

1

SESUG Paper 132-2023

A Quick Look at Fuzzy Matching Programming

Techniques Using SAS® Software

Stephen Sloan, Data Science Senior Principal, Accenture
Kirk Paul Lafler, sasNerd

ABSTRACT

Data comes in all forms, shapes, sizes and complexities. Stored in files and datasets, SAS® users across industries

recognize that data can be, and often is, problematic and plagued with a variety of issues. Data files can be joined

without problem when each file contains identifiers, or “keys”, with unique values. However, many files do not have

unique identifiers and need to be joined by character values, like names or E-mail addresses. These identifiers might

be spelled differently, or use different abbreviation or capitalization protocols. This paper illustrates datasets

containing a sampling of data issues, popular data cleaning and user-defined validation techniques, data

transformation techniques, traditional merge and join techniques, the introduction to the application of different SAS

character-handling functions for phonetic matching, including SOUNDEX, SPEDIS, COMPLEV, and COMPGED, and an

assortment of SAS programming techniques to resolve key identifier issues and to successfully merge, join and match

less than perfect, or “messy” data. Although the programming techniques are illustrated using SAS code, many, if not

most, of the techniques can be applied to any software platform that supports character-handling.

Keywords: Fuzzy matching, SAS, character-handling functions, phonetic matching, SOUNDEX, SPEDIS, edit distance,

Levenshtein, COMPLEV, COMPGED

INTRODUCTION

When data sources contain consistent and valid data values, share common unique identifier(s), and have no missing

data, the matching process rarely presents any problems. But, when data originating from multiple sources contain

duplicate observations, duplicate and/or unreliable keys, missing values, invalid values, capitalization and punctuation

issues, inconsistent matching variables, and imprecise text identifiers, the matching process can be compromised by

unreliable and/or unpredictable results. Users are faced with cleaning and standardizing any and all data irregularities

before attempting to match and process data. To assist in this time-consuming and costly process, users frequently

turn to using special-purpose programming techniques including the application of approximate string matching

and/or an assortment of constructive programming techniques to standardize and combine datasets together.

DATASETS USED IN EXAMPLES

The examples presented in this paper illustrate two datasets, Movies_with_Messy_Data and

Actors_with_Messy_Data. The Movies_with_Messy_Data dataset, illustrated in Figure 1a, consists of 31 observations,

a data structure of six variables where Title, Category, Studio, and Rating are defined as character variables; and

Length and Year are defined as numeric variables. After careful inspection several data issues can be found in this

dataset including the existence of missing data, duplicate observations, spelling errors, punctuation inconsistencies,

and invalid values.

The Actors_with_Messy_Data dataset, illustrated in Figure 1b, contains 15 observations and a data structure

consisting of three character variables: Title, Actor_Leading and Actor_Supporting. As with the

Movies_with_Messy_Data dataset, several data issues are found including missing data, spelling errors, punctuation

inconsistencies, and invalid values.

2

Figure 1b: Actors_with_Messy_Data dataset.

Figure 1a: Movies_with_Messy_Data dataset.

THE MATCHING PROCESS EXPLAINED

In an age of endless spreadsheets, apps and relational database management systems (RDBMS), it’s unusual to find a

single sheet, file, table or dataset that contains all the data needed to answer an organization’s questions. Today’s

data exists in many forms and all too often involves matching two or more data sources to create a combined file. The

matching process typically involves combining two or more datasets, spreadsheets and/or files possessing a shared,

common and reliable, identifier (or key) to create a single dataset, spreadsheet and/or file. The matching process,

illustrated in the following diagram, shows two tables with a key, Title, to combine the two tables together.

MOVIES ACTORS

Title Title

Length Actor_Leading

Category Actor_Supporting

Year

Studio

Rating

But, when a shared and reliable key is associated with input data sources that are nonexistent, inexact, or unreliable,

the matching process often becomes more involved and problematic. As cited in Sloan and Hoicowitz (2016), special

processes are needed to successfully match the names, addresses and other content from different files when they

are similar, but not exactly the same. SAS users have a variety of methods and techniques at their disposal to help

solve different name matching issues. In the following table, a number of potential matching challenges are illustrated

when dealing with data sources.

3

Matching Challenges

Phonetic

Similarity

Michael → Micheal

Smith → Smythe

Missing Spaces

& Hyphens

Mary Ann → MaryAnn

Mary-Ann → Mary-Anne

Missing Components

Mary Frank → Mary Ann Frank

John Smith → John F. Smith

Spelling

Differences

Honor → Honour

Behavior → Behaviour

Labor → Labour

Titles &

Honorifics

Mr. → Mister

Ms. → Miss

Dr. → Ph.D

Nicknames

Bill → William

Dave → David

Liz → Elizabeth

Truncated

Components

Ct. → Court

Ave. → Avenue

Rd. → Road

Initials &

Abbreviations

J. Smith → John Smith

Robo → Robo Inc.

Similar Names

ABC Co. → ABC Corporation

Robo LLC → Robo Inc.

In a constructive and systematic way the authors of this paper describe a six step approach to cleansing data and

performing fuzzy matching techniques.

SIX-STEP FUZZY MATCHING PROCESS

Step 1:

Determine the Likely Matching Variables.

Step 2:

Understand the Distribution of Data Values.

Step 3:

Perform Data Cleaning.

Step 4:

Perform Data Transformations.

Step 5:

Process Exact Matches.

Step 6:

Apply Fuzzy Matching Techniques.

4

STEP #1: DETERMINE THE LIKELY MATCHING VARIABLES

In this first step, the names, and attributes (metadata) of likely matching variables are produced. SAS’ CONTENTS

procedure is specified to produce the names and attributes of each variable to help determine whether any of the

variables can be used for matching purposes.

PROC CONTENTS Code:

PROC CONTENTS DATA=mydata.Movies_with_Messy_Data ;

RUN ;

PROC CONTENTS DATA=mydata.Actors_with_Messy_Data ;

RUN ;

Using the PROC CONTENTS listing, shown in Figure 2, the results of the TITLE variable’s metadata, along with the other

variables, is produced from both datasets. The Movies_with_Messy_Data dataset’s data structure consists of six

variables where Title, Category, Studio, and Rating are defined as character variables; and Length and Year are defined

as numeric variables. The Actors_with_Messy_Data dataset’s data structure consists of three character variables: Title,

Actor_Leading and Actor_Supporting.

Results:

Figure 2: CONTENTS procedure Output for Movies_with_Messy_Data and Actors_with_Messy_Data datasets.

STEP #2: UNDERSTAND THE DISTRIBUTION OF DATA VALUES

To derive a more accurate picture of the data sources, we suggest that users conduct extensive data analysis by

identifying missing values, outliers, invalid values, minimum and maximum values, averages, value ranges, duplicate

observations, distribution of values, and the number of distinct values a categorical variable contains. This important

step provides an understanding of the data, while leveraging the data cleaning and standardizing activities that will be

performed later. One of the first things data wranglers will want to do is explore the data using the SAS FREQ

procedure, or an equivalent approach like Excel Pivot Tables.

5

PROC FREQ Code:

PROC FREQ DATA=mydata.Movies_with_Messy_Data ;

 TABLES _ALL_ / NOCUM NOPERCENT MISSING ;

RUN ;

Reviewing the results, we see an assortment of data issues including “key” values and/or record duplication, data

accuracy, inconsistent values, missing values, validation, capitalization versus mixed case, and incomplete (partial)

data issues, as shown in Figure 3.

Results:

Figure 3: Distribution of Values from the FREQ Procedure.

Determining the number of distinct values a categorical variable has is critical to the fuzzy matching process. Acquiring

this information helps everyone involved better understand the number of distinct variable levels, the unique values

and the number of occurrences for developing data-driven programming constructs and elements. The following SAS

code provides us with the number of By-group levels for each variable of interest we see in Figure 4.

PROC FREQ Code:

TITLE "By-group NLevels in Movies_with_Messy_Data" ;

PROC FREQ DATA=mydata.Movies_with_Messy_Data NLEVELS ;

RUN ;

6

Results:

Figure 4: The number of By-group levels for each variable of interest

7

Figure 4: The number of By-group levels for each variable of interest, continued

STEP #3: PERFORM DATA CLEANING

Data cleaning, referred to as data scrubbing, is the process of identifying and fixing data quality issues including

missing values, invalid character and numeric values, outlier values, value ranges, duplicate observations, and other

anomalies found in datasets. SAS provides many powerful ways to perform data cleaning tasks (Cody, 2017).

8

Use SAS Functions to Modify Data

SAS functions are an essential component of the SAS Base software. Representing a variety of built-in and callable

routines, functions serve as the “work horses” in the SAS software providing users with “ready-to-use” tools designed

to ease the burden of writing and testing often lengthy and complex code for a variety of programming tasks. The

advantage of using SAS functions is evidenced by their relative ease of use, and their ability to provide a more

efficient, robust and scalable approach to simplifying a process or programming task.

It is sometimes necessary to concatenate fields when matching files, because the fields could be concatenated in one

file while separate in another. SAS functions span many functional categories, and this paper focuses on those that

are integral to the fuzzy matching process. The following is a list of alternative methods of concatenating strings

and/or variables together.

▪ Use the STRIP function to eliminate leading and trailing blanks, and then concatenate the stripped fields using

the concatenation operator, and insert blanks between the stripped fields.

▪ Use one of the following CAT functions to concatenate fields:

✓ CAT, the simplest of concatenation functions, joins two or more strings and/or variables together, end-

to-end producing the same results as with the concatenation operator.

✓ CATQ is similar to the CATX function, but the CATQ function adds quotation marks to any concatenated

string or variable.

✓ CATS removes leading and trailing blanks and concatenates two or more strings or variables together.

✓ CATT removes trailing blanks and concatenates two or more strings and/or variables together.

✓ CATX, perhaps the most robust CAT function, removes leading and trailing blanks and concatenates

two or more strings and/or variables together with a delimiter between each.

Explore Data Issues with SAS’ PROC FORMAT

Problems with inaccurately entered data often necessitate time-consuming validation activities. A popular technique

used by many to identify data issues is to use the FORMAT procedure. In the next example, a user-defined format is

created with PROC FORMAT, a SAS DATA step identifies data issues associated with the Category variable, and a SAS

PROC PRINT is specified to display the Category variable’s data issues, which are displayed in Figure 5.

PROC FORMAT, DATA Step and PROC PRINT Code:

PROC FORMAT LIBRARY=WORK ;

 VALUE $Category_Validation

 'Action' = 'Action'

 'Action Adventure' = 'Action Adventure'

 'Action Cops & Robber' = 'Action Cops & Robber'

 'Action Sci-Fi' = 'Action Sci-Fi'

 'Adventure' = 'Adventure'

 'Comedy' = 'Comedy'

 'Drama' = 'Drama'

 'Drama Mysteries' = 'Drama Mysteries'

 'Drama Romance' = 'Drama Romance'

 'Drama Suspense' = 'Drama Suspense'

 'Horror' = 'Horror'

 Other = 'ERROR - Invalid Category'

 /* Other identified categories not listed */

 ;

RUN ;

9

DATA Validate_Category ;

 SET mydata.Movies_with_Messy_Data ;

 Check_Category = PUT(Category,$Category_Validation.) ;

 IF Check_Category = 'ERROR - Invalid Category' THEN

 DO ;

 OUTPUT ;

 END ;

RUN ;

PROC PRINT DATA=work.Validate_Category

 NOOBS N ;

 TITLE "Validation Report for Movie Category Variable" ;

 VAR Category Title Rating Length Studio Year ;

RUN ;

Results:

Figure 5: Validation Report isolating Issues with the Movie Category Variable.

Once the invalid movie categories are identified with the validation report, users have the option of using one or more

data cleaning techniques to manually correct, automating the process, or applying fuzzy matching techniques to

correct (or handle) each invalid movie category.

Add Categories, if Available, to the Start of the Name

Doing this can eliminate matches that might occur if two businesses in the same general geographic area have the

same name (for example: Smith’s could describe a hardware store, a restaurant, or another type of business.) This is

done in Figure 1, where Category is in the third column.

Remove Special or Extraneous Characters

Punctuation can differ even when names or titles are the same. Therefore, we remove the following characters: ‘ “ &

? – from the movie title. For example, “National Lampoon’s Vacation” and “National Lampoons Vacation” refer to the

same movie title even though the former contains an apostrophe and the latter does not. Although the special

characters can be removed in a number of ways, the next example shows their removal from the Title variable in both

datasets using the COMPRESS function. The results are displayed in Figure 6.

Code to Remove Special Characters from Title and Perform Matching Process:

data work.Movies_Cleaned ;

 set mydata.Movies_with_messy_data ;

 where title NE ‘’ ;

 title =

 compress(Title,"'""&?-") ;/*Remove special chars from Title*/

run ;

title "Movies Dataset After Removing Special Characters" ;

10

proc print data=work.Movies_Cleaned ;

run ;

data work.Actors_Cleaned ;

 set mydata.Actors_with_messy_data ;

 where title NE ‘’ ;

 title =

 compress(Title,"'""&?-") ;/*Remove special chars from Title*/

run ;

title "Actors Dataset After Removing Special Characters" ;

proc print data=work.Actors_Cleaned ;

run ;

proc sql ;

 title "Matched Rows from Movies and Actors" ;

 select DISTINCT M.Title, Rating, Length, Actor_Leading

 from work.Movies_Cleaned M,

 work.Actors_Cleaned A

 where M.Title = A.Title ;

quit ;

Results:

 Figure 6: After the Removal of Special Characters and the Results from an Inner Join.

11

Put All Characters in Upper-case Notation and Remove Leading Blanks

Different data bases could have different standards for capitalization, and some character strings can be copied in

with leading blanks. As found in our example datasets the value contained in the Title variable can be stored as all

lower-case, upper-case, or in mixed-case which can impact the success of traditional merge and join matching

techniques. Consequently, to remedy the issue associated with case and leading blanks, we recommend using the

STRIP function to remove leading and trailing blanks along with the UPCASE function to convert all Title values to

uppercase characters. For users of other popular programming languages, there is generally an equivalent function, or

method, available to handle these types of issues.

Remove Words that might or might not Appear in Key Fields

Commonly used words in language, referred to as stop words, are frequently ignored by many search and retrieval

processes. Stop words are classified as irrelevant and, as a result, are inserted into stop lists and are ignored. Examples

include The, .com, Inc, LTD, LLC, DIVISION, CORP, CORPORATION, CO., and COMPANY. Some data base tables might

include these, while others might not.

Choose a Standard for Addresses

Address fields can present a challenge when analyzing and processing data sources. To help alleviate comparison

issues, decide whether to use Avenue or Ave, Road or Rd, Street or St, etc, and then convert the address fields

accordingly or create a user-defined lookup process using PROC FORMAT to match the standard values.

Rationalize Zip Codes when Matching Addresses, Use Geocodes when Available

We found it useful to remove the last 4 digits of 9-digit zip codes, because some files might only have 5-digit zip codes.

Since some files might have zip codes as numeric fields, and other files might have zip codes as character fields, make

sure to include leading zeroes. For example, zip codes with a leading zero, as in 08514, would appear in a numeric

field as 8514 requiring the leading zero to be inserted along with the specification of a Z5. informat and format being

assigned to the zip code variable.

If working with US zip codes, make sure they are all numeric. This may not apply for other countries. One common

mistake to watch for is that sometimes Canada, with abbreviation CA, is put in as the state CA (California) instead of

the country CA. Since Canada has an alphanumeric 6-character zip code, this, hopefully, will be caught when checking

for numeric zip codes.

If the program has access to geocodes, or if they are in the input data bases, geocodes can provide a further level of

validation in addition to the zip codes.

Specify the DUPOUT=, NODUPRECS, or NODUPKEYS Options

A popular and frequently used procedure, PROC SORT, identifies and removes duplicate observations from a dataset.

By specifying one or more of the SORT procedure’s three options: DUPOUT=, NODUPRECS, and NODUPKEYS, users

are able to control how duplicate observations are identified and removed.

PROC SORT’s DUPOUT= option is often used to identify duplicate observations before removing them from a dataset.

A DUPOUT= option, often specified when a dataset is too large for visual inspection, can be used with the NODUPKEYS

or NODUPRECS options to name a dataset that contains duplicate keys or entire observations. In the next example,

the DUPOUT=, OUT= and NODUPKEY options are specified to identify duplicate keys. The NODUPKEY option removes

observations that have the same key values, so that only one remains in the output dataset. The PROC SORT is

followed by the PROC PRINT procedure so that the results can be examined.

12

PROC SORT and PROC PRINT Code:

PROC SORT DATA=mydata.Movies_with_Messy_Data

 DUPOUT=work.Movies_Dupout_NoDupkey

 OUT=work.Movies_Sorted_Cleaned_NoDupkey

 NODUPKEY ;

 BY Title ;

 WHERE Title NE “” ;

RUN ;

PROC PRINT DATA=work.Movies_Dupout_NoDupkey ;

 TITLE “Observations Slated for Removal” ;

RUN ;

PROC PRINT DATA=work.Movies_Sorted_Cleaned_NoDupkey ;

 TITLE “Cleaned Movies Data Set” ;

RUN ;

The results of the above SAS code are shown in Figure 7. The NODUPKEY option retains only one observation from any

group of observations with duplicate keys. When Observations with identical key values are not adjacent to each

other, users may first need to specify the NODUPKEY or NODUPKEYS option and sort the dataset by all the variables

(BY _ALL_ ;) to ensure the observations are in the correct order to remove all duplicates (SAS Usage Note 1566, 2000;

Lafler, 2017).

Results:

Figure 7: Observations Slated for Removal and the Cleaned Movies Dataset.

13

Although the removal of duplicates using PROC SORT is a popular technique among many SAS users, an element of

care should be given to using this method when processing large datasets. Since sort operations can often be CPU-

intensive, the authors of this paper recommend comparing PROC SORT to procedures like SAS PROC SQL with the

SELECT DISTINCT keyword and/or SAS PROC SUMMARY with the CLASS statement to determine the performance

impact of one method versus another.

STEP #4: PERFORM DATA TRANSFORMATIONS

Data transformations can be required to compare files. Dataset structures sometimes need to be converted from wide

to long or long to wide and files may need to be reconciled by having their variables grouped in different ways. When

a dataset’s structure and data is transformed, we typically recommend that a new dataset be created from the original

one. SAS’ PROC TRANSPOSE is handy for restructuring data in a dataset, and is typically used in preparation for special

types of processing like array processing. In its simplest form, data can be transformed with or without grouping. In

the next example, the Movies dataset is first sorted in ascending order by the variable RATING then the sorted dataset

is transposed using the RATING variable as the by-group variable. The result is shown in Figure 8, and it gives all of the

titles within each rating.

PROC TRANSPOSE Code:

PROC SORT DATA=mydata.Movies_with_Messy_Data

 OUT=work.Movies_Sorted ;

 BY Rating ; /* BY-Group to Transpose */

 WHERE Title NE “” ;

RUN ;

PROC TRANSPOSE DATA=work.Movies_Sorted

 OUT=work.Movies_Transposed ;

 VAR Title ; /* Variable to Transpose */

 BY Rating ; /* BY-Group to Transpose */

RUN ;

PROC PRINT DATA=work.Movies_Transposed ;

RUN ;

Results:

Figure 8: Results from Performing a Data Transform with the TRANSPOSE Procedure.

STEP 5: PROCESS EXACT MATCHES

Since we are trying to match entries that do not have an exact match, we can save processing time by immediately

eliminating the observations (or rows) with missing key information. This can be accomplished in a number of ways,

including constructing IF-THEN/ELSE or WHERE logic to bypass processing observations with missing movie titles.

Another approach to bypass processing observations with missing movie titles could be to use the NODUP or

NODUPKEY parameter with SAS’ PROC SORT (more detail on these options will be presented later). Once missing

observations with missing keys are eliminated, the focus can then be turned to processing observations that have

14

exact matches on name, address, and as with our example datasets, the Title variable, as shown in Figure 9. We also

process and retain the observations that have mismatches on the Title variable, as shown in Figure 10; the

observations that did not have exact matches on the Title variable from the Movies dataset, as shown in Figure 11;

and the observations that did not have exact matches on the Title variable from the Actors dataset, as shown in Figure

12.

PROC SORT, DATA Step and PROC PRINT Code:

proc sort data=mydata.Actors_with_messy_data

 out=work.Actors_Sorted ;

 where Title NE "" ;

 by Title ;

run ;

proc sort data=mydata.Movies_with_messy_data

 out=work.Movies_Sorted ;

 where Title NE "" ;

 by Title ;

run ;

data work.Matches(DROP=Title)

 work.MisMatches(DROP=Title)

 work.Movies_with_Unmatched_Obs(KEEP=Title Length Category

 Year Studio Rating)

 work.Actors_with_Unmatched_Obs(KEEP=Title Actor_Leading

 Actor_Supporting) ;

 merge work.Movies_Sorted (IN=M)

 work.Actors_Sorted (IN=A) ;

 by Title ;

 if M then Title_from_Movies = Title ;

 if A then Title_from_Actors = Title ;

 if M and A then output work.Matches ;

 else if NOT M or NOT A then output work.MisMatches ;

 if M and NOT A then output work.Movies_with_Unmatched_Obs ;

 else if A and NOT M then

 output work.Actors_with_Unmatched_Obs ;

run ;

proc print data=work.Matches N ;

 title "Matched Observations with Missing Keys Eliminated" ;

 var Title_from_Movies Title_from_Actors Length Category Year

 Studio Rating Actor_Leading Actor_Supporting ;

run ;

proc print data=work.MisMatches N ;

 title "MisMatched Observations with Missing Keys Eliminated" ;

 var Title_from_Movies Title_from_Actors Length Category Year

 Studio Rating Actor_Leading Actor_Supporting ;

run ;

proc print data=work.Movies_with_Unmatched_Obs N ;

 title "Movies with UnMatched Observations" ;

 var Title Length Category Year Studio Rating ;

run ;

15

proc print data=work.Actors_with_Unmatched_Obs N ;

 title "Actors with UnMatched Observations" ;

 var Title Actor_Leading Actor_Supporting ;

run ;

Results:

Figure 9: Matched Observations.

Figure 10: Mismatched Observations.

16

Figure 11: UnMatched Movies Observations.

Figure 12: UnMatched Actors Observations.

STEP 6: MATCH KEY FIELDS USING FUZZY MATCHING TECHNIQUES

Once the data has been cleaned and transformed, a variety of fuzzy matching techniques are available for use. As

mentioned in (Dunn, 2014), these techniques are designed to be used in a systematic way when a reliable key

between data sources is nonexistent, inexact, or unreliable.

Fuzzy matching techniques are available with most, if not all, the leading software languages including R, Python, Java,

and others (RosettaCode, 2018). SAS Institute offers four techniques for its users: the Soundex (phonetic matching)

algorithm, and the SPEDIS, COMPLEV, and COMPGED functions to help make fuzzy matching easier and more effective

(Sloan and Lafler, 2018 and 2021).

APPLY THE SOUNDEX ALGORITHM

The Soundex (phonetic matching) algorithm involves matching files on words that sound alike. As one of the earliest

fuzzy matching techniques, Soundex was invented and patented by Margaret K. Odell and Robert C. Russell in 1918

and 1922 to help match surnames that sound alike. It is limited to finding phonetic matches and adheres to the

following rules when performing a search:

▪ Ignores case (case insensitive);

▪ Ignores embedded blanks and punctuations;

▪ Is better at finding English-sounding names.

17

Although the Soundex algorithm does a fairly good job with English-sounding names, it frequently falls short when

dealing with the multitude of data sources found in today’s world economy where English- and non-English sounding

names are commonplace. It also has been known to miss similar-sounding surnames like Rogers and Rodgers while

matching dissimilar surnames such as Smith, Snthe and Schmitt (Foley, 1999).

So, how does the Soundex algorithm work? As implemented, SAS determines whether a name (or a variable’s

contents) sounds like another by converting each word to a code. The value assigned to the code consists of the first

letter in the word followed by one or more digits. Vowels, A, E, I, O and U, along with H, W, Y, and non-alphabetical

characters do not receive a coded value and are ignored; and double letters (e.g., ‘TT’) are assigned a single code value

for both letters. The codes derived from each word conform to the letters and values are found in Table 1.

Table 1: Soundex Algorithm Rules

The general syntax of the Soundex algorithm takes the form of:

 Variable =* “character-string”

To examine how the movie title, Rocky, is assigned a value of R22, R has a value of 6 but is retained as R, O is ignored,

C is assigned a value of 2, K is assigned a value of 2, and Y is ignored. The converted code for “Rocky” is then matched

with any other name that has the same assigned code.

In the next example, we use the Soundex algorithm’s =* operator in a simple DATA step WHERE statement with the

work.Movies_with_Unmatched_Obs dataset created in Step #5 earlier, to find similar sounding Movie Titles.

DATA Step Code with SOUNDEX Algorithm:

DATA work.Soundex_Matches ;

 SET work.Movies_with_Unmatched_Obs ;

 WHERE Title =* “Michael” ;

RUN ;

PROC PRINT DATA=work.Soundex_Matches NOOBS ;

 TITLE “Soundex Algorithm Matches” ;

RUN ;

In the next example, the Soundex algorithm is illustrated using the =* operator in a simple SAS PROC SQL step with a

WHERE-clause to find similar sounding Movie Titles.

PROC SQL Code with SOUNDEX Algorithm:

proc sql ;

18

 select *

 from work.Movies_with_Unmatched_Obs

 where Title =* "Michael" ;

quit ;

The results from both SOUNDEX algorithm examples are displayed in Figure 13.

Results:

Figure 13: The result of the Soundex match for “Michael”

APPLY THE SPEDIS FUNCTION

The SPEDIS, or Spelling Distance, function and its two arguments evaluate possible matching scenarios by translating a

keyword into a query containing the smallest distance value. Because the SPEDIS function evaluates numerous

scenarios, it can experience varying performance issues in comparison to other matching techniques. The SPEDIS

function evaluates query and keyword arguments returning non-negative spelling distance values. A derived value of

zero indicates an exact match. Generally, derived values are less than 100, but, on occasion, can exceed 200. The

authors have used and recommend using the SPEDIS function to control the matching process by specifying spelling

distance values greater than zero and in increments of 10 (e.g., 10, 20, etc.).

So, how does the SPEDIS function work? As implemented, the SPEDIS function determines whether two names (or

variables’ contents) are alike by computing an asymmetric spelling distance between two words. The SPEDIS function

computes the costs associated with converting the keyword to the query, as illustrated in Table 2.

Table 2: SPEDIS Cost Rules

19

The general syntax of the SPEDIS function takes the form of:

 SPEDIS (query, keyword)

In this example, a simple DATA step with a WHERE statement shows the observations derived by the SPEDIS function

for finding exact matches for the Movie Title, “Michael”.

DATA Step Code with SPEDIS Function:

PROC PRINT DATA=work.Movies_with_Unmatched_Obs NOOBS ;

 TITLE "SPEDIS Function Matches" ;

 WHERE SPEDIS(Title,"Michael") LE 10 ;

RUN ;

In the next example, a simple PROC SQL query with a WHERE-clause and CALCULATED keyword is specified to capture

and show the observations derived by the SPEDIS function for finding exact matches for the Movie Title, “Michael”.

PROC SQL Code with SPEDIS Function:

PROC SQL ;

 TITLE “SPEDIS Function Matches” ;

 SELECT *,

 SPEDIS(Title,“Michael”) AS Spedis_Value

 FROM work.Movies_with_Unmatched_Obs

 WHERE CALCULATED Spedis_Value LE 10 ;

QUIT ;

The results from both SOUNDEX algorithm examples are displayed in Figure 14. Only “Michael” and “Micheal” were

chosen. This matches the result we obtained from the SOUNDEX inquiry displayed in Figure 13.

Results:

Figure 14: The result of a SPEDIS match for “Michael”

APPLY THE COMPLEV FUNCTION

The COMPLEV, or Levenshtein Edit Distance, function is another fuzzy matching SAS technique. COMPLEV counts the

minimum number of single-character insert, delete, or replace operations needed to determine how close two strings

are. Unlike the SPEDIS function and COMPGED function (discussed later), the COMPLEV function assigns a score for

each operation and returns a value indicating the number of operations. The general syntax of the COMPLEV function

takes the form of:

COMPLEV (string-1, string-2 <,cutoff-value> <,modifier>)

Required Arguments:

string-1 specifies a character variable, constant or expression.

string-2 specifies a character variable, constant or expression.

20

Optional Arguments:

cutoff-value specifies a numeric variable, constant or expression. If the actual Levenshtein edit distance is

greater than the value of cutoff, the value that is returned is equal to the value of cutoff.

modifier specifies a value that alters the action of the COMPLEV function. Valid modifier values are:

▪ i or I Ignores the case in string-1 and string-2.

▪ l or L Removes leading blanks before comparing the values in string-1 or string-2.

▪ n or N Ignores quotation marks around string-1 or string-2.

▪ : (colon) Truncates the longer of string-1 or string-2 to the length of the shorter string.

In Figure 15, below, we show the number of operations that are performed by the COMPLEV function as it compares

string-1 with string-2. As can be seen, the smaller the LEV_Score the better the match.

Figure 15: COMPLEV (Levenshtein Edit Distance) Number of Operations.

In the example below, we use the COMPLEV function to determine the best possible match with DRAMA. As

illustrated in Figure 16, the COMPLEV_Number column displays the number of operations that have been performed.

The lower the value the better the match (e.g., 0 = Best match, 1 = Next Best match, etc.). DRAMA matches itself for a

score of 0, and DRAMMA is the next best match with a score of 1.

PROC SQL Code with COMPLEV Function:

proc sql ;

 select M.Title,

 Rating,

 Length,

 Category,

 COMPLEV(M.Category,"Drama") AS COMPLEV_Number

21

 from work.Movies_with_Unmatched_Obs M

 order by M.Title ;

quit ;

Figure 16 shows the calculations for the Levenshtein Edit Distance for different spelling variations for ‘Drama’ in the

column, CATEGORY.

Results:

Figure 16: The results of a COMPLEV match with the category of Drama.

In the next example, the COMPLEV function’s computed value is limited to 1 or less using a WHERE-clause. The results

show the observation associated with the movie “The Hunt for Red October” in the string-1 argument matches the

value of “The Hunt for Red Oktober” in the string-2 argument, as shown in Figure 17.

PROC SQL Code with COMPLEV Function:

PROC SQL ;

 SELECT M.Title,

 A.Title,

 Rating,

 Category,

 Actor_Leading,

 Actor_Supporting,

 COMPLEV(M.Title,A.Title) AS COMPLEV_Score

 FROM work.Movies_with_Unmatched_Obs M,

 work.Actors_with_Unmatched_Obs A

 WHERE CALCULATED COMPLEV_Score LE 1

 ORDER BY M.TITLE ;

QUIT ;

Results:

Figure 17: The results of a COMPLEV match where the Number of Operations is 1 or less.

22

In the next example, the COMPLEV function has a modifier value of “INL” to ignore the case, remove leading blanks,

and ignore quotes around string-1 and string-2 and a value for the COMPLEV_Score of 1 or less. The results show the

observation associated with the movie “Ghost” in the argument for string-1 matches the value of “GHOST” in the

argument for string-2, and the observation associated with the movie “The Hunt for Red October” in the string-1

argument matches the value of “The Hunt for Red Oktober” in the string-2 argument, as shown in Figure 18.

PROC SQL Code with COMPLEV Function and Arguments:

PROC SQL ;

 SELECT M.Title,

 A.Title,

 Rating,

 Category,

 Actor_Leading,

 Actor_Supporting,

 COMPLEV(M.Title,A.Title,”INL”) AS COMPLEV_Score

 FROM work.Movies_with_Unmatched_Obs M,

 work.Actors_with_Unmatched_Obs A

 WHERE CALCULATED COMPLEV_Score LE 1

 ORDER BY M.TITLE ;

QUIT ;

Results:

Figure 18: The results of a COMPLEV match with arguments “INL” specified on pairs of titles.

APPLY THE COMPGED FUNCTION

The COMPGED function is another fuzzy matching technique which is facilitated by a SAS function. It works by

computing and using a Generalized Edit Distance (GED) score when comparing two text strings. The Generalized Edit

Distance score is a generalization of the Levenshtein edit distance, which is a measure of dissimilarity between two

strings (Teres, 2011). When using the COMPGED function to match datasets with unreliable identifiers (or keys), the

higher the GED score the less likely the two strings match (Sloan and Hoicowitz, 2016). Conversely, for the greatest

likelihood of a match with the COMPGED function users should seek the lowest derived score from evaluating all the

possible ways of matching string-1 with string-2.

The COMPGED function returns values that are multiples of 10, e.g., 20, 100, 200, etc. It’s been our experience, as well

as others, that most COMPGED scores of 100 or less are valid matches for the comparison that they are performing

(Cadieux and Bretheim, 2014). The COMPGED function compares two character strings, along with optional

parameters indicating whether the cases need to match, leading blanks or quotation marks need to be removed, and

longer strings should be truncated. The general syntax of the COMPGED function takes the form of:

COMPGED (string-1, string-2 <,cutoff-value> <,modifier>)

Required Arguments:

string-1 specifies a character variable, constant or expression.

string-2 specifies a character variable, constant or expression.

23

Optional Arguments:

cutoff-value specifies a numeric variable, constant or expression. If the actual generalized edit distance is

greater than the value of cutoff, the value that is returned is equal to the value of cutoff.

modifier specifies a value that alters the action of the COMPGED function. Valid modifier values are:

▪ i or I Ignores the case in string-1 and string-2.

▪ l or L Removes leading blanks before comparing the values in string-1 or string-2.

▪ n or N Ignores quotation marks around string-1 or string-2.

▪ : (colon) Truncates the longer of string-1 or string-2 to the length of the shorter string.

Table 3, below, shows the different point values that COMPGED assigns for changes from one character string to

another.

COMPGED Scoring Algorithm

Operation
Default Cost

in Units
Description of Operation

APPEND 50 When the output string is longer than the input string, add any one character to
the end of the output string without moving the pointer.

BLANK 10 Do any of the following:

• Add one space character to the end of the output string without moving
the pointer.

• When the character at the pointer is a space character, advance the pointer
by one position without changing the output string.

• When the character at the pointer is a space character, add one space
character to the end of the output string, and advance the pointer by one
position.

• If the cost for BLANK is set to zero by the COMPCOST function, the
COMPGED function removes all space characters from both strings before
doing the comparison.

DELETE 100 Advance the pointer by one position without changing the output string.

DOUBLE 20 Add the character at the pointer to the end of the output string without moving
the pointer.

FDELETE 200 When the output string is empty, advance the pointer by one position without
changing the output string.

FINSERT 200 When the pointer is in position one, add any one character to the end of the
output string without moving the pointer.

FREPLACE 200 When the pointer is in position one and the output string is empty, add any one
character to the end of the output string, and advance the pointer by one
position.

INSERT 100 Add any character to the end of the output string without moving the pointer.

MATCH 0 Copy the character at the pointer from the input string to the end of the output
string, and advance the pointer by one position.

PUNCTUATION 30 Do any of the following:

• Add one punctuation character to the end of the output string without
moving the pointer.

• When the character at the pointer is a punctuation character, advance the
pointer by one position without changing the output string.

• When the character at the pointer is a punctuation character, add one
punctuation character to the end of the output string, and advance the
pointer by one position.

24

REPLACE 100 Add any one character to the end of the output string, and advance the pointer
by one position.

SINGLE 20 When the character at the pointer is the same as the character that follows in
the input string, advance the pointer by one position without changing the
output string.

SWAP 20 Copy the character that follows the pointer from the input string to the output
string. Then copy the character at the pointer from the input string to the output
string. Advance the pointer two positions.

TRUNCATE 10 When the output string is shorter than the input string, advance the pointer by
one position without changing the output string.

Table 3: COMPGED scoring algorithm

An example of the scoring used in the SAS COMPGED function when matching string-1 with string-2, re-sorted from an

example available in the Help screen for the COMPGED function is displayed in Figure 19 (Sloan and Hoicowitz, 2016).

Figure 19: An example of the scoring used while matching on pairs of titles using the COMPGED function.

In the example below, traditional WHERE-clause logic with the UPCASE function is specified to equate the values of

string-1 with string-2. Although this approach is far less efficient and can be more time consuming than using

traditional data cleaning methods or the COMPGED function, the results show the value for the movie “Christmas

Vacation” in the string-1 argument matches the value of “XMAS Vacation” in the string-2 argument, as shown in Figure

20.

PROC SQL Code with Traditional WHERE-clause logic:

PROC SQL ;

 SELECT M.Title,

 A.Title,

 Rating,

25

 Category,

 Actor_Leading,

 Actor_Supporting

 FROM work.Movies_with_Unmatched_Obs M,

 work.Actors_with_Unmatched_Obs A

 WHERE UPCASE(A.Title) = "XMAS VACATION"

 AND UPCASE(M.Title) = "CHRISTMAS VACATION"

 ORDER BY M.TITLE ;

QUIT ;

Results:

Figure 20: The results of using traditional WHERE-clause logic on pairs of titles.

In the next example, the COMPGED function has a “cutoff-value” for the COMPGED_Score set at 100. The results show

the row associated with the movie “The Hunt for Red October” in the argument for string-1 matches the value of “The

Hunt for Red Oktober” in the argument for string-2, as shown in Figure 21.

PROC SQL Code with COMPGED Function:

PROC SQL ;

 SELECT M.Title,

 A.Title,

 Rating,

 Category,

 Actor_Leading,

 Actor_Supporting,

 COMPGED(M.Title,A.Title) AS COMPGED_Score

 FROM work.Movies_with_Unmatched_Obs M,

 work.Actors_with_Unmatched_Obs A

 WHERE CALCULATED COMPGED_Score LE 100

 ORDER BY M.TITLE ;

QUIT ;

Results:

Figure 21: The results of a COMPGED match on pairs of titles.

In the next example, the COMPGED function has a modifier value of “INL” to ignore the case, remove leading blanks,

and ignore quotes around string-1 and string-2 and a “cutoff-value” for the COMPGED_Score set at 100. The results

show the row associated with the movie “Ghost” in the argument for string-1 matches the value of “GHOST” in the

argument for string-2, as shown in Figure 22.

PROC SQL Code with COMPGED Function and Arguments:

PROC SQL ;

 SELECT M.Title,

 A.Title,

 Rating,

 Category,

26

 Actor_Leading,

 Actor_Supporting,

 COMPGED(M.Title,A.Title,’INL’) AS COMPGED_Score

 FROM work.Movies_with_Unmatched_Obs M,

 work.Actors_with_Unmatched_Obs A

 WHERE CALCULATED COMPGED_Score LE 100

 ORDER BY M.TITLE ;

QUIT ;

Results:

Figure 22: The results of a COMPGED match with arguments on pairs of titles.

SUMMARY OF FUZZY MATCHING TECHNIQUES

A summary and comparison of fuzzy matching techniques is illustrated, below.

PROC SQL Code with Summary of Fuzzy Matching Techniques:

PROC SQL ;

 SELECT Title

 , Length

 , Category

 , Rating

 , SOUNDEX(Title) AS SOUNDEX_Value

 , SPEDIS(Title,'Michael') AS SPEDIS_Value

 , COMPLEV(Title,'Michael') AS COMPLEV_Value

 , COMPGED(Title,'Michael') AS COMPGED_Value

 FROM MYDATA.Movies_with_Messy_Data

 WHERE CALCULATED SPEDIS_Value GE 0

 AND CALCULATED COMPLEV_Value GE 0

 AND CALCULATED COMPGED_Value GE 0

 ORDER BY Title ;

QUIT ;

27

Results:

Figure 23: Summary of fuzzy matching techniques.

Use the Lower Score

For those fuzzy matching techniques that are not commutative (it matters which dataset is placed first and which is

placed second), use the lower score that results from the different sequences.

Eliminate Entries where the Word Counts are Significantly Different

Eliminate entries where the word counts are significantly different (the level of significance will be determined based

on the datasets being compared).

VALIDATION

As can be seen when comparing the SOUNDEX and SPEDIS methods, and when looking at the results of COMPLEV and

COMPGED, these methods worked well on a test dataset that was designed to illustrate the results. It should be noted

that the authors found the COMPLEV function to be best used when comparing simple strings where data sizes and/or

speed of comparison is important, such as when working with large datasets. It should also be noted that generalized

edit distance computations such as SAS’ COMPGED function requires more processing time to complete due to its

more exhaustive and thorough capabilities.

Research was conducted on 50,000 business names to manually identify fuzzy matches using SAS’ COMPGED function

(Sloan and Hoicowitz, 2016). The intent of the study was to identify false negatives by looking at an alphabetic sort of

the business names. From the extracted test files the authors identified false positives. Finally, the conditions that

were specified in the COMPGED function were repeated until the false positives and false negatives were significantly

reduced. This then became part of the fuzzy matching process by efficiently achieving improved results.

28

CONCLUSION

When data originating from multiple sources contain duplicate observations, duplicate and/or unreliable keys, missing

values, invalid values, capitalization and punctuation issues, inconsistent matching variables, and imprecise text

identifiers, the matching process is often compromised by unreliable and/or unpredictable results. This paper

demonstrates a five-step approach including identifying, cleaning and standardizing data irregularities, conducting

data transformations, and utilizing special-purpose programming techniques such as the application of SAS functions,

the SOUNDEX algorithm, the SPEDIS function, approximate string matching functions including COMPGED and

COMPLEV, and an assortment of constructive programming techniques to standardize and combine datasets together

when the matching columns are unreliable or less than perfect.

REFERENCES

Cadieux, Richard and Daniel R. Brethiem (2014). “Matching Rules: Too Loose, Too Tight, or Just Right?”, Proceedings of
the 2014 SAS Global Forum (SGF) Conference.

Cody, Ron (2017). “Cody’s Data Cleaning Techniques Using SAS®, Third Edition”, SAS Press, SAS Institute, Cary, NC.

Dunn, Toby (2014). “Getting the Warm and Fuzzy Feeling with Inexact Matching”, Proceedings of the 2014 SAS Global
Forum (SGF) Conference.

Foley, Malachy J. (1999). “Fuzzy Merges: Examples and Techniques”, Proceedings of the 1999 SAS Users Group
International (SUGI) Conference.

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul and Stephen Sloan (2019). “Fuzzy Matching Programming Techniques Using SAS® Software”,

Proceedings of the 2019 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul and Stephen Sloan (2017). “Fuzzy Matching Programming Techniques Using SAS® Software”,

Proceedings of the 2017 South Central SAS Users Group (SCSUG) Conference.

Lafler, Kirk Paul and Stephen Sloan (2017). “A Quick Look at Fuzzy Matching Programming Techniques Using SAS®

Software”, Proceedings of the 2017 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul (2017). “Removing Duplicates Using SAS®”, Proceedings of the 2017 South Central SAS Users Group

(SCSUG) Conference.

Lafler, Kirk Paul (2016). “Removing Duplicates Using SAS®”, Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Patridge, Charles (1997). “The Fuzzy Feeling SAS Provides: Electronic Matching of Records without Common Keys”,
Proceedings of the 1997 SAS Users Group International (SUGI) Conference.

Russell, Kevin (January 27, 2015). “How to Perform a Fuzzy Match Using SAS Functions”. blogs.sas.com.

Roesch, Amanda (2012). “Matching Data Using Sounds-Like Operators and SAS® Compare Functions”, Proceedings of
the 2012 SAS Global Forum (SGF) Conference.

Sloan, Stephen and Kirk Paul Lafler (2022). “A Quick Look at Fuzzy Matching Programming Techniques Using SAS®

Software”, Proceedings of the 2022 PharmaSUG Conference.

Sloan, Stephen and Kirk Paul Lafler (2020). “Fuzzy Matching Programming Techniques Using SAS® Software”,

Proceedings of the 2020 PharmaSUG Conference.

Sloan, Stephen and Dan Hoicowitz (2016). “Fuzzy Matching: Where Is It Appropriate and How Is It Done? SAS Can
Help.”, Proceedings of the 2016 SAS Global Forum (SGF) Conference.

Staum, Paulette (2007). “Fuzzy Matching using the COMPGED Function”, Proceedings of the 2007 NorthEast SAS Users
Group (NESUG) Conference.

Teres, Jedediah J. (2011). “Using SQL Joins to Perform Fuzzy Matches on Multiple Identifiers”, Proceedings of the 2011
NorthEast SAS Users Group (NESUG) Conference.

http://support.sas.com/resources/papers/proceedings14/1674-2014.pdf
https://www.sas.com/store/books/categories/usage-and-reference/cody-s-data-cleaning-techniques-using-sas-third-edition/prodBK_70074_en.html
http://support.sas.com/resources/papers/proceedings14/1316-2014.pdf
http://www2.sas.com/proceedings/sugi24/Advtutor/p46-24.pdf
https://www.amazon.com/PROC-SQL-Beyond-Basics-Using/dp/163526684X/ref=asc_df_163526684X/?tag=hyprod-20&linkCode=df0&hvadid=343251570619&hvpos=&hvnetw=g&hvrand=16509524140472745525&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9031280&hvtargid=pla-695807648063&psc=1&tag=&ref=&adgrpid=67797266623&hvpone=&hvptwo=&hvadid=343251570619&hvpos=&hvnetw=g&hvrand=16509524140472745525&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9031280&hvtargid=pla-695807648063
https://www.lexjansen.com/scsug/2017/Fuzzy-Matching-Programming-Techniques-Using-SAS-Software-SCSUG-2017.pdf
https://www.lexjansen.com/scsug/2017/Fuzzy-Matching-Programming-Techniques-Using-SAS-Software-SCSUG-2017.pdf
https://www.lexjansen.com/wuss/2017/129_Final_Paper_PDF.pdf
https://www.lexjansen.com/wuss/2017/129_Final_Paper_PDF.pdf
https://www.lexjansen.com/scsug/2017/Removing-Duplicates-Using-SAS-SCSUG-2017.pdf
http://www.lexjansen.com/mwsug/2016/TT/MWSUG-2016-TT02.pdf
http://www2.sas.com/proceedings/sugi22/APPDEVEL/PAPER28.PDF
http://blogs.sas.com/content/sgf/2015/01/27/how-to-perform-a-fuzzy-match-using-sas-functions/
http://support.sas.com/resources/papers/proceedings12/122-2012.pdf
https://www.lexjansen.com/pharmasug/2022/AP/PharmaSUG-2022-AP-030.pdf
https://www.lexjansen.com/pharmasug/2022/AP/PharmaSUG-2022-AP-030.pdf
https://www.lexjansen.com/pharmasug/2020/AP/PharmaSUG-2020-AP-073.pdf
http://support.sas.com/resources/papers/proceedings16/7760-2016.pdf
http://support.sas.com/resources/papers/proceedings16/7760-2016.pdf
http://www.lexjansen.com/nesug/nesug07/ap/ap23.pdf
http://www.lexjansen.com/nesug/nesug11/ps/ps07.pdf

29

“Transforming SAS Data Sets”, (2000). http://www.rhoworld.com/pdf/ch599.pdf.

Zirbel, Douglas (2009). “Learn the Basics of PROC TRANSPOSE”, Proceedings of the 2009 SAS Global Forum (SGF)
Conference.

ACKNOWLEDGMENTS

The authors thank the SESUG 2023 Conference Committee, particularly the Statistics, Analytics, and Reporting Section

Chairs, Abbas Tavakoli and Mostafa Zahed, for accepting our paper; the SESUG 2023 Academic Chair, Mel Alexander,

and the Operation Chair, Kelly Smith, for organizing and supporting a great “live” conference event; SAS Institute Inc.

for providing SAS users with wonderful software; and SAS users everywhere for being the nicest people anywhere!

TRADEMARK CITATIONS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute

Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of

their respective companies.

CONTACT INFORMATION

Stephen has worked at Accenture in the Services, Consulting, and Digital groups and is currently a senior manager in

the SAS Analytics area. He has worked in a variety of functional areas including Project Management, Data

Management, and Statistical Analysis. Stephen has had the good fortune to have worked with many talented people

at SAS Institute. Stephen has presented at over 20 SAS conferences and been published in professional

journals. Stephen has a B.A. cum laude with Honor in Mathematics from Brandeis University, M.S. degrees in

Mathematics and Computer Science from Northern Illinois University, an MBA from Stern Business School at New York

University. Stephen graduated 1st in his class with a graduate certificate in Financial Analytics from Stevens Institute.

Kirk Paul Lafler is an educator, developer, programmer, consultant, and data analyst; currently working as a lecturer

and adjunct professor at San Diego State University and the University of California San Diego Extension; and teaching

SAS, SQL, Python, Excel, and cloud-based technology courses to users around the world. Kirk has decades of

programming experience and specializes in SAS software, SQL, RDBMS technologies (Oracle, SQL-Server, Teradata,

DB2), Python, and other languages and productivity tools. Kirk is the author of the popular PROC SQL: Beyond the

Basics Using SAS, Third Edition (SAS Press. 2019) and is actively involved with SAS, SQL, Python, R, ML, and cloud-

computing user groups, conferences, and blogs as an Invited speaker, educator, keynote, and leader; and is the

recipient of 27 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions may be sent to:

Stephen Sloan

Data Science Senior Principal
Accenture

E-mail: Stephen.B.Sloan@accenture.com

Kirk Paul Lafler
SAS® / SQL / RDBMS / Python / Excel / Cloud-based Developer, Programmer, Consultant,

Educator, Data Analyst, and Author
sasNerd

E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler

Twitter: @sasNerd

http://www.rhoworld.com/pdf/ch599.pdf
http://support.sas.com/resources/papers/proceedings09/060-2009.pdf
mailto:Stephen.B.Sloan@accenture.com
mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler

