SESUG Paper 132-2023
A Quick Look at Fuzzy Matching Programming
Techniques Using SAS® Software

Stephen Sloan, Data Science Senior Principal, Accenture
Kirk Paul Lafler, sasNerd

ABSTRACT

Data comes in all forms, shapes, sizes and complexities. Stored in files and datasets, SAS® users across industries
recognize that data can be, and often is, problematic and plagued with a variety of issues. Data files can be joined
without problem when each file contains identifiers, or “keys”, with unique values. However, many files do not have
unique identifiers and need to be joined by character values, like names or E-mail addresses. These identifiers might
be spelled differently, or use different abbreviation or capitalization protocols. This paper illustrates datasets
containing a sampling of data issues, popular data cleaning and user-defined validation techniques, data
transformation techniques, traditional merge and join techniques, the introduction to the application of different SAS
character-handling functions for phonetic matching, including SOUNDEX, SPEDIS, COMPLEV, and COMPGED, and an
assortment of SAS programming techniques to resolve key identifier issues and to successfully merge, join and match
less than perfect, or “messy” data. Although the programming techniques are illustrated using SAS code, many, if not
most, of the techniques can be applied to any software platform that supports character-handling.

Keywords: Fuzzy matching, SAS, character-handling functions, phonetic matching, SOUNDEX, SPEDIS, edit distance,
Levenshtein, COMPLEV, COMPGED

INTRODUCTION

When data sources contain consistent and valid data values, share common unique identifier(s), and have no missing
data, the matching process rarely presents any problems. But, when data originating from multiple sources contain
duplicate observations, duplicate and/or unreliable keys, missing values, invalid values, capitalization and punctuation
issues, inconsistent matching variables, and imprecise text identifiers, the matching process can be compromised by
unreliable and/or unpredictable results. Users are faced with cleaning and standardizing any and all data irregularities
before attempting to match and process data. To assist in this time-consuming and costly process, users frequently
turn to using special-purpose programming techniques including the application of approximate string matching
and/or an assortment of constructive programming techniques to standardize and combine datasets together.

DATASETS USED IN EXAMPLES

The examples presented in this paper illustrate two datasets, Movies_with_Messy_Data and
Actors_with_Messy_Data. The Movies_with_Messy_Data dataset, illustrated in Figure 1a, consists of 31 observations,
a data structure of six variables where Title, Category, Studio, and Rating are defined as character variables; and
Length and Year are defined as numeric variables. After careful inspection several data issues can be found in this
dataset including the existence of missing data, duplicate observations, spelling errors, punctuation inconsistencies,
and invalid values.

The Actors_with_Messy_Data dataset, illustrated in Figure 1b, contains 15 observations and a data structure
consisting of three character variables: Title, Actor_Leading and Actor_Supporting. As with the
Movies_with_Messy_Data dataset, several data issues are found including missing data, spelling errors, punctuation
inconsistencies, and invalid values.

Figure 1a: Movies_with_Messy_Data dataset.

THE MATCHING PROCESS EXPLAINED
In an age of endless spreadsheets, apps and relational database management systems (RDBMS), it’s unusual to find a

Title ‘ Length | Category Year Studio | Rating |
1 Brave Heart 177 Action Adventure 1955 Paramount Pictures R
2 Brave Heart 177 Acton Adventure 1555 Paramort Pictures R
3 Casablanca 103 Drama 1542 MGM / UA PG
4 Christmas Vacation 57 Comedy 1585 Wamer Brothers PG-13
b5 Coming to America 116 Comedy 1588 Paramount Pictures R
6 Dracula 130 Homor 1993 Columbia TriStar R
7 Dressed to Kil 105 Drama Mysteries 1580 Fimways Pictures R
8 Fomest Gump 142 Drama 1554 Paramount Pictures PG-13
Fomest Gump 143 Drama 1554 Paramount Pictures PG-13
Ghost 127 Drama Romance 1990 Paramount Pictures PG-13
Jaws 125 Action Adventure 1975 Universal Studios PG
Jurassic Park 127 Action 1993 Universal Pictures FG-13
Lethal Weapon 110 Action Cops & Robber 1587 Wamer Brothers R
14 Michae! 106 Drama 1557 Wamer Bros PG-13
15 National Lampoon’s Vacation 58 Comedy 1583 Wamer Brothers PG-13
16 Poltergsist 115 Homor 1582 MGM / UA PG
17 Rocky 120 Action Adverture 15976 MGM / UA PG
18 Scaface 170 Action Cops & Robber 1583 Universal Studios r
19 Silence of the Lambs 118 Drama Suspense 1591 Orion R
Star Wars 124 Action Sci-Fi 1577 Lucas Film Ltd PG
The Hurt for Red October 135 Action Adverture 1989 Paramourt Pictures ~ GP
The Teminator 108 Action Sci-Fi 1984 Live Entertainment R
The Wizard of Oz 101 Adverture 1939 MGM / UA G
The Wizard of Ozz 102 Adverture 1535 MGM - UA g
Titanic 194 Dramma Romance 1997 Paramount Pictures ~ PG-13
Rocky 120 Action Adventure 1576 MGM / UA PG
Fomest Gumpp 143 Dramma 1994 Paramont Pictures PG13
Christmas Vacatiion 57 Commedy 1585 Wamer Brothers PG-13
National Lampoons Yacation 58 Comedy 1583 Wamer Brothers PG-13
Micheal 106 Drama 1557 Wamer Brothers PG-13
177 Acton Adventure 1555 Paramort Pictures R

Title Actor_Leading | Actor_Supporting
1 Brave Heart Mel Gibson Sophie Marceau
2 XMAS Vacation Chevy Chase Bevery D'Angelo
3 Coming to America Eddie Murphy Arsenio Hall
4 Fomest Gump Tom Hanks Sally Field
b GHOST Patrick Swayze Demi Moare
[Lethal Weapon Mel Gibson Danny Glover
7 Michael John Travolta Andie MacDowell
8 National Lampoon's Vacation Chevy Chase Bevery D'Angelo
9 Rocky Sylvester Stallone Talia Shirs
10 Silence of the Lambs Anthony Hopkins Jodie Foster
11 The Hurt for Red Oktober Sean Connery Alec Baldwin
12 The Teminator Amold Schwarzenegge Michael Biehn
13 Titanic Leonardo DiCaprio Kate Winslet
14 Mell Gibson Sophie Marceau
15 Mational Lampoons Vacation Chevy Chase Eevery D'Angelo

Figure 1b: Actors_with_Messy_Data dataset.

single sheet, file, table or dataset that contains all the data needed to answer an organization’s questions. Today’s

data exists in many forms and all too often involves matching two or more data sources to create a combined file. The

matching process typically involves combining two or more datasets, spreadsheets and/or files possessing a shared,

common and reliable, identifier (or key) to create a single dataset, spreadsheet and/or file. The matching process,

illustrated in the following diagram, shows two tables with a key, Title, to combine the two tables together.

T Title
Length
Category
Year
Studio
Rating

< Title

Actor_Leading

Actor_Supporting

But, when a shared and reliable key is associated with input data sources that are nonexistent, inexact, or unreliable,

the matching process often becomes more involved and problematic. As cited in Sloan and Hoicowitz (2016), special

processes are needed to successfully match the names, addresses and other content from different files when they

are similar, but not exactly the same. SAS users have a variety of methods and techniques at their disposal to help

solve different name matching issues. In the following table, a number of potential matching challenges are illustrated

when dealing with data sources.

Phonetic
Similarity
Michael €-> Micheal
Smith € Smythe

Missing Spaces
& Hyphens

Mary Ann €= MaryAnn
Mary-Ann €-> Mary-Anne

Missing Components

Mary Frank €-> Mary Ann Frank
John Smith <- John F. Smith

Spelling
Differences
Honor €= Honour

Behavior €= Behaviour
Labor €= Labour

Titles &
Honorifics
Mr. €= Mister

Ms. €= Miss
Dr. € Ph.D

Nicknames

Bill €> William
Dave €= David
Liz €~ Elizabeth

Truncated
Components
Ct. €= Court

Ave. €= Avenue
Rd. €= Road

Initials &
Abbreviations

J. Smith €= John Smith
Robo €<= Robo Inc.

Similar Names

ABC Co. €~ ABC Corporation
Robo LLC €= Robo Inc.

In a constructive and systematic way the authors of this paper describe a six step approach to cleansing data and

performing fuzzy matching techniques.

SIX-STEP FUZZY MATCHING PROCESS

Step 1:

Determine the Likely Matching Variables.

Step 2:

Understand the Distribution of Data Values.

Step 3:
Perform Data Cleaning.

Step 4:
Perform Data Transformations.

Step 5:
Process Exact Matches.

Step 6:
Apply Fuzzy Matching Techniques.

Determine
Matching
Scenarios

Understand
Data Values
Distribution

Data
Cleaning

Data
Transformation

Exact
Matching
Processing

Fuzzy
Matching
Processing

STEP #1: DETERMINE THE LIKELY MATCHING VARIABLES

In this first step, the names, and attributes (metadata) of likely matching variables are produced. SAS’ CONTENTS
procedure is specified to produce the names and attributes of each variable to help determine whether any of the
variables can be used for matching purposes.

PROC CONTENTS Code:
PROC CONTENTS DATA=mydata.Movies_with_Messy_Data ;
RUN ;
PROC CONTENTS DATA=mydata.Actors_with_Messy_Data ;
RUN ;

Using the PROC CONTENTS listing, shown in Figure 2, the results of the TITLE variable’s metadata, along with the other
variables, is produced from both datasets. The Movies_with_Messy_Data dataset’s data structure consists of six
variables where Title, Category, Studio, and Rating are defined as character variables; and Length and Year are defined
as numeric variables. The Actors_with_Messy_Data dataset’s data structure consists of three character variables: Title,
Actor_Leading and Actor_Supporting.

Results:
The CONTENTS Procedure

Data Set Name

MYDATAMOVIES _WITH_MESSY_DATA

Observations

kil

Member Type DATA Variables 51 Alphabetic List of Variables and Attributes
Engine Ve Indexes o # | Variable Type Len
Created 04/19/2017 15:58:28 Observation Length as 3 | Category Char 20
Last Madified 04/18/2017 18:57:05 Deleted Observations | 0 2 | Length Murm 3
Protection Compressed MO & | Rating Char 5
Data Set Type Sorted MO 5 | Studio Char 25
Label 1 | Title Char 30
Data Representation | WINDOWS_64 4 | Year Mum 4
Encoding wiatin1 Western (Windows)

The CONTEMNT 5 Procedure
Data Set Name MYDATAACTORS_WITH_MESSY_DATA | Observations 15
Member Type DATA Variables 3
Engine WE Indexes W] Alphabetic List of Variables and Attributes
Created 04/18/2017 13:41:42 Observation Length 70 # | Variable Type Len
Last Modified 04/17/2017 04:17:43 Deleted Observations | O 2 | Agtar_Leading Char 20
Protection Compressed MO 3 | Actor_Supporting Char 20
Data Set Type Sorted MO 1 | Title Char 20

Label
Data Representation
Encoding

WINDOWS_G4

wiatin1 Western (Windows)

Figure 2: CONTENTS procedure Output for Movies_with_Messy_Data and Actors_with_Messy_Data datasets.

STEP #2: UNDERSTAND THE DISTRIBUTION OF DATA VALUES

To derive a more accurate picture of the data sources, we suggest that users conduct extensive data analysis by
identifying missing values, outliers, invalid values, minimum and maximum values, averages, value ranges, duplicate
observations, distribution of values, and the number of distinct values a categorical variable contains. This important
step provides an understanding of the data, while leveraging the data cleaning and standardizing activities that will be
performed later. One of the first things data wranglers will want to do is explore the data using the SAS FREQ
procedure, or an equivalent approach like Excel Pivot Tables.

PROC FREQ Code:
PROC FREQ DATA=mydata.Movies_with_Messy_Data ;
TABLES _ALL_ / NOCUM NOPERCENT MISSING ;
RUN ;

Reviewing the results, we see an assortment of data issues including “key” values and/or record duplication, data
accuracy, inconsistent values, missing values, validation, capitalization versus mixed case, and incomplete (partial)
data issues, as shown in Figure 3.

Results:
Title Frequency Length = Frequency Category Frequency Year | Frequency
1 a7 z Action 1 R 2
Brave Heart 2 98 Z Action Adventure 8 s 1
Casablanca 1 101 1 Action Cops & Robber 2 1978 1
Christmas Vacatiion 1 102 1 Action Sci-Fi 2 s 2
1977 1
Christmas Vacation 1 103 1 Acton Adventurs 2
1980 1
Coming to America 1 109 1 Adventure 2 1932 p
Dracula 1 106 2 Comedy 4 P .
Dressed to Kill 1 L ! Commedy ! B p
110 1 Drama 5
Forrest Gump 2 1987 1
115 1 Drama Mysteries 1
Forrest Gumpp 1 Y 1928 1
Drama Romance 1
Ghost 1 118 ! 1929 3
118 1 Drama Suspense 1
Jaws 1 o 1 1990 1
120 2 ramma
Jurassic Park 1 Bt 1
124 1 Dramma Romance 1 1992 2
Lethal Weapon 1
125 1 Horror 2 1994 3
Michael 1
127 2 1995 3
Micheal 1
120 1 Studio Frequency 1997 3
Mational Lampoon's Vacation 1 135 1 Columbia TriStar P
Mational Lampoons Vacation 1 142 1 Filmways Pictures 1 P e —
Poltergeist 1 143 2 Live Entertainment 1 3 p
Lucas Film Ltd 1
Roely : 170 ! MGM - UA 1 o 1
Scarface 1 177 3 o /A s PG 8
Silence of the Lambs 1 194 1 FERE 1
oo 1 PG12 1
S 1 Paramont Pictures 3 R g
The Hunt for Red October 1 Paramount Pictures 7 a ;
The Terminator 1 Universal Pictures 1 - 1
The Wizard of Oz 1 Universal Studios 2
- W Bi 1
The Wizard of Ozz 1 armerros
Warner Brothers]
Titanic 1

Figure 3: Distribution of Values from the FREQ Procedure.

Determining the number of distinct values a categorical variable has is critical to the fuzzy matching process. Acquiring
this information helps everyone involved better understand the number of distinct variable levels, the unique values
and the number of occurrences for developing data-driven programming constructs and elements. The following SAS
code provides us with the number of By-group levels for each variable of interest we see in Figure 4.

PROC FREQ Code:
TITLE "By-group NLevels in Movies_with_Messy_Data" ;
PROC FREQ DATA=mydata.Movies_with_Messy_Data NLEVELS ;
RUN ;

Results:

By-group NLevels in Movies_with_Messy Data

The FREQ Procedurs

Number of Variable Levels

Variable | Levels @ Missing Levels Monmissing Levels

Title 8 1 27
Length 23 0 23
Category 15 a 15
Year 18 a 12
Studio 13 0 13
Rating 8 4] 3
Cumulative
Title Fregquency | Percent = Freguency
Brave Heart 2 6.87 2
Casablanca 1 233 3
Christmas Vacatiion 1 3.33 4
Christmas Vacation 1 333 5
Coming to America 1 333]
Dracula 1 333 7
Dressed to Kill 1 3.33 &
Forrest Gump 2 6.87 10
Forrest Gumpp 1 333 11
Ghost 1 3.33 12
Jaws 1 333 13
Jurassic Park 1 333 14
Lethal Weapon 1 3.33 15
Michael 1 3.33 18
Micheal 1 333 17
Mational Lampoon's Vacation 1 333 18
Mational Lampoons Vacation 1 3.33 18
Poltergeist 1 233 20
Rocky 2 6.87 22
Scarface 1 233 23
Silence of the Lambs 1 233 24
Star Wars 1 233 25
The Hunt for Red October 1 233 26
The Terminator 1 333 a7
The Wizard of Oz 1 233 28
The Wizard of Ozz 1 333 ek}
Titanic 1 233 30

Frequency Missing = 1

Cumulative
Percent

8.87
10.00
13.33
18.67
20.00
2333
2867
33.33
3867
40.00
43.33
4867
S0.00
53.33
5867
B0.00
B83.33
8867
73.23
TB.ET
20.00
23.33
28.67
20.00
93.23
2867

100.00

Length
a7
o8

101
102
103
105
106
108
110
115
116
118
120
124
125
127
130
135
142
143
170
177
154

Figure 4: The number of By-group levels for each variable of interest

Frequency
2
2
1

Percent
8.45
8.45
323
3za
323
323
8.45
323
3za
323
3za
323
.45
3za
323
8.45
3.23
323
3za
.45
3za
g.68
323

Cumulative
Frequency

2
4
5
=]

-

Cumulative
Percent

545
12.80
16.13
19.35
2258
2581
3226
3548
38T
4184
4516
42.39
54.84
58.06
8129
a7.74
T0.87
7419
TTAZ
83.87
a7.10
8e.77

100.00

Cumulative | Cumulative

Studio Frequency @ Percent | Frequency Percent
Columbia Tri5Star 1 3.23 1 323
Filmways Pictures 1 3.23 2 5.45
Tl | (Bl Live Entertainment 1 3.23 3 5.68
Category Frequency Percent | Frequency Percent
3 Lucas Film Ltd 1 3.23 4 12.80
Action 1 323 1 323
- MGM - UA 1 3.23 5 18.13
Action Adventure 5 18.13 i} 18.35
MGM I UA 5 18.13 10 32.28
Action Cops & Robber 2 8.45] 2581
3 A Orion 1 3.23 11 35.48
Action Sci-Fi 2 8.45 10 32.26
Paramont Pictures 3 868 14 45.18
Acton Adventure 2 8.45 12 3T
Adventure 5 8.45 14 4516 Paramount Pictures T 2258 21 67.74
Comedy 4 1200 12 52.06 Universal Pictures 1 3.23 22 T0.97
Universal Studios 2 G.45 24 TT.42
Commedy 1 323 19 @1.20
Drama 5 1813 24 77 4z Warner Bros 1 3.23 25 80658
W Brothe: 6 18.35 3 100.00
Drama Mysteries 1 323 25 B0.65 arner Brothers
Drama Romance 1 3.23 268 B3.E87
Drama Suspense 1 3.23 27 87.10
Cumulative | Cumulative
LEmmE 1 3.23 28 80.32 Rating = Frequency Percent | Frequency Percent
Dramma Romance 1 323 28 B3.85 G 1 3.23 1 323
Horror 2 8.45 31 100.00 GP 1 323 z B.A5
PG 8 1835] 25.81
PG-12 L] 3548 19 81.20
PG12 1 3.23 20 84.52
R g 28.03 28 B3.55
g 1 3.23 30 8577
r 1 3.23 eyl 100.00
Cumulative | Cumulative
Year Frequency | Percent | Freguency Percent
1939 2 G.45 2 8.45
1942 1 323 3 868
1975 1 323 4 12.20
1976 2 6.45 <] 18.25
1977 1 3.23 T 2258
1580 1 323 g8 2581
1582 1 323 8 28.03
1583 3 9.88 12 287
1584 1 323 13 41.0¢
1987 1 3.23 14 45.18
1588 1 323 15 4828
1589 3 9.88 18 58.08
1590 1 323 18 81.28
1991 1 323 20 54.52
19932 2 6.45 22 T0.97
1594 3 9.88 25 a0.65
1995 3 9.88 28 20.32
1997 3 9.88 £ 3] 100.00

Figure 4: The number of By-group levels for each variable of interest, continued

STEP #3: PERFORM DATA CLEANING

Data cleaning, referred to as data scrubbing, is the process of identifying and fixing data quality issues including
missing values, invalid character and numeric values, outlier values, value ranges, duplicate observations, and other
anomalies found in datasets. SAS provides many powerful ways to perform data cleaning tasks (Cody, 2017).

Use SAS Functions to Modify Data

SAS functions are an essential component of the SAS Base software. Representing a variety of built-in and callable
routines, functions serve as the “work horses” in the SAS software providing users with “ready-to-use” tools designed
to ease the burden of writing and testing often lengthy and complex code for a variety of programming tasks. The
advantage of using SAS functions is evidenced by their relative ease of use, and their ability to provide a more
efficient, robust and scalable approach to simplifying a process or programming task.

It is sometimes necessary to concatenate fields when matching files, because the fields could be concatenated in one
file while separate in another. SAS functions span many functional categories, and this paper focuses on those that
are integral to the fuzzy matching process. The following is a list of alternative methods of concatenating strings
and/or variables together.

= Use the STRIP function to eliminate leading and trailing blanks, and then concatenate the stripped fields using
the concatenation operator, and insert blanks between the stripped fields.
= Use one of the following CAT functions to concatenate fields:

v' CAT, the simplest of concatenation functions, joins two or more strings and/or variables together, end-
to-end producing the same results as with the concatenation operator.

v' CATQ s similar to the CATX function, but the CATQ function adds quotation marks to any concatenated
string or variable.

v' CATS removes leading and trailing blanks and concatenates two or more strings or variables together.

\

CATT removes trailing blanks and concatenates two or more strings and/or variables together.
v' CATX, perhaps the most robust CAT function, removes leading and trailing blanks and concatenates
two or more strings and/or variables together with a delimiter between each.

Explore Data Issues with SAS’ PROC FORMAT

Problems with inaccurately entered data often necessitate time-consuming validation activities. A popular technique
used by many to identify data issues is to use the FORMAT procedure. In the next example, a user-defined format is
created with PROC FORMAT, a SAS DATA step identifies data issues associated with the Category variable, and a SAS
PROC PRINT is specified to display the Category variable’s data issues, which are displayed in Figure 5.

PROC FORMAT, DATA Step and PROC PRINT Code:
PROC FORMAT LIBRARY=WORK ;
VALUE $Category_Validation
"Action’ = 'Action’
"Action Adventure'’ "Action Adventure'’
"Action Cops & Robber' "Action Cops & Robber'
"Action Sci-Fi' "Action Sci-Fi'

'Adventure’ = 'Adventure'
'Comedy' = 'Comedy'
'Drama’ = 'Drama’

'Drama Mysteries'

‘Drama Romance'

'Drama Suspense' '‘Drama Suspense'

'Horror' 'Horror'

Other = 'ERROR - Invalid Category'
/* Other identified categories not listed */

'Drama Mysteries'
‘Drama Romance'

b
RUN ;

DATA Validate_Category ;
SET mydata.Movies_with_Messy_Data ;
Check_Category = PUT(Category,$Category_Validation.) ;
IF Check_Category = 'ERROR - Invalid Category' THEN
DO ;
OUTPUT ;
END ;
RUN ;

PROC PRINT DATA=work.Validate_Category
NOOBS N
TITLE "Validation Report for Movie Category Variable" ;
VAR Category Title Rating Length Studio Year ;

RUN ;
Results:
Validation Report for Movie Category Variable

Category Title Rating | Length | Studio Year
Acton Adventure | Brave Heart R 177 | Paramont Pictures | 1995
Dramma Romance | Titanic PG-13 154 | Paramount Pictures | 1997
Dramma Forrest Gumpp PG13 143 | Paramont Pictures | 1994
Commedy Christmas Vacation = PG-13 §7 | Warner Brothers 1989
Acton Adventure R 177 | Paramont Pictures | 1985

N=5

Figure 5: Validation Report isolating Issues with the Movie Category Variable.

Once the invalid movie categories are identified with the validation report, users have the option of using one or more
data cleaning techniques to manually correct, automating the process, or applying fuzzy matching techniques to
correct (or handle) each invalid movie category.

Add Categories, if Available, to the Start of the Name

Doing this can eliminate matches that might occur if two businesses in the same general geographic area have the
same name (for example: Smith’s could describe a hardware store, a restaurant, or another type of business.) This is
done in Figure 1, where Category is in the third column.

Remove Special or Extraneous Characters

Punctuation can differ even when names or titles are the same. Therefore, we remove the following characters: ‘ “ &
? — from the movie title. For example, “National Lampoon’s Vacation” and “National Lampoons Vacation” refer to the
same movie title even though the former contains an apostrophe and the latter does not. Although the special
characters can be removed in a number of ways, the next example shows their removal from the Title variable in both
datasets using the COMPRESS function. The results are displayed in Figure 6.

Code to Remove Special Characters from Title and Perform Matching Process:
data work.Movies_Cleaned ;
set mydata.Movies_with_messy_data ;
where title NE ‘' ;
title =
compress(Title,""'""&?-") ;/*Remove special chars from Titlex/
run ;

title "Movies Dataset After Removing Special Characters" ;

proc print data=work.Movies_Cleaned ;
run ;

data work.Actors_Cleaned ;
set mydata.Actors_with_messy_data ;
where title NE ‘' ;
title =
compress(Title,""'""&?-") ;/*Remove special chars from Titlex/
run ;

title "Actors Dataset After Removing Special Characters" ;
proc print data=work.Actors_Cleaned ;
run ;

proc sql ;
title "Matched Rows from Movies and Actors" ;
select DISTINCT M.Title, Rating, Length, Actor_Leading
from work.Movies_Cleaned M,
work.Actors_Cleaned A
where M.Title = A.Title ;

quit ;
Results:
Actors Data Set After Removing Special Characters
Movies Data Set After Removing Special Characters Obs | Title Actor_Leading Actor_Supporting
1 | Brave Heart Mel Gibson Sophie Marczau
Obs | Title Length | Category Year | Studio Rating 2 | XMAS Vacstion Chey Chase Beverly DiAngslo
1 | Eravs Heart 177 | Action Adventure 1885 | Paramount Pictures = R 3 | Coming to America Eddis Murghy Arsanio Hall
2 | Brave Hzart 177 | Acton Adveniure 1995 | Paramont Pictures | R 4 | Fomest Gump Tom Hanks Sally Field
3 | Casablanca 103 | Drama 1842 | MGM/UA PG 5 | GHOST Patrick Swayze Dami Moore
4 | Christmas Yacation 87 | Comedy 1888 Warner Brothers PG-13 6 | Lethal Weapon Mel Gibson Danny Glover
3 | Coming to America 118 | Comedy 18228 | Paramount Pictures | R T | Michael John Travolta Andie MacDowell
6 | Dracula 130 | Horror 1893 Columbia TriStar R & | Mational Lampoons Vacation | Chewy Chaze Beverly D'Angelo
T | Dressed to Kill 105 | Drama Mysteries 1820 | Filmways Pictures | R 9 | Recky Sylwester Stallonz Talia Shire
2 | Fomest Gump 142 | Drama 1284 Paramount Piciures = PG-13 10 | Silence of the Lambs Anthony Hopkins Jodie Foster
9 | Fomest Gump 143 | Drama 1094 | Paramount Pictures | PG-13 11| The Hunt for Red Oktober Sean Gonnary Alec Baldwin
10 | Ghost 127 | Drama Romancs 1880 | Paramount Pictures | PG-12 2] The Temminzior Amald Schwarzensgge | Michael Hishn
1| Jaws 125 | Action Adventure 1975 | Universal Studios | PG 12 | Tearic Leonardo DiCapria | Kate Winset
12 | Jurassic Park 127 | Action 1992 | Universal Fictwres | PG-13 14 | National Lampoons Vacatin | Ghevy Ghase Beverly Diingelo
13 | Lethal Weapon 110 | Action Cops & Robber | 1987 | Warner Brathers R
14 | Michael 108 | Drama 1987 | Warner Bros PG-12
13 | Mational Lampoons Vacation 28 | Comedy 1823 | Warner Brothers FE-12 Matched Rows from Movies and Actors
16 | Poltzrgsist 115 | Horror 1982 | MGM/UA PG - -
Title Rating | Length | Actor_Leading
17 | Rocky 120 | Action Adventure 1878 | MGM/UA PG Brave Heart) 177 | Mel Gibson
1% | Scarfacs 170 | Action Cops & Robber | 1883 | Universal Studios r Coming to Americs ” 118 | Eddie Murphy
19 | Silencs of the Lambs 118 Drama Suspense 1941 | Orion R Fomest Gump PG13 142 | Tom Hanks
20 | Star Wars 124 | Action Sci-Fi 1877 | Lucas Film Ltd PG Farrest Gumg PG13 143 | Tom Hanks
21 | The Hunt for Red October 135 | Action Adventure 1832 | Paramount Pictures | GP Lethal Weapon R 110 Ml Gibsen
22 | The Terminator 108 | Action Sci-Fi 1984 | Live Entertainment | R Michae! PG-13 108 | John Travolts
22| The Wizard of Oz 10 | Adverture 1939 | MGM/UA G Nationzl Lampoons Vacation | PG-13 93 | Chavy Chase
24 | The Wizard of Ozz 102 | Adventure 1838 | MGM - UA g Racky PG 120 | Sylvester Stallone
25 | THanic 184 | Dramma Romance 1847 | Paramount Pictures | PG-12 Silenca of the Lambs R 112 | Anthony Hapkins
26 | Racky 120 | Action Adventure 1978 | MGM /LA FG The Terminator R 108 | Amold Schwarzenegge
27 | Fomest Gumpp 1431 | Dramma 1994 | Paramont Pictures | PG13 Titanic PG-13 184 | Leonardo DiCzprio
28 | Christmas Vacatiion 87 | Commedy 1888 Warner Brothers PG-13
29 | Mational Lampoons \acation g3 Comedy 1883 VWarner Brothers PG-13
30 | Micheal 108 | Drama 1897 | Warner Brothers PG-12

Figure 6: After the Removal of Special Characters and the Results from an Inner Join.

10

Put All Characters in Upper-case Notation and Remove Leading Blanks

Different data bases could have different standards for capitalization, and some character strings can be copied in
with leading blanks. As found in our example datasets the value contained in the Title variable can be stored as all
lower-case, upper-case, or in mixed-case which can impact the success of traditional merge and join matching
techniques. Consequently, to remedy the issue associated with case and leading blanks, we recommend using the
STRIP function to remove leading and trailing blanks along with the UPCASE function to convert all Title values to
uppercase characters. For users of other popular programming languages, there is generally an equivalent function, or
method, available to handle these types of issues.

Remove Words that might or might not Appear in Key Fields

Commonly used words in language, referred to as stop words, are frequently ignored by many search and retrieval
processes. Stop words are classified as irrelevant and, as a result, are inserted into stop lists and are ignored. Examples
include The, .com, Inc, LTD, LLC, DIVISION, CORP, CORPORATION, CO., and COMPANY. Some data base tables might
include these, while others might not.

Choose a Standard for Addresses

Address fields can present a challenge when analyzing and processing data sources. To help alleviate comparison
issues, decide whether to use Avenue or Ave, Road or Rd, Street or St, etc, and then convert the address fields
accordingly or create a user-defined lookup process using PROC FORMAT to match the standard values.

Rationalize Zip Codes when Matching Addresses, Use Geocodes when Available

We found it useful to remove the last 4 digits of 9-digit zip codes, because some files might only have 5-digit zip codes.
Since some files might have zip codes as numeric fields, and other files might have zip codes as character fields, make
sure to include leading zeroes. For example, zip codes with a leading zero, as in 08514, would appear in a numeric
field as 8514 requiring the leading zero to be inserted along with the specification of a Z5. informat and format being
assigned to the zip code variable.

If working with US zip codes, make sure they are all numeric. This may not apply for other countries. One common
mistake to watch for is that sometimes Canada, with abbreviation CA, is put in as the state CA (California) instead of
the country CA. Since Canada has an alphanumeric 6-character zip code, this, hopefully, will be caught when checking

for numeric zip codes.

If the program has access to geocodes, or if they are in the input data bases, geocodes can provide a further level of
validation in addition to the zip codes.

Specify the DUPOUT=, NODUPRECS, or NODUPKEYS Options

A popular and frequently used procedure, PROC SORT, identifies and removes duplicate observations from a dataset.
By specifying one or more of the SORT procedure’s three options: DUPOUT=, NODUPRECS, and NODUPKEYS, users
are able to control how duplicate observations are identified and removed.

PROC SORT’s DUPOUT= option is often used to identify duplicate observations before removing them from a dataset.
A DUPOUT= option, often specified when a dataset is too large for visual inspection, can be used with the NODUPKEYS
or NODUPRECS options to name a dataset that contains duplicate keys or entire observations. In the next example,
the DUPOUT=, OUT=and NODUPKEY options are specified to identify duplicate keys. The NODUPKEY option removes
observations that have the same key values, so that only one remains in the output dataset. The PROC SORT is
followed by the PROC PRINT procedure so that the results can be examined.

11

PROC SORT and PROC PRINT Code:
PROC SORT DATA=mydata.Movies_with_Messy_Data
DUPOUT=work.Movies_Dupout_NoDupkey
OUT=work.Movies_Sorted_Cleaned_NoDupkey
NODUPKEY
BY Title ;
WHERE Title NE “" ;
RUN ;

PROC PRINT DATA=work.Movies_Dupout_NoDupkey ;
TITLE “Observations Slated for Removal” ;
RUN ;

PROC PRINT DATA=work.Movies_Sorted_Cleaned_NoDupkey ;
TITLE “Cleaned Movies Data Set” ;
RUN ;

The results of the above SAS code are shown in Figure 7. The NODUPKEY option retains only one observation from any
group of observations with duplicate keys. When Observations with identical key values are not adjacent to each
other, users may first need to specify the NODUPKEY or NODUPKEYS option and sort the dataset by all the variables

(BY _ALL_;) to ensure the observations are in the correct order to remove all duplicates (SAS Usage Note 1566, 2000;

Lafler, 2017).

Results:
Observations Slated for Removal Cleaned Movies Data Set
Obs | Title Length | Category Year | Studio Rating Obs | Title Length | Category Year | Studio Rating
1 | Brave Heert 177 | Acton Adventure | 1895 | Paramont Pictures | R 1 | Brave Heart 177 | Action Adventure 1985 | Paramount Pictures | R
2 | Forrest Gump 143 | Drama 1084 | Paramount Pictures | PG-12 2 | Casablanca 103 Drama 1042 | MGM [UA PG
3 | Rocky 120 | Action Adventurs | 1878 | MGM /UA PG 3 | Christmas Vacatiion 87 | Gommedy 1889 | Wamer Brothers PG-13
4 | Christmas Vacation 87 Comedy 1988 | Warner Brothers PG-13
& | Coming to America 118 | Comedy 1988 | Paramount Pictures | R
& | Dracula 130 | Horror 1983 | Columbia TriStar R
T | Dressed to Kill 105 | Drama Mysteres 1980 | Filmways Pictures R
8 Fomrest Gump 142 | Drama 1984 | Parsmount Pictures | PG-13
9 | Fomrast Gumpp 143 | Dramma 1984 | Paramont Pictures PG13
10 | Ghost 127 | Drams Romance 1280 | Faramount Fictures | FPG3-13
11 | Jaws 125 | Action Adventure 1875 | Universal Studios PG
12 | Jurassic Park 127 | Action 18683 | Universal Pictures PG-13
13 | Lethsl Wespon 110 | Action Cops & Robber | 1887 | Warmner Brothers R
14 | Michael 108 | Drams 1887 | Wamer Bros PGE-13
15 | Micheal 106 | Drams 1287 | Wamer Brothers FGE-13
16 | Mational Lampeoon’s Vacation 88 Comedy 1983 | Wamer Brothers PG-13
AT | Mational Lampoons Yacation 88 Comedy 1983 | Warner Brothers PG-13
18 | Poltergeist 115 | Horror 1982 | MGM /UA FG
18 | Rocky 120 | Action Adventure 1876 | MGM 7 UA FG
20 | Scarface 170 | Action Cops & Robber | 1283 | Universal Studios r
21 | Silence of the Lambs 118 | Drama Suspense 1981 | Crion R
22 | Star Wars 124 | Action Sci-Fi 1877 | Lucas Film Ltd FG
2% | The Hunt for Red October 135 | Action Adventure 1980 | Paramount Pictures | GP
24 | The Terminator 108 | Action Sci-Fi 1284 | Live Entedsinment R
25 | The Wizard of Oz 101 | Adwventure 1938 | MGM / UA G
26 | The Wizard of Ozz 102 | Adventure 1838 | MGM - UA a
27 | Titanic 164 | Dramma Romance 1867 | Paramount Fictures | PG-13

Figure 7: Observations Slated for Removal and the Cleaned Movies Dataset.

12

Although the removal of duplicates using PROC SORT is a popular technique among many SAS users, an element of
care should be given to using this method when processing large datasets. Since sort operations can often be CPU-
intensive, the authors of this paper recommend comparing PROC SORT to procedures like SAS PROC SQL with the
SELECT DISTINCT keyword and/or SAS PROC SUMMARY with the CLASS statement to determine the performance
impact of one method versus another.

STEP #4: PERFORM DATA TRANSFORMATIONS

Data transformations can be required to compare files. Dataset structures sometimes need to be converted from wide
to long or long to wide and files may need to be reconciled by having their variables grouped in different ways. When
a dataset’s structure and data is transformed, we typically recommend that a new dataset be created from the original
one. SAS’ PROC TRANSPOSE is handy for restructuring data in a dataset, and is typically used in preparation for special
types of processing like array processing. In its simplest form, data can be transformed with or without grouping. In
the next example, the Movies dataset is first sorted in ascending order by the variable RATING then the sorted dataset
is transposed using the RATING variable as the by-group variable. The result is shown in Figure 8, and it gives all of the
titles within each rating.

PROC TRANSPOSE Code:
PROC SORT DATA=mydata.Movies_with_Messy_Data
OUT=work.Movies_Sorted ;
BY Rating ; /* BY-Group to Transpose */
WHERE Title NE “”
RUN ;

PROC TRANSPOSE DATA=work.Movies_ Sorted
OUT=work.Movies_Transposed ;
VAR Title ; /* Variable to Transpose */
BY Rating ; /* BY-Group to Transpose */
RUN ;

PROC PRINT DATA=work.Movies_Transposed ;

RUN ;
Results:

Obs Rating | _NAME_ COL1 coLz coL3 coLd COoL5 COL6 coLr coLs coLs coL1o coL11
1 G Title The Wizard of Oz
2 GP Title The Hunt for Red October
3 PG Title Casablanca Jaws Foltergeist Rocky Star Wars Rocky
4 PG-13 Title Christmas Vacation Forrest Gump | Forrest Gump Ghast Jursssic Park Michasl Mational Lampoon's Vacation | Titanic Christmas Vacstilon | National Lampoons Vacation | Micheal
5 PGi3 | Tille Formest Gumpp
& R Title Brave Heart Brave Heart Coming to America Droculs | Dressed to Kill | Lethal Wespon | Silence of the Lambs The Terminator
T 0 Title The Wizard of Czz
2 Title Scarface

Figure 8: Results from Performing a Data Transform with the TRANSPOSE Procedure.

STEP 5: PROCESS EXACT MATCHES

Since we are trying to match entries that do not have an exact match, we can save processing time by immediately
eliminating the observations (or rows) with missing key information. This can be accomplished in a number of ways,
including constructing IF-THEN/ELSE or WHERE logic to bypass processing observations with missing movie titles.

Another approach to bypass processing observations with missing movie titles could be to use the NODUP or
NODUPKEY parameter with SAS’ PROC SORT (more detail on these options will be presented later). Once missing

observations with missing keys are eliminated, the focus can then be turned to processing observations that have

13

exact matches on name, address, and as with our example datasets, the Title variable, as shown in Figure 9. We also
process and retain the observations that have mismatches on the Title variable, as shown in Figure 10; the
observations that did not have exact matches on the Title variable from the Movies dataset, as shown in Figure 11;
and the observations that did not have exact matches on the Title variable from the Actors dataset, as shown in Figure
12.

PROC SORT, DATA Step and PROC PRINT Code:
proc sort data=mydata.Actors_with_messy_data
out=work.Actors_Sorted ;
where Title NE ""
by Title ;
run ;

proc sort data=mydata.Movies_with_messy_data
out=work.Movies_Sorted ;

where Title NE ""

by Title ;

run ;

data work.Matches(DROP=Title)
work.MisMatches(DROP=Title)
work.Movies_with_Unmatched_Obs(KEEP=Title Length Category
Year Studio Rating)
work.Actors_with_Unmatched_Obs(KEEP=Title Actor_Leading
Actor_Supporting) ;
merge work.Movies_Sorted (IN=M)
work.Actors_Sorted (IN=A) ;
by Title ;
if M then Title_from_Movies = Title ;
if A then Title_from_Actors = Title ;
if M and A then output work.Matches ;
else if NOT M or NOT A then output work.MisMatches ;
if M and NOT A then output work.Movies_with_Unmatched_Obs ;
else if A and NOT M then
output work.Actors_with_Unmatched_Obs ;
run ;

proc print data=work.Matches N ;

title "Matched Observations with Missing Keys Eliminated" ;

var Title_from_Movies Title_from_Actors Length Category Year
Studio Rating Actor_Leading Actor_Supporting ;

run ;

proc print data=work.MisMatches N ;

title "MisMatched Observations with Missing Keys Eliminated" ;

var Title_from_Movies Title_from_Actors Length Category Year
Studio Rating Actor_Leading Actor_Supporting ;

run ;

proc print data=work.Movies_with_Unmatched_Obs N ;
title "Movies with UnMatched Observations" ;

var Title Length Category Year Studio Rating ;
run ;

14

proc print data=work.Actors_with_Unmatched_Obs N ;

title

"Actors with UnMatched Observations" ;

var Title Actor_Leading Actor_Supporting ;

run ;

Results:

Q
=4
n

Title_from_Movies

Brave Heart

Brave Heart

Coming to America

Forrest Gump

Forrest Gump

Lethal Weapaon

Michaz!

Mational Lampoon's Wacation
Mational Lampoons Wacation
Rocky

Focky

-
= 2 @ ||| N @ ;AW M|

[
X1

Silence of the Lambs

-
w

The Terminator

-
=

Titanic

Matched Observations with Missing Keys Eliminated

Title_from_Actors Length
Erave Heart 77
Erave Heart 77
Coming to America &
Farest Gump 142
Forrest Gump 143
Lethal Weapon 110
Michzel 106
Matignal Lampoon’s Vacation o
Mational Lampoons Vacation o
Rocky 120
Rocky 120
Silence of the Lambs 118
The Terminator 108
Titanic 104

Figure 9: Matched Observations.

Category

Action Adventure
Acton Adventure
Comedy

Drama

Drama

Action Cops & Robber
Drama

Comedy

Comedy

Action Adventure
Action Adventure
Drama Suspense
Action Sci-Fi
Dramma Romance

N=14

Year
1985
1985
1988
1984
1004
1987
1967
1083
1083
1976
197G
1901
1084
1907

Studio

Faramount Fictures
Faramont Pictures
Paramount Pictures
Faramount Fictures
Paramount Pictures
WWarner Brothers
Warner Bros
WWarner Brothers
WWarner Brothers
MGM [UA

MGM LA

Crion

Live Entertainment

Faramount Fictures

Rating

PG-13
PG-13

PG-13
PG-13
PG-13
PG
PG

R

R
PE-13

MisMatched Observations with Missing Keys Eliminated

Obs | Title_from_Mowvies Title_from_Actors Length
1 | Cassblanca 032
2 | Christmas Vacsafiion a7
3 | Christmas Vacstion a7
4 | Dracula 130
5§ | Dressed fo Kill 105
& | Forrest Gumpp 143
T GHOST
8 Ghost 127
8 | Jaws 125

10 | Jurassic Park 127
11 | Micheal 106
12 | Poltergeist 115
12 | Scarface 170
14 | StarWars 124
15 | The Hunt for Red October 138
16 The Hunt for Red Cktober

AT | The Wizard of Oz 101
18 | The Wizard of Ozz 102
18 XMAS Vacation

Figure 10: Mismatched Observations.

Category
Drams
Commedy
Comedy

Harror

Drama Mysteries

Dramma

Drams Romancea
Action Adventure
Action
Drams
Harror

Action Cops & Robber

Action Sci-Fi
Action Adventure
Adventure
Adventure
N=19

15

Year
1942
1989
1989
1983
1980
1964

1960
1975
10032
1967
1982
1983
1977
19892

1938
19392

Actor_Leading
Mel Gibson

Mel Gibson

Eddie Mumphy
Tom Hanks

Tom Hanks

Mel Gibson

John Travaolta
Chevy Chase
Chevy Chase
Syhvester Stallone
Syhrester Stallone
Anthany Hopkins
Arnold Schwarzenegge

Leonardo DiCaprio

Studio Rating = Actor_Leading
MGM LA PG
WWamer Brothers PG-13
Wamer Brothers PG-13
Columbia TriStar R
Filmways Pictures R
FParamant Pictures FPGE13
Patrick Swayze
Peramount Fictures | PG-13
Universal Studias PG
Universal Pictures PG-13
Wamer Brothers PG-13
MGM LA PG
Universal Studios r
Luesas Film Ltd PG
Paramount Pictures | GF
Sean Connery
MGM LA G
MGM - UA g

Chewy Chase

Actor_Supporting
Sophie Marceau
Sophie Marceau
Arsenio Hall
Sally Field

Sally Field
Danny Glover
Andie MacDowell
Beverly D'Angelo
Beverly D'Angelo
Talia Shire

Talia Shire

Jodie Foster
Michael Biehn

Kate Winslet

Actor_Supporting

Dierni Moore

Alec Baldwin

Bevery O'Angelo

Movies with UnMatched Observations

Obs | Title Length Category Year Studic Rating
1 | Casablanca 102 | Drama 1842 | MGM /LA PG
2 | Christmas ‘Yacatiion a7 | Commedy 1888 Warmner Brathers PG-13
3 | Christmas Vacation 87 | Comedy 1888 Warmner Brothers PG-13
4 | Draculs 130 | Horror 1893 Columbia TriStar R
5 Dressed to Kill 105 Drama Mysteries 1880 Filmways Piciures R
6 Forrest Gumpp 143 Dramma 1894 | Paramont Pictures PG13
T | Ghost 127 | Drama Romance 1090 | Paramount Pictures | PG-132
8 | Jaws 125 | Action Adventurs 16875 Universal Studios PG
9 Jurassic Park 127 | Actfion 1883 Universal Pictures PG-13
10 | Micheal 108 | Drama 1897 | Warner Brothers PGE-13
11 | Poltergeist 115 | Horror 1882 | MGM ./ UA PG
12 | Scarface 170 Action Cops & Robber | 1883 | Universal Studios r
13 | StarWars 124 | Action Soi-Fi 1877 | Luwcas Film Ltd PG
44 | The Hunt for Red October 135 Action Adventure 1888 Paramount Pictures | GP
15 | The Wizard of Oz 101 | Adventure 1829 | MGM ./ UA G
16 | The Wizard of Czz 102 Adventure 1838 MGM - UA g
N=1&

Figure 11: UnMatched Movies Observations.

Actors with UnMatched Observations

Obs | Title Actor_Leading | Actor_Supporting
1 | GHOST Patrick Swayze = Demi Moore
2 | The Hunt for Red Okfober | Sean Connery Alec Baldwin
3 | ¥MAS Vacation Chewy Chase Beverly D'Angelo
N=32

Figure 12: UnMatched Actors Observations.

STEP 6: MATCH KEY FIELDS USING FUZZY MATCHING TECHNIQUES

Once the data has been cleaned and transformed, a variety of fuzzy matching techniques are available for use. As
mentioned in (Dunn, 2014), these techniques are designed to be used in a systematic way when a reliable key
between data sources is nonexistent, inexact, or unreliable.

Fuzzy matching techniques are available with most, if not all, the leading software languages including R, Python, Java,
and others (RosettaCode, 2018). SAS Institute offers four techniques for its users: the Soundex (phonetic matching)
algorithm, and the SPEDIS, COMPLEV, and COMPGED functions to help make fuzzy matching easier and more effective
(Sloan and Lafler, 2018 and 2021).

APPLY THE SOUNDEX ALGORITHM

The Soundex (phonetic matching) algorithm involves matching files on words that sound alike. As one of the earliest
fuzzy matching techniques, Soundex was invented and patented by Margaret K. Odell and Robert C. Russell in 1918
and 1922 to help match surnames that sound alike. It is limited to finding phonetic matches and adheres to the
following rules when performing a search:

= |gnores case (case insensitive);

= Ignores embedded blanks and punctuations;
= |s better at finding English-sounding names.

16

Although the Soundex algorithm does a fairly good job with English-sounding names, it frequently falls short when
dealing with the multitude of data sources found in today’s world economy where English- and non-English sounding
names are commonplace. It also has been known to miss similar-sounding surnames like Rogers and Rodgers while
matching dissimilar surnames such as Smith, Snthe and Schmitt (Foley, 1999).

So, how does the Soundex algorithm work? As implemented, SAS determines whether a name (or a variable’s
contents) sounds like another by converting each word to a code. The value assigned to the code consists of the first
letter in the word followed by one or more digits. Vowels, A, E, I, O and U, along with H, W, Y, and non-alphabetical
characters do not receive a coded value and are ignored; and double letters (e.g., ‘TT’) are assigned a single code value
for both letters. The codes derived from each word conform to the letters and values are found in Table 1.

SOUNDEX Algorithm Rules

Letter Value

B,P,F,V

| 1
1 G5,6,4,K QX2 | 2

Table 1: Soundex Algorithm Rules
The general syntax of the Soundex algorithm takes the form of:
Variable =* “character-string”

To examine how the movie title, Rocky, is assigned a value of R22, R has a value of 6 but is retained as R, O is ignored,
Cis assigned a value of 2, K is assigned a value of 2, and Y is ignored. The converted code for “Rocky” is then matched
with any other name that has the same assigned code.

In the next example, we use the Soundex algorithm’s =* operator in a simple DATA step WHERE statement with the
work.Movies_with_Unmatched_Obs dataset created in Step #5 earlier, to find similar sounding Movie Titles.

DATA Step Code with SOUNDEX Algorithm:
DATA work.Soundex_Matches ;
SET work.Movies_with_Unmatched_Obs ;
WHERE Title =* “Michael” ;
RUN ;

PROC PRINT DATA=work.Soundex_Matches NOOBS ;
TITLE “Soundex Algorithm Matches” ;
RUN ;

In the next example, the Soundex algorithm is illustrated using the =* operator in a simple SAS PROC SQL step with a
WHERE-clause to find similar sounding Movie Titles.

PROC SQL Code with SOUNDEX Algorithm:
proc sql ;

17

select *
from work.Movies_with_Unmatched_Obs
where Title =* "Michael" ;
quit ;

The results from both SOUNDEX algorithm examples are displayed in Figure 13.

Results:
Title Length Category Year Studio Rating
Michesl 108 | Drama 1887 Warner Brothers | PG-13

Figure 13: The result of the Soundex match for “Michael”

APPLY THE SPEDIS FUNCTION

The SPEDIS, or Spelling Distance, function and its two arguments evaluate possible matching scenarios by translating a
keyword into a query containing the smallest distance value. Because the SPEDIS function evaluates numerous
scenarios, it can experience varying performance issues in comparison to other matching techniques. The SPEDIS
function evaluates query and keyword arguments returning non-negative spelling distance values. A derived value of
zero indicates an exact match. Generally, derived values are less than 100, but, on occasion, can exceed 200. The
authors have used and recommend using the SPEDIS function to control the matching process by specifying spelling
distance values greater than zero and in increments of 10 (e.g., 10, 20, etc.).

So, how does the SPEDIS function work? As implemented, the SPEDIS function determines whether two names (or
variables’ contents) are alike by computing an asymmetric spelling distance between two words. The SPEDIS function
computes the costs associated with converting the keyword to the query, as illustrated in Table 2.

SPEDIS Cost Rules

Operation Cost Description

- Match 0 No change
- Singlet 25 Delete one of a double letter
Doublet ; Double a letter

Reverse the order of two consecutive letters

Delete a letter from the end

Add a letter to the end

5 Delete a letter from the middle

Replace 100 Replace a letter in the middle

Firstdel 100 Delete the first letter
. Firstins . 200 Insert a letter at the beginning
. Firstrep 200 Replace the first letter

Table 2: SPEDIS Cost Rules

18

The general syntax of the SPEDIS function takes the form of:
SPEDIS (query, keyword)

In this example, a simple DATA step with a WHERE statement shows the observations derived by the SPEDIS function
for finding exact matches for the Movie Title, “Michael”.

DATA Step Code with SPEDIS Function:
PROC PRINT DATA=work.Movies_with_Unmatched_Obs NOOBS ;
TITLE "SPEDIS Function Matches" ;
WHERE SPEDIS(Title,"Michael") LE 10 ;
RUN ;

In the next example, a simple PROC SQL query with a WHERE-clause and CALCULATED keyword is specified to capture
and show the observations derived by the SPEDIS function for finding exact matches for the Movie Title, “Michael”.

PROC SQL Code with SPEDIS Function:
PROC SQL ;
TITLE “SPEDIS Function Matches” ;
SELECT *,
SPEDIS(Title,“Michael”) AS Spedis_Value

FROM work.Movies_with_Unmatched_Obs
WHERE CALCULATED Spedis_Value LE 10 ;

QUIT ;

The results from both SOUNDEX algorithm examples are displayed in Figure 14. Only “Michael” and “Micheal” were
chosen. This matches the result we obtained from the SOUNDEX inquiry displayed in Figure 13.

Results:

SPEDIS Function Matches
Title Length | Category | Year | Studio Rating | Spedis_Walue
Micheal 108 | Drama 1887 | Warner Brothers | PiG-13 T

Figure 14: The result of a SPEDIS match for “Michael”

APPLY THE COMPLEV FUNCTION

The COMPLEV, or Levenshtein Edit Distance, function is another fuzzy matching SAS technique. COMPLEV counts the
minimum number of single-character insert, delete, or replace operations needed to determine how close two strings
are. Unlike the SPEDIS function and COMPGED function (discussed later), the COMPLEV function assigns a score for
each operation and returns a value indicating the number of operations. The general syntax of the COMPLEV function
takes the form of:

COMPLEV (string-1, string-2 <,cutoff-value> <,modifier>)
Required Arguments:

string-1 specifies a character variable, constant or expression.
string-2 specifies a character variable, constant or expression.

19

Optional Arguments:
cutoff-value specifies a numeric variable, constant or expression. If the actual Levenshtein edit distance is
greater than the value of cutoff, the value that is returned is equal to the value of cutoff.

modifier specifies a value that alters the action of the COMPLEV function. Valid modifier values are:

= jorl Ignores the case in string-1 and string-2.

= JorlL Removes leading blanks before comparing the values in string-1 or string-2.

= norN Ignores quotation marks around string-1 or string-2.

= :(colon) Truncates the longer of string-1 or string-2 to the length of the shorter string.

In Figure 15, below, we show the number of operations that are performed by the COMPLEV function as it compares
string-1 with string-2. As can be seen, the smaller the LEV_Score the better the match.

Obs | operation string1 string2 LEV_Score
1 append The Wizard of Ozz = The Wizard of Og 1
2 | blank The Wizard of Oz = The Wizard of Og 1
3 delete The Wiard of Oz The Wizard of 1
4 | deletetreplace The Wxard of Oz The Wizard of zj 2
5 double The W\Wizard of Oz = The Wizard of Og 1
6 fdeletetreplace ho Wizard of Oz The Wizard of Oz 2
T | fdelete+replace+single ht Wisor of Oz The Wizard of 5
8 fdelete+replace+truncate he Wixar of Oz The Wizard of S)j 3
9 | finsert XThe Wizard of Oz | The Wizard of Og 1

10 | freplace Xhe Wizard of Oz The Wizard of Oz 1
11 | insert The Wizards of Oz | The Wizard of O] 1
12 | insert+delete The Wxiard of Oz The Wizard of Oz 2
13 | insert+replace The Wxiyard of Oz The Wizard of Og 2
14 | match The Wizard of Oz The Wizard of Oz 0
15 punctuation The Wiz,ard of Oz The Wizard of Ozj 1
16 | replace The Wixard of Oz The Wizard of Oz 1
17 | replace+insert Tije Wizard of Oz The Wizard of Oz 2
18 | replace+truncate*2 hTe Wiz of Oz The Wizard of Oz 5
19 | single The Wizard off Oz The Wizard of Oz} 1
20 | swap The Wziard of Oz The Wizard of Og 2
21 | swap+delete he Wizard of Oz The Wizard of Oz 1
22 | truncate The Wizard of O The Wizard of Ozl 1

Figure 15: COMPLEV (Levenshtein Edit Distance) Number of Operations.

In the example below, we use the COMPLEV function to determine the best possible match with DRAMA. As
illustrated in Figure 16, the COMPLEV_Number column displays the number of operations that have been performed.
The lower the value the better the match (e.g., 0 = Best match, 1 = Next Best match, etc.). DRAMA matches itself for a
score of 0, and DRAMMA is the next best match with a score of 1.

PROC SQL Code with COMPLEV Function:
proc sql ;
select M.Title,
Rating,
Length,
Category,

COMPLEV(M.Category,"Drama") AS COMPLEV_Number

20

from work.Movies_with_Unmatched_Obs M
order by M.Title ;
quit ;

Figure 16 shows the calculations for the Levenshtein Edit Distance for different spelling variations for ‘Drama’ in the
column, CATEGORY.

Results:

Title Rating = Length (Catego COMPLEV_Mumber
Casablanca PG 103 L1
Christmas Vacsatiion PG-13 97 | Commedy L]
Christimas WVacation PG-13 a7 | Comedy L]
Craculs R 120 | Horror 5
Dressed to Kill R 105 | Drama Mysteries 10
Forrest Gumpp PG13 143 1
Ghost PGE-12 127 | Drama Romance g
Jaws PG 125 | Acfion Adventure 18
Jurassic Park PGE-12 127 Action g
Michesl PG-12 108

Paoltergeist PG 115 | Horror 5
Scarface r 170 | Action Cops & Robber 20
Star Wars PG 124 | Acfion Sci-Fi 13
The Hunt for Red October | GP 135 | Action Adventure 16
The Wizard of Oz G 101 | Adventure o
The Wizard of Ozz a 102 | Adventure 8

Figure 16: The results of a COMPLEV match with the category of Drama.

In the next example, the COMPLEV function’s computed value is limited to 1 or less using a WHERE-clause. The results
show the observation associated with the movie “The Hunt for Red October” in the string-1 argument matches the
value of “The Hunt for Red Oktober” in the string-2 argument, as shown in Figure 17.

PROC SQL Code with COMPLEV Function:
PROC SQL ;
SELECT M.Title,
A.Title,
Rating,
Category,
Actor_Leading,
Actor_Supporting,
COMPLEV(M.Title,A.Title) AS COMPLEV_Score
FROM work.Movies_with_Unmatched_Obs M,
work.Actors_with_Unmatched_Obs A
WHERE CALCULATED COMPLEV_Score LE 1
ORDER BY M.TITLE ;

QUIT ;

Results:
Title Title Rating | Category Actor_Leading | Actor_Supporting] COMPLEV_Score
The Hunt for Red October | The Hunt for Red Oktober | GP Action Adventure | Sean Connery Alec Baldwin 1

Figure 17: The results of a COMPLEV match where the Number of Operations is 1 or less.

21

In the next example, the COMPLEV function has a modifier value of “INL” to ignore the case, remove leading blanks,
and ignore quotes around string-1 and string-2 and a value for the COMPLEV_Score of 1 or less. The results show the
observation associated with the movie “Ghost” in the argument for string-1 matches the value of “GHOST” in the
argument for string-2, and the observation associated with the movie “The Hunt for Red October” in the string-1
argument matches the value of “The Hunt for Red Oktober” in the string-2 argument, as shown in Figure 18.

PROC SQL Code with COMPLEV Function and Arguments:
PROC SQL ;
SELECT M.Title,
A.Title,
Rating,
Category,
Actor_Leading,
Actor_Supporting,
COMPLEV(M.Title,A.Title,”INL”) AS COMPLEV_Score
FROM work.Movies_with_Unmatched_Obs M,
work.Actors_with_Unmatched_Obs A
WHERE CALCULATED COMPLEV_Score LE 1
ORDER BY M.TITLE ;

QUIT ;

Results:
Title Title Rating | Category Actor_Leading Actnr_SupportingI COMPLEV_Score
Ghost GHOST PG-12 | Drama Romance | Psatrick Swayze | Demi Moare Q
The Hunt for Red October | The Hunt for Red Cktober | GP Action Adventure | Sean Connery Alec Baldwin 1

Figure 18: The results of a COMPLEV match with arguments “INL” specified on pairs of titles.

APPLY THE COMPGED FUNCTION

The COMPGED function is another fuzzy matching technique which is facilitated by a SAS function. It works by
computing and using a Generalized Edit Distance (GED) score when comparing two text strings. The Generalized Edit
Distance score is a generalization of the Levenshtein edit distance, which is a measure of dissimilarity between two
strings (Teres, 2011). When using the COMPGED function to match datasets with unreliable identifiers (or keys), the
higher the GED score the less likely the two strings match (Sloan and Hoicowitz, 2016). Conversely, for the greatest
likelihood of a match with the COMPGED function users should seek the lowest derived score from evaluating all the
possible ways of matching string-1 with string-2.

The COMPGED function returns values that are multiples of 10, e.g., 20, 100, 200, etc. It’s been our experience, as well
as others, that most COMPGED scores of 100 or less are valid matches for the comparison that they are performing
(Cadieux and Bretheim, 2014). The COMPGED function compares two character strings, along with optional
parameters indicating whether the cases need to match, leading blanks or quotation marks need to be removed, and
longer strings should be truncated. The general syntax of the COMPGED function takes the form of:

COMPGED (string-1, string-2 <,cutoff-value> <,modifier>)
Required Arguments:

string-1 specifies a character variable, constant or expression.
string-2 specifies a character variable, constant or expression.

22

Optional Arguments:
cutoff-value specifies a numeric variable, constant or expression. If the actual generalized edit distance is
greater than the value of cutoff, the value that is returned is equal to the value of cutoff.

modifier specifies a value that alters the action of the COMPGED function. Valid modifier values are:

= jorl Ignores the case in string-1 and string-2.

= JorlL Removes leading blanks before comparing the values in string-1 or string-2.

= norN Ignores quotation marks around string-1 or string-2.

= :(colon) Truncates the longer of string-1 or string-2 to the length of the shorter string.

Table 3, below, shows the different point values that COMPGED assigns for changes from one character string to
another.

COMPGED Scoring Algorithm

Default Cost

Operation in Units

Description of Operation

APPEND 50 When the output string is longer than the input string, add any one character to
the end of the output string without moving the pointer.
BLANK 10 Do any of the following:

e Add one space character to the end of the output string without moving
the pointer.

e When the character at the pointer is a space character, advance the pointer
by one position without changing the output string.

e When the character at the pointer is a space character, add one space
character to the end of the output string, and advance the pointer by one
position.

e Ifthe cost for BLANK is set to zero by the COMPCOST function, the
COMPGED function removes all space characters from both strings before
doing the comparison.

DELETE 100 Advance the pointer by one position without changing the output string.

DOUBLE 20 Add the character at the pointer to the end of the output string without moving
the pointer.

FDELETE 200 When the output string is empty, advance the pointer by one position without
changing the output string.

FINSERT 200 When the pointer is in position one, add any one character to the end of the
output string without moving the pointer.

FREPLACE 200 When the pointer is in position one and the output string is empty, add any one
character to the end of the output string, and advance the pointer by one
position.

INSERT 100 Add any character to the end of the output string without moving the pointer.

MATCH 0 Copy the character at the pointer from the input string to the end of the output
string, and advance the pointer by one position.

PUNCTUATION 30 Do any of the following:

e Add one punctuation character to the end of the output string without
moving the pointer.

e When the character at the pointer is a punctuation character, advance the
pointer by one position without changing the output string.

e When the character at the pointer is a punctuation character, add one
punctuation character to the end of the output string, and advance the
pointer by one position.

23

REPLACE 100 Add any one character to the end of the output string, and advance the pointer
by one position.

SINGLE 20 When the character at the pointer is the same as the character that follows in
the input string, advance the pointer by one position without changing the
output string.

SWAP 20 Copy the character that follows the pointer from the input string to the output
string. Then copy the character at the pointer from the input string to the output
string. Advance the pointer two positions.

TRUNCATE 10 When the output string is shorter than the input string, advance the pointer by
one position without changing the output string.

Table 3: COMPGED scoring algorithm

An example of the scoring used in the SAS COMPGED function when matching string-1 with string-2, re-sorted from an
example available in the Help screen for the COMPGED function is displayed in Figure 19 (Sloan and Hoicowitz, 2016).

Obs Stringl | String2 | Generalized Edit Operation
Distance
1 | baboon | baboon 0 | match
2 | baboo baboon 10 | truncate
3 | bab oon | baboon 10 | blank
4 | babboon | baboon 20 | double
5 | babon baboon 20 | single
6 | baobon | baboon 20 | swap
7 | bab,oon | baboon 30 | punctuation
8 | baboonX | baboon 50 | append
S | baXboon | baboon 100 | insert
10 | baoon baboon 100 | delete
11 | baXoon | baboon 100 | replace
12 | aboon baboon 120 | trick question: swap+delete
13 | baby baboon 120 | replace+truncate®2
14 | bXaocon | baboon 200 | insert+delete
15 | bXaYoon | baboon 200 | insert+replace
16 | bXoon baboon 200 | delete+replace
17 | Xbaboon | baboon 200 | finsert
18 | Xaboon | baboon 200 | freplace
19 | balloon baboon 200 | replace+insert
20 | axoon baboon 300 | fdeletetreplace
21 | axoo baboon 310 | fdelete+replace+truncate
22 | axon baboon 320 | fdeletetreplace+single

Figure 19: An example of the scoring used while matching on pairs of titles using the COMPGED function.

In the example below, traditional WHERE-clause logic with the UPCASE function is specified to equate the values of
string-1 with string-2. Although this approach is far less efficient and can be more time consuming than using
traditional data cleaning methods or the COMPGED function, the results show the value for the movie “Christmas
Vacation” in the string-1 argument matches the value of “XMAS Vacation” in the string-2 argument, as shown in Figure
20.

PROC SQL Code with Traditional WHERE-clause logic:
PROC SQL ;
SELECT M.Title,
A.Title,
Rating,

24

Category,
Actor_Leading,
Actor_Supporting
FROM work.Movies_with_Unmatched_Obs M,
work.Actors_with_Unmatched_0bs A
WHERE UPCASE(A.Title) = "XMAS VACATION"
AND UPCASE(M.Title) "CHRISTMAS VACATION"
ORDER BY M.TITLE ;
QUIT ;

Results:

Title Title Rating | Category @ Actor_Leading Actor_Supporting

Christmas Vacation | XMAS Vacation | PG-123 | Comedy Chewy Chase Beverly D'Angelo

Figure 20: The results of using traditional WHERE-clause logic on pairs of titles.

In the next example, the COMPGED function has a “cutoff-value” for the COMPGED_Score set at 100. The results show
the row associated with the movie “The Hunt for Red October” in the argument for string-1 matches the value of “The
Hunt for Red Oktober” in the argument for string-2, as shown in Figure 21.

PROC SQL Code with COMPGED Function:
PROC SQL ;
SELECT M.Title,
A.Title,
Rating,
Category,
Actor_Leading,
Actor_Supporting,
COMPGED(M.Title,A.Title) AS COMPGED_Score
FROM work.Movies_with_Unmatched_0Obs M,
work.Actors_with_Unmatched_Obs A
WHERE CALCULATED COMPGED_Score LE 100
ORDER BY M.TITLE ;

QUIT ;

Results:
Title Title Rating | Category Actor_Leading | Actor_Supporting | COMPGED_S5core
The Hunt for Red October | The Hunt for Red Cktober | GP Action Adventure | Sean Conmery Alec Baldwin 100

Figure 21: The results of a COMPGED match on pairs of titles.

In the next example, the COMPGED function has a modifier value of “INL” to ignore the case, remove leading blanks,
and ignore quotes around string-1 and string-2 and a “cutoff-value” for the COMPGED_Score set at 100. The results
show the row associated with the movie “Ghost” in the argument for string-1 matches the value of “GHOST” in the
argument for string-2, as shown in Figure 22.

PROC SQL Code with COMPGED Function and Arguments:
PROC SQL ;
SELECT M.Title,
A.Title,
Rating,
Category,

25

Actor_Leading,
Actor_Supporting,
COMPGED(M.Title,A.Title,"INL') AS COMPGED_Score
FROM work.Movies_with_Unmatched_Obs M,
work.Actors_with_Unmatched_Obs A
WHERE CALCULATED COMPGED_Score LE 100
ORDER BY M.TITLE ;

QUIT ;
Results:
Title Title Rating = Category Actor_Leading | Actor_Supporting || COMPGED_Score
Ghaost GHOST PG-12 | Drama Romance | Patrick Swayze | Demi Moore o]
The Hunt for Red October | The Hunt for Red Oktober | GP Action Adventure | Sean Connery Alec Baldwin 100

Figure 22: The results of a COMPGED match with arguments on pairs of titles.

SUMMARY OF FUZZY MATCHING TECHNIQUES
A summary and comparison of fuzzy matching techniques is illustrated, below.

PROC SQL Code with Summary of Fuzzy Matching Techniques:
PROC SQL ;
SELECT Title
, Length
, Category
, Rating
, SOUNDEX(Title) AS SOUNDEX_Value
, SPEDIS(Title, 'Michael') AS SPEDIS_Value
, COMPLEV(Title, 'Michael') AS COMPLEV_Value
, COMPGED(Title, 'Michael') AS COMPGED_Value
FROM MYDATA.Movies_with_Messy_Data
WHERE CALCULATED SPEDIS_Value GE 0
AND CALCULATED COMPLEV_Value GE 0
AND CALCULATED COMPGED_Value GE 0
ORDER BY Title ;
QUIT ;

26

Results:

Title Length | Category Rating | SOUNDEX_Value | SPEDIS Value COMPLEV_Value ¥ COMPGED_Value

177 | Acton Adventure R 400 7 1400
Brave Heart 177 | Acton Adventure R B6163 76 10 880
Brave Heart 177 | Action Adventure R B6163 76 10 880
Casablanca 103 | Drama PG C21452 75 9 850
Christmas Vacatiion 97 | Commedy PG-13 | C623521235 62 17 1310
Christmas Vacation 97 | Comedy PG-13 | C623521235 63 16 1260
Coming to America 116 | Comedy R C5523562 67 15 1220
Dracula 130 | Hormor R D624 100 i 800
Dressed to Kill 105 | Drama Mysteries R D623324 65 13 1020
Forrest Gump 143 | Drama PG-13 | F623251 77 12 1010
Forrest Gump 142 | Drama PG-13 | F623251 77 12 1010
Forrest Gumpp 143 | Dramma PG13 F623251 73 13 1060
Ghost 127 | Drama Romance PG-13 @ G23 120 6 620
Jaws 125 | Action Adventure PG J2 137 6 530
Jurassic Park 127 | Action PG-13 | JB22162 73 10 1010
Lethal Weapon 110 | Action Cops & Robber | R L3415 58 10 810
Michael 106 | Drama PG-13 | M24 0 1] 1]
Micheal 106 | Drama PG-13 | M24 7 2 20
National Lampoon's Vacation 98 | Comedy PG-13 | N354451521235 48 25 1550
National Lampoons Vacation 98 | Comedy PG-13 | N354451521235 49 24 1520
Poltergeist 115 | Hormor PG P436223 80 10 1000
Rocky 120 | Action Adventure PG R2 120 6 520
Rocky 120 | Action Adventure PG R2 120 6 520
Scarface 170 | Action Cops & Robber | r 5612 a7 7 800
Silence of the Lambs 118 | Drama Suspense R 5452134512 55 16 1180
Star Wars 124 | Action Sci-Fi PG 53662 96] 810
The Hunt for Red October 135 | Action Adventure GP T5316632316 56 22 1490

Figure 23: Summary of fuzzy matching techniques.

Use the Lower Score
For those fuzzy matching techniques that are not commutative (it matters which dataset is placed first and which is
placed second), use the lower score that results from the different sequences.

Eliminate Entries where the Word Counts are Significantly Different
Eliminate entries where the word counts are significantly different (the level of significance will be determined based
on the datasets being compared).

VALIDATION

As can be seen when comparing the SOUNDEX and SPEDIS methods, and when looking at the results of COMPLEV and
COMPGED, these methods worked well on a test dataset that was designed to illustrate the results. It should be noted
that the authors found the COMPLEV function to be best used when comparing simple strings where data sizes and/or
speed of comparison is important, such as when working with large datasets. It should also be noted that generalized
edit distance computations such as SAS’ COMPGED function requires more processing time to complete due to its
more exhaustive and thorough capabilities.

Research was conducted on 50,000 business names to manually identify fuzzy matches using SAS” COMPGED function
(Sloan and Hoicowitz, 2016). The intent of the study was to identify false negatives by looking at an alphabetic sort of
the business names. From the extracted test files the authors identified false positives. Finally, the conditions that
were specified in the COMPGED function were repeated until the false positives and false negatives were significantly
reduced. This then became part of the fuzzy matching process by efficiently achieving improved results.

27

CONCLUSION

When data originating from multiple sources contain duplicate observations, duplicate and/or unreliable keys, missing
values, invalid values, capitalization and punctuation issues, inconsistent matching variables, and imprecise text
identifiers, the matching process is often compromised by unreliable and/or unpredictable results. This paper
demonstrates a five-step approach including identifying, cleaning and standardizing data irregularities, conducting
data transformations, and utilizing special-purpose programming techniques such as the application of SAS functions,
the SOUNDEX algorithm, the SPEDIS function, approximate string matching functions including COMPGED and
COMPLEV, and an assortment of constructive programming techniques to standardize and combine datasets together
when the matching columns are unreliable or less than perfect.

REFERENCES
Cadieux, Richard and Daniel R. Brethiem (2014). “Matching Rules: Too Loose, Too Tight, or Just Right?”, Proceedings of
the 2014 SAS Global Forum (SGF) Conference.

Cody, Ron (2017). “Cody’s Data Cleaning Techniques Using SAS®, Third Edition”, SAS Press, SAS Institute, Cary, NC.

Dunn, Toby (2014). “Getting the Warm and Fuzzy Feeling with Inexact Matching”, Proceedings of the 2014 SAS Global
Forum (SGF) Conference.

Foley, Malachy J. (1999). “Fuzzy Merges: Examples and Techniques”, Proceedings of the 1999 SAS Users Group
International (SUGI) Conference.

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul and Stephen Sloan (2019). “Fuzzy Matching Programming Techniques Using SAS® Software”,
Proceedings of the 2019 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul and Stephen Sloan (2017). “Fuzzy Matching Programming Techniques Using SAS® Software”,
Proceedings of the 2017 South Central SAS Users Group (SCSUG) Conference.

Lafler, Kirk Paul and Stephen Sloan (2017). “A Quick Look at Fuzzy Matching Programming Techniques Using SAS®
Software”, Proceedings of the 2017 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul (2017). “Removing Duplicates Using SAS®”, Proceedings of the 2017 South Central SAS Users Group
(SCSUG) Conference.

Lafler, Kirk Paul (2016). “Removing Duplicates Using SAS®”, Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Patridge, Charles (1997). “The Fuzzy Feeling SAS Provides: Electronic Matching of Records without Common Keys”,
Proceedings of the 1997 SAS Users Group International (SUGI) Conference.

Russell, Kevin (January 27, 2015). “How to Perform a Fuzzy Match Using SAS Functions”. blogs.sas.com.

Roesch, Amanda (2012). “Matching Data Using Sounds-Like Operators and SAS® Compare Functions”, Proceedings of
the 2012 SAS Global Forum (SGF) Conference.

Sloan, Stephen and Kirk Paul Lafler (2022). “A Quick Look at Fuzzy Matching Programming Techniques Using SAS®
Software”, Proceedings of the 2022 PharmaSUG Conference.

Sloan, Stephen and Kirk Paul Lafler (2020). “Fuzzy Matching Programming Technigues Using SAS® Software”,

Proceedings of the 2020 PharmaSUG Conference.

Sloan, Stephen and Dan Hoicowitz (2016). “Fuzzy Matching: Where Is It Appropriate and How Is It Done? SAS Can
Help.”, Proceedings of the 2016 SAS Global Forum (SGF) Conference.

Staum, Paulette (2007). “Fuzzy Matching using the COMPGED Function”, Proceedings of the 2007 NorthEast SAS Users
Group (NESUG) Conference.

Teres, Jedediah J. (2011). “Using SQL Joins to Perform Fuzzy Matches on Multiple Identifiers”, Proceedings of the 2011
NorthEast SAS Users Group (NESUG) Conference.

28

http://support.sas.com/resources/papers/proceedings14/1674-2014.pdf
https://www.sas.com/store/books/categories/usage-and-reference/cody-s-data-cleaning-techniques-using-sas-third-edition/prodBK_70074_en.html
http://support.sas.com/resources/papers/proceedings14/1316-2014.pdf
http://www2.sas.com/proceedings/sugi24/Advtutor/p46-24.pdf
https://www.amazon.com/PROC-SQL-Beyond-Basics-Using/dp/163526684X/ref=asc_df_163526684X/?tag=hyprod-20&linkCode=df0&hvadid=343251570619&hvpos=&hvnetw=g&hvrand=16509524140472745525&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9031280&hvtargid=pla-695807648063&psc=1&tag=&ref=&adgrpid=67797266623&hvpone=&hvptwo=&hvadid=343251570619&hvpos=&hvnetw=g&hvrand=16509524140472745525&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9031280&hvtargid=pla-695807648063
https://www.lexjansen.com/scsug/2017/Fuzzy-Matching-Programming-Techniques-Using-SAS-Software-SCSUG-2017.pdf
https://www.lexjansen.com/scsug/2017/Fuzzy-Matching-Programming-Techniques-Using-SAS-Software-SCSUG-2017.pdf
https://www.lexjansen.com/wuss/2017/129_Final_Paper_PDF.pdf
https://www.lexjansen.com/wuss/2017/129_Final_Paper_PDF.pdf
https://www.lexjansen.com/scsug/2017/Removing-Duplicates-Using-SAS-SCSUG-2017.pdf
http://www.lexjansen.com/mwsug/2016/TT/MWSUG-2016-TT02.pdf
http://www2.sas.com/proceedings/sugi22/APPDEVEL/PAPER28.PDF
http://blogs.sas.com/content/sgf/2015/01/27/how-to-perform-a-fuzzy-match-using-sas-functions/
http://support.sas.com/resources/papers/proceedings12/122-2012.pdf
https://www.lexjansen.com/pharmasug/2022/AP/PharmaSUG-2022-AP-030.pdf
https://www.lexjansen.com/pharmasug/2022/AP/PharmaSUG-2022-AP-030.pdf
https://www.lexjansen.com/pharmasug/2020/AP/PharmaSUG-2020-AP-073.pdf
http://support.sas.com/resources/papers/proceedings16/7760-2016.pdf
http://support.sas.com/resources/papers/proceedings16/7760-2016.pdf
http://www.lexjansen.com/nesug/nesug07/ap/ap23.pdf
http://www.lexjansen.com/nesug/nesug11/ps/ps07.pdf

“Transforming SAS Data Sets”, (2000). http://www.rhoworld.com/pdf/ch599.pdf.

Zirbel, Douglas (2009). “Learn the Basics of PROC TRANSPOSE”, Proceedings of the 2009 SAS Global Forum (SGF)
Conference.

ACKNOWLEDGMENTS

The authors thank the SESUG 2023 Conference Committee, particularly the Statistics, Analytics, and Reporting Section
Chairs, Abbas Tavakoli and Mostafa Zahed, for accepting our paper; the SESUG 2023 Academic Chair, Mel Alexander,
and the Operation Chair, Kelly Smith, for organizing and supporting a great “live” conference event; SAS Institute Inc.
for providing SAS users with wonderful software; and SAS users everywhere for being the nicest people anywhere!

TRADEMARK CITATIONS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of
their respective companies.

CONTACT INFORMATION

Stephen has worked at Accenture in the Services, Consulting, and Digital groups and is currently a senior manager in
the SAS Analytics area. He has worked in a variety of functional areas including Project Management, Data
Management, and Statistical Analysis. Stephen has had the good fortune to have worked with many talented people
at SAS Institute. Stephen has presented at over 20 SAS conferences and been published in professional

journals. Stephen has a B.A. cum laude with Honor in Mathematics from Brandeis University, M.S. degrees in
Mathematics and Computer Science from Northern lllinois University, an MBA from Stern Business School at New York
University. Stephen graduated 1st in his class with a graduate certificate in Financial Analytics from Stevens Institute.

Kirk Paul Lafler is an educator, developer, programmer, consultant, and data analyst; currently working as a lecturer
and adjunct professor at San Diego State University and the University of California San Diego Extension; and teaching
SAS, SQL, Python, Excel, and cloud-based technology courses to users around the world. Kirk has decades of
programming experience and specializes in SAS software, SQL, RDBMS technologies (Oracle, SQL-Server, Teradata,
DB2), Python, and other languages and productivity tools. Kirk is the author of the popular PROC SQL: Beyond the
Basics Using SAS, Third Edition (SAS Press. 2019) and is actively involved with SAS, SQL, Python, R, ML, and cloud-
computing user groups, conferences, and blogs as an Invited speaker, educator, keynote, and leader; and is the
recipient of 27 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions may be sent to:

Stephen Sloan
Data Science Senior Principal
Accenture
E-mail: Stephen.B.Sloan@accenture.com

Kirk Paul Lafler
SAS® /SQL / RDBMS / Python / Excel / Cloud-based Developer, Programmer, Consultant,
Educator, Data Analyst, and Author
sasNerd
E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

29

http://www.rhoworld.com/pdf/ch599.pdf
http://support.sas.com/resources/papers/proceedings09/060-2009.pdf
mailto:Stephen.B.Sloan@accenture.com
mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler

