝑦𝑇ℎ𝑖𝑗 = 𝑦𝐶ℎ𝑖′𝑗) is added to the 𝑼1ℎ𝑖𝑖′ and the 𝑼2ℎ𝑖𝑖′  for the win odds. 

 

The estimated covariance matrix 𝑽ℎ  for 𝑼ℎ is computed as in (8),  

 

𝑽ℎ = {
1

𝑛ℎ𝑇(𝑛ℎ𝑇 − 1)
∑(𝑼ℎ𝑖∗ − 𝑼ℎ)(𝑼ℎ𝑖∗ − 𝑼ℎ)′

𝑛ℎ𝑇

𝑖=1

}

+ {
1

𝑛ℎ𝐶(𝑛ℎ𝐶 − 1)
∑(𝑼ℎ∗𝑖′ − 𝑼ℎ)(𝑼ℎ∗𝑖′ − 𝑼ℎ)′

𝑛ℎ𝐶

𝑖′=1

} (8)

 

 

where 𝑼ℎ𝑖∗ = (∑ 𝑼ℎ𝑖𝑖′/𝑛ℎ𝐶)
𝑛ℎ𝐶
𝑖′=1

 and 𝑼ℎ∗𝑖′ = (∑ 𝑼ℎ𝑖𝑖′/𝑛ℎ𝑇)
𝑛ℎ𝑇
𝑖=1  for 𝑼ℎ𝑖𝑖′ = (𝑼𝒙ℎ𝑖𝑖′

′ , 𝑼1ℎ𝑖𝑖′
′ , 𝑼2ℎ𝑖𝑖′

′ )
′
 for patients 𝑖 

and 𝑖′ in the test treatment and control arms. Adjustment for strata is produced by constructing 

∑ 𝑤ℎ
𝑞
ℎ=1 𝑼ℎ = (𝑼𝒙∗

′ ,  𝑼1∗
′ ,  𝑼2∗

′ )′ and the corresponding estimate 𝑽 = ∑ 𝑤ℎ
2𝑞

ℎ=1 𝑽ℎ for its covariance matrix. 

 

Randomization based covariance adjustment (Koch et al., 1998) is applicable to 𝑭 in (9) by using 

weighted least squares methods to fit the linear model in (9), 

              

𝑭 = [
𝑼𝒙∗

𝑨𝒍𝒐𝒈𝒆([𝑼1∗
′ , 𝑼2∗

′ ]′)
] = [

𝑼𝒙∗

𝒇
] = [

𝑼𝒙∗

𝑓0

𝒇∗

] =̂ [
𝟎𝑠

0
𝒃

] = [
𝟎(𝑠+1),𝑟

𝑰𝑟
] 𝒃 = 𝑳𝒃 (9) 

          

https://github.com/elaineek/adj-wrwo
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where 𝑼𝒙∗ = ∑ 𝑤ℎ(�̅�ℎ𝑇 − �̅�ℎ𝐶)𝑞
ℎ=1 , 𝑨 = [𝑰(𝑟+1), − 𝑰(𝑟+1)], and “=̂” denotes “is estimated by.” In (9), 

𝑨𝒍𝒐𝒈𝒆([𝑼1∗
′ , 𝑼2∗

′ ]′) is the vector of natural logarithms of the 𝑊�̂�𝑗 in (5) as the win ratios (or the 𝑊�̂�𝑗 in (6) 

as the win odds). On the basis of randomization, the expectation of the difference in sample means of 
baseline covariates in the test treatment and control arm within the ℎ-th stratum is 0, i.e., 𝐸[𝑼𝒙∗] = 𝟎𝑠. 

Also, the asymptotic expected value for 𝑓0 is 0. A consistent estimator 𝑽𝑭 for the covariance matrix of 𝑭 

can be derived via methods for multivariate linear Taylor series approximations as in (10),     

 

𝑽𝑭 = [
𝑰𝑠 𝟎𝑠,2(𝑟+1)

𝟎(𝑟+1),𝑠 𝑨𝑫−1 ] 𝑉 [
𝑰𝑠 𝟎𝑠,2(𝑟+1)

𝟎(𝑟+1),𝑠 𝑨𝑫−1 ]

′

(10) 

 

for 𝑠 baseline covariate, 𝑟 post-baseline visits, and 𝑫 a diagonal matrix with the respective elements of 
[𝑼1∗

′ , 𝑼2∗
′ ]′ as its diagonal elements.   

 

Accordingly (Koch et al., 1998), the (𝑟 × 1) vector 𝒃 of the covariance adjusted stratified estimators for the 

log𝑒(𝑊𝑅𝑗) for the combined strata is given in (11), and a consistent estimator for its (𝑟 × 𝑟) covariance 

matrix 𝑽𝒃 is given in (12),   

                                  

𝒃 = (𝑳′𝑽𝑭
−1𝑳)−1𝑳′𝑽𝑭

−1𝑭 = 𝒇∗ − 𝑽𝑭,12
′ 𝑽𝑭,11

−1 [
𝑼𝒙∗

𝑓0
] (11) 

 

𝑽𝒃 = (𝑳′𝑽𝑭
−1𝑳)−1 = 𝑽𝒇∗

− 𝑽𝑭,12
′ 𝑽𝑭,11

−1 𝑽𝑭,12 (12) 

 

where 𝑽𝑭,11 is the (𝑠 + 1) × (𝑠 + 1) upper left hand part for 𝑽𝑭, 𝑽𝑭,12 is the (𝑠 + 1) × 𝑟 upper right hand 

part of 𝑽𝑭, and 𝑽𝒇∗
 is the (𝑟 × 𝑟) lower right hand part of 𝑽𝑭. When the overall sample size 𝑛 = ∑ 𝑛ℎ

𝑞
ℎ=1  for 

the combined strata is sufficiently large (e.g., all 𝑛ℎ ≥ 20 and 𝑛 ≥ 100), 𝒃 = (𝑏1, … , 𝑏𝑟)′ approximately has 

a multivariate normal distribution via central limit theorems for 𝑈 statistics (Puri & Sen, 1971) and a 

100(1 − 𝛼)% confidence interval (CI) can be constructed as in (13). 

 

𝐶𝐼 = exp (𝑏𝑗 ± 𝑍𝛼
2

√𝑣𝑏𝑗 ) (13) 

 

One can specify a contrast matrix, 𝑪, with dimension 𝑐 × 𝑟 and full rank 𝑐 to test the linear hypothesis 

𝐻0: 𝑪𝒃 =̂ 𝟎 with the chi-squared statistic in (14) with 𝑐 degrees of freedom. This statistic can be calculated 

directly from 𝒃 and 𝑽𝒃 as provided by the macros, although it is not in scope for the macros. 

 

𝑄𝑪𝒃 = 𝒃′𝑪′(𝑪𝑽𝒃𝑪′)−1𝑪𝒃 (14) 
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