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ABSTRACT 

In mixed models, tests for variance components can be of interest. In some instances, 

several tests are available. For example, in standard balanced experiments like blocked 

designs, split plots and other nested designs, and random effect factorials, an F test for 

variance components is available along with the Wald test, Wald being a test based on large 

sample theory.  In some cases, only the Wald test is available, so it is the default output 

when the COVTEST option is invoked in analyzing mixed models. However, one must 

be very careful in using this test. Because the Wald test is a large-sample test, it is 

important to know exactly what is meant by large sample. Does a field trial with 4 blocks 

and 80 entries (genetic crosses) in each block satisfy the "large sample" criterion?  The 

answer is no, because, for testing the random block effects, it is the number of blocks (4) 

that needs to be large, not the overall sample size (320). Surprisingly it is not even possible 

to find significant block effects with the Wald test in this example, no matter how large the 

true block variance is. This problem is not shared by the F test when it is available as it is in 

this example. A careful look at the relationship between the F test and the Wald test is 

shown in this paper, through which the detail of the above phenomenon is made clear. The 

exact nature of this problem, while important to practitioners is apparently not well known. 

INTRODUCTION 

This paper compares the F test for random effects in mixed models to the Wald test.  In the 

MIXED procedure and its relatives (GLIMMIX, NLMIXED), SAS1 software delivers the Wald 

test as an option. It gives no default tests for random effects. This is a reasonable strategy 

given the approximate nature of the Wald test and the fact that F is not available for some 

models.  F is available, however, for many designed experiments. Both approaches, Wald 

and F, test the same hypothesis (0 variance component) but the tests can differ in their 

power to detect 2>0 and in their fidelity to the claimed false rejection rate.  The F test has 

exactly the claimed null hypothesis rejection rate for normally distributed data in balanced 

experiments of any size and the Satterthwaite approximation, used when the data are not 

balanced, is quite accurate.  The F tests have reasonably good power. In contrast, the Wald 

test is approximate in nature, requiring large samples to validate its use. Exactly what does 

“large sample” mean in the context of Wald? It is not the overall sample size that must be 

large as will be shown.  An article by McNew and Mauromoustakos (1997) notes that the 

Wald test fails to work well in small samples but does not rigorously show why.  

Consider a randomized complete block design with n=rt observations where r is the number 

of levels of the random block effect and t is the number of treatments. For example, in field 

trials of entries (genetic families) for a crop, it is not unusual to have a few fields, say r=4 

with t=100 or more different entries in each field. The overall sample size, n=400, would 

usually be considered large, but in fact it is the number of random levels r=4, not the 

overall sample size n=400 that needs to be large.  It is shown herein that the Wald test 

cannot exceed the square root of (r−1)/2, which is 1.22 in this example. With r=4, the Wald 

test CANNOT exceed the usual 5% critical value 1.645.  This is true regardless of the true 
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block variance. On the other hand, as the ratio of block to error variance increases, the F 

test’s power continues to increase. F is unbounded even with just 4 blocks.  

The organization of this paper is as follows. In section 1 a trivial simple random sample is 

used to point out the advantage, in terms of bias, of REML estimation (the default in the 

MIXED procedures) over ordinary maximum likelihood. The example breaks down the 

ANOVA table sources into n individual one degree of freedom contrasts. This paper uses that 

methodology throughout. Section 2 reviews the Wald test. The test’s construction simplifies 

nicely based on these one degree of freedom contrasts.  The randomized complete block 

(RCB) case is illustrated in section 3 followed by a generalization of the Wald approach.  

Section 4 develops the key relationship between F and the Wald test when both are 

available. Section 5 shows a Monte Carlo illustration of the results. Readers not interested in 

the underlying math might go directly to Section 5. Section 6 explores more rigorously the 

relationship between F and the Wald test. It also indicates why the REML variance 

component estimate is sometimes the null hypothesis value 0. It gives insight on how to 

interpret the situation in which the Z test is missing. The remaining sections extend the 

results to several commonly encountered experimental designs including Latin squares, 

nested designs, split plots, and mixed factorials. Simulations in section 12 suggest that, for 

at least some cases, missing values may not change the results in any major way. 

1. REML 

The mixed model is Y=X+Z+e where  and e are vectors of normal, mean 0 random 

variables, X and Z are known matrices of constants and  is a fixed effect parameter vector 

to be estimated. REML estimation reparameterizes the data into linear combinations, some 

of which involve the mean X and others that have mean 0 and involve only the random 

effects.  

A trivial but informative example is a simple random sample {8, 12, 7, 13} from a N(,2) 

distribution. The model is just Y=X+e where X is simply a column of 1s and  is the 

population mean . The ordinary likelihood is maximized by setting 2 equal to  

((8−)2+(12−)2+(7−)2+(13−)2)/4 which, being an average of (Y−)2 terms, is an 

unbiased estimate of 2=E{(Y-)2}. This result is impractical because the population mean  

is usually unknown. With  unknown, the likelihood function is maximized by substituting 

the sample average for  The sample average fits the sample better, in terms of squared 

deviations, than any other number including the true mean  As a result, this substitution 

of the sample mean produces a downward bias in the variance estimate.  The bias is 

removed if the sum of squared deviations from the sample mean is divided by n−1 instead 

of n where n is the sample size. Beginning courses in statistics typically present only the 

unbiased estimate. In our example the sample average is 10, the sum of squared deviations 

is SSq=26, the biased estimate is SSq/n=26/4=6.50 whereas the more common unbiased 

estimate is SSq/(n-1)=26/3=8.67, a 33% increase.  

The REML method uses sets of orthogonal linear combinations to estimate variance 

components. There are several equivalent sets.  We present two of these evaluated for the 

sample above.  The first is  
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An equally valid representation is given by  
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.  In our sample  
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In both cases, the squares of the last 3 elements of L sum to 26. These three elements 

have known population mean =0 so their sample mean is irrelevant. Their average square, 

26/3, is the previously seen unbiased estimate of 2. Orthogonality of the contrasts ensures 

uncorrelated variables and hence independence for normal data.    

The displayed contrasts are orthonormal but orthogonality is sufficient.  Any contrast 

n

i ii=1
L= c Y with 

n

ii=1
c 0=  can be normalized by replacing ci by 

n 2

i jj=1
c / c . The one 

degree of freedom sum of squares is 
n2 2

i=1
L / ci , as is well known. REML ignores the first 

linear combination, which is used to estimate the mean, then takes advantage of the fact 

that the last n=3 linear combinations have known mean =. The unbiased variance 

estimate is (0+25+1)/3 or (8+18+0)/3 which is 26/3 in either case.  

The example here simply shows the advantage of REML estimation in terms of bias. The 

REML estimate is unbiased in a simple random sample. REML variance parameter estimates 

are less biased than maximum likelihood estimates.  REML estimates may not be exactly 

unbiased in general. The current example is too simple to be practical. The reason for 

looking at the Wald test in a simple random sample is to set the stage for the later, more 

practical, sections of this paper. The next section continues using the simple example.  



2. WALD TESTS  

The Wald test divides a parameter estimate by an estimated standard error. This estimated 

standard error is a function of the second derivative of the likelihood. The objective function 

-2 (REML log likelihood) is based on linear contrasts Li with known means 0. There are n-k 

of these where k is the rank of the design matrix X.  In a simple random sample of size n, X 

is just a column of 1s, X=1, and n−k=n−1. The variance matrix of the L contrasts is, as 

shown in section 1, the diagonal matrix 2I(n−)x(n−). Using n−1 orthonormal contrasts with 

known means 0, the objective function and its first two derivatives in a normal simple 

random sample with n observations are:  

−2 (REML log likelihood) = 
2 2(n 1)ln(2π)+(n 1)ln(σ )+SSq/σ− − where 

n-1
2
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First derivative with respect to 2:  
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The first derivative set to 0 gives the unbiased estimate
2σ̂ =SSq/(n 1)− for a simple random 

sample.  Inserting 
2σ̂  for 2 and 

2ˆ(n 1)σ− for SSq in the second derivative gives the Hessian 

matrix H. In this case, H has just one element, H=
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−
which, surprisingly and 

unfortunately, does not even involve the data!! This means that the “test” will give the 

same decision regardless of how large is the sample variance. Here we have simply followed 

the Wald formula, without regard to assumptions. This whole article is an illustration of the 

importance of understanding and checking assumptions. The reader can run the following 

SAS program to confirm the Z result above. The COVTEST option produces the Wald test:  

      Data A;  

     do n=4, 9, 19; do rep = 1 to 3;  

       do i=1 to n;  

              Y= 1000 + 100*normal(12375);  

       output; end;  end; end;  

  ods output CovParms=Wald; 

  PROC MIXED data=A COVTEST;  

      by n rep;  

      model Y= ; 

  PROC PRINT data=Wald;  

    var n Zvalue probZ;   

  run;   

 



The output below matches our theory in that Z2=(n-1)/2 in every case regardless of the 

observations.  Because 2(1.645)2+1=6.41 the level 0.05 Wald Z test will never reject the 0 

variance hypothesis if n<7 even though we know the variance is positive when the 

observations differ. The 5% Wald test has no power if n<7.  

Obs     n    ZValue     ProbZ 

 1      4      1.22    0.1103 

 2      4      1.22    0.1103 

 3      4      1.22    0.1103 

 4      9      2.00    0.0228 

 5      9      2.00    0.0228 

 6      9      2.00    0.0228 

 7     19      3.00    0.0013 

 8     19      3.00    0.0013 

 9     19      3.00    0.0013 

3. THE RANDOMIZED COMPLETE BLOCK CASE 

Our first example of a design of practical interest is the randomized complete block (RCB) 

design with r replicates in blocks. Each block contains responses for t treatments for a total 

of n=rt observations. Block effects are usually random. The assumption of no interaction 

between the blocks and treatments allows for an estimated error variance and hypothesis 

tests.     

Consider r=4 blocks and t=3 levels of a fixed effect treatment. Assuming random block 

effects, our interest centers on the block and error variance components
2

Blockσ and 2. The 

model is Yij=+i+Bj+eij, with treatment levels i=1,2,3, block levels j=1,2,3,4, Bj~N(0,
2

Blockσ ) 

and eij~N(0,2). All random terms are independent of each other by assumption. We take a 

similar approach to that of the simple random sample case with Display 1 below showing 

one choice of linear combinations or “contrasts.” With response vector Y, the first three 

elements Ci’Y of the vector L=CY in Display 1 estimate fixed effects. Here Ci’ is the ith row 

of the contrast matrix C.  The next three contrasts Ci’Y, each with known mean 0, are 

linear combinations of block and error effects. The last six have known mean 0 and are 

linear combinations of the errors. The display breaks the data down completely into 

individual one degree of freedom contrasts. The error contrasts are free of fixed effects and 

block effects because their coefficients sum to 0 within each block and treatment. The last 9 

contrasts come from distributions with known mean 0 and are independent. By definition of 

REML, they constitute the inputs to the REML likelihood, just as before.  For each contrast, 

the quantity
2

i i i(C Y) /(C C )  is called the contrast “sum of squares,” despite it being a sum of 

only one item. The contrasts are chosen to split into a block group and an independent error 

group. The sum of these 1 df contrast sums of squares is the ANOVA sum of squares.  
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Display 1. RCB with fixed effect contrasts Lk1, random block effect contrasts Lk2 and error 

effect contrasts Lk3. 

The linear contrast L43 has coefficients computed as in Table 1 below. The row labels show 

the L31 treatment contrast coefficients, -1, 2, and -1.  The column labels show the L12 block 

coefficients -1, -1, 1, and 1. The table entries, the coefficients in the error contrast L43, are 

the products of the row and column labels.  Note that each block coefficient is repeated for 

all treatments within the block and each treatment coefficient is repeated r times, once per 

block, in CY above. By construction, the block coefficients and error coefficients (the Table 

1 entries) sum to 0 within each row (each treatment level). The treatment coefficients and 

error coefficients sum to 0 within each column (each block level). Notice that L43 has known 

mean = Compute it as though estimating a block by treatment contrast.  The assumption 

of no true block by treatment interaction ensures that the associated contrast is a function 

only of eij. It has mean 0 and its square is an unbiased estimate of the error variance . 

There are (r−1)(t−1)=(3)(2)=6 such contrasts Lk3 , k=1,2,…,6, available from such tables, 

where 6 is also the ANOVA table error degrees of freedom.  

 

         Block 

Treatment  
− −   

−   − − 

 − −   

−   − − 

 

Table 1. Contrast coefficients for L43 in Display 1 (read down the columns) 

Some details follow. Because the row (column) labels sum to 0 and are repeated within 

each block (treatment), the block and treatment contrasts are uncorrelated and thus are 

independent for normal data.  Because the table entries sum to 0 across the rows and down 

the columns, the block and treatment effects are multiplied by 0 in each error contrast. This 

shows that error contrast L43 is independent of all row and column contrasts.  Because the 



row, column, and error contrasts are also independent within groups, all the contrasts are 

independent of each other. These last 3+6=9 contrasts are free of fixed effects and thus 

have means 0. By choosing contrasts in this manner, any RCB analysis breaks down into 

independent one degree of freedom contrasts.  A more mathematically formal development 

of these ideas follows. 

The model for a RCB is Yij=++Bj+eij, i=1,2,…,t ; j=1,2,3,…,b with Bj~N(0,
2

Blockσ ) and 

eij~N(0,). Let cijk represent the coefficients in row k of the contrast matrix C in Display 1. 

For rows k=1, 2, and 3 the contrasts take the form Lk1=
t b

ijk i j iji=1 j=1
c (μ+τ +B +e )   = 

t b

ik i iji=1 j=1
c (μ+τ +e )   .  Notation cik indicates that the coefficients cijk in Lk1 change only 

with i.  Because 
t

ijki=1
c =0  for all j and k=2 or 3, we have 

b t

ijk jj=1 i=1
( c )(μ+B )=0   so, for 

k=2 or 3, treatment contrast Lk1 does not involve blocks or . The same argument shows 

that, for the block contrasts, we have Lk2 =
t b t b

ijk i j ij jk j iji=1 j=1 i=1 j=1
c (μ+τ +B +e )= c (B +e )    , 

an expression not involving any i or .  The expected square of block contrast Lk2 is (by 

independence of B and e), ( ) 
2

b t b t b2 2 2 2 2

jk j ij jk Block jkj=1 i=1 j=1 i=1 j=1
E c B +e =t c σ + c σ =    

t b2 2 2

Block jki=1 j=1
(tσ +σ ) c  . Dividing by 

t b 2

jki=1 j=1
c  =

b 2

jkj=1
t c to get the contrast sum of 

squares, we see that each squared block contrast has expected value 
2 2

Blocktσ σ+ . Recall 

that 
2 2

Blocktσ σ+  is the expected mean square for blocks from a standard ANOVA table.  

 

The error contrasts have the form Lk3 =
t b t b

ijk i j ij ijk iji=1 j=1 i=1 j=1
c (μ+τ +B +e )= c e    , a function 

of the error terms only. This equality follows from the fact that the sum on i of the 

coefficients on Bj and the sum on j of the coefficients on i are both 0.  The block and error 

contrasts are independent because ( )( ) t b t b

jk j ij i'j'k' i'j'i=1 j=1 i'=1 j'=1
E c (B +e ) c e     = 

t b2

jk ijk'i=1 j=1
σ c c  which (from

t

ijk'i=1
c 0= ) is 0 for every j by construction. Note that 

2

ij i jE{e e }=σ  only when i=i  and j=j  and is 0 otherwise. 

4. A GENERAL PLAN FOR REML ANALYSIS 

In Display 1, the contrast vector is L=CY. The rows 
'

iC of C were carefully chosen with 

certain subsets of coefficients summing to 0 to give independence. Rows 4-6 of CY show 

independent linear block contrasts Li, each with a 1 df sum of squares whose expected 

square is V=
2 2

Blocktσ +σ . Rows 7-12 show (r−1)(t−1) error contrasts, the square of each 

estimating V=
2σ .  Contrasts were carefully chosen so that within a treatment or a block 

level, the cijk coefficients are either constant or they sum to 0.  Notice that (r−1) and 

(t−1)(r−1) are ANOVA degrees of freedom, symbolized df in the formulas below. By 

independence of these contrasts, −2(REML log likelihood) becomes the sum of two 

separately maximizable parts, a block part and an error part.  Each part has the form and 

derivatives given in formulas (1) below:  



     −2 (REML log likelihood) = df(ln(2π))+df(ln(V))+SSq/Vwhere 

df
2

i i i

i=1

SSq= (C Y) /(C C )     (1) 

First derivative:  
2

df SSq

V V
−  

Second derivative: 
2 3

df SSq
+2

V V

−
 

Note that df is both the number of contrasts and the ANOVA degrees of freedom for the 

source in question. The first derivative set to 0 gives the estimate V=SSq/df . This is the 

usual ANOVA table mean square for the source. Inserting this for V in the second derivative 

gives a Hessian H=
2 3 2

df (df)(V) df
+2

V V V

−
= , and a Wald variance 2H-1=

22V

df
.   

Here V might estimate a single variance component or a linear combination of variance 

components given by the ANOVA expected mean square for the source. This approach will 

be applicable to many experimental designs. Whenever V estimates the error variance 

component 2, the Wald test will be errodf /2r  regardless of the data.  

A common situation in experimental designs is that in which the usual unbiased variance 

component estimate in the ANOVA table is of the form (MSN−MSD)/c where F= MSN/MSD and  

MSN and MSD are independent ANOVA mean squares (by Cochran’s Theorem). Here 

E{(MSN−MSD)/c} is the variance component of interest. The first derivative in formula (1) 

shows that ANOVA table mean squares MSN and MSD are also REML estimates. The mean 

squares have degrees of freedom dfN and dfD. If the variance component in question is 0, 

the ratio F=MSN/MSD is a ratio of independent Chi-square variables so, with normal data, 

this F has exactly an F distribution under the 0 variance component hypothesis. F is the 

standard ANOVA F test for a 0 variance component. Recall that in PROC GLM, a 

RANDOM/TEST statement is required to get F tests with proper denominators in models with 

multiple variance components.  

The Wald variance of (MSN−MSD)/c, by formula (1), is 

2 2 2
2N ND D

2 2 2

N D N D

2MS df2MS 2MS
+ = F +

c df c df c df df

  
  

  
  

and the variance component estimate is ( )N D D
MS MS MS

= F 1
c c

− 
− 

 
 where F=MSN/MSD.  

The Wald test Z thus satisfies formula (2) below:  

                                                 Z= N

2

N D

df (F 1)

2 F +df /df

−
  , F≥1                                                          (2)  

                                                     Z = missing otherwise  

The REML likelihood function is defined on the domain 
2

Sourceσ ≥0 for all random effect 

sources. The reason for the F≥1 caveat is that, when MSN−MSD<0 (i.e. F<1) the REML 

likelihood is maximized at the boundary of its domain, resulting in a 0 variance component 



estimate, no derivative, and thus no standard error.  SAS prints out a dot for Z to indicate a 

missing value whenever a variance component estimate hits the domain boundary 0. Almost 

certainly the estimation was stopped at the boundary when its iterative algorithm’s next 

step would have taken the estimate into the negative numbers. This suggests that, for 

cases with both Wald and F available, a missing Z is associated with F<1 and indicates 

insignificant evidence of a positive variance component. Importantly, this gives an 

interpretation to an otherwise uninterpretable situation.  

For the RCB design, the estimate (MSN−MSD)/c is unbiased but is negative whenever F<1. 

Because REML replaces negative values by 0, the REML estimate cannot also be unbiased, 

illustrating the previous comment that REML estimates are not always unbiased.  

We return to analyzing the block design before applying REML contrasts and formula (2) to 

other designs. For the error variance, recall that the Wald test is Z= errordf /2 . 

The block variance is 
2 2 2 2

Block Blockσ =((tσ +σ ) σ )/t− . Its estimate is (MSBlock−MSerror)/t 

 =  MSerror(FBlock−1)/t so formula (2) applies giving Block

2

Block

(F 1)r 1
Z

2 (r 1)
F +

(r 1)(t 1)

−−
=

−

− −

 =

Block

2

Block

(F 1)r 1

2 1
F +

(t 1)

−−

−

for FBlock ≥1. If FBlock 1 the block variance estimate is 0 and Z is 

missing because the REML likelihood function is restricted to the domain 2≥0. Recall that 

the exception for F<1 applies to all examples herein. 

5. EMPIRICAL CHECK AND DEMONSTRATION  

As an illustration and numeric check on the relationship between the Wald Z and F tests, we 

generate 2000 data sets in SAS. Without loss of generality, we use error variance 1. Four 

different blocks to error standard deviation ratios sd are used. The graphs show the superior 

power of F compared to the Wald test.  

Each data set has data from a randomized complete block design with r=19 blocks and t=15 

treatments. There is n=rt=285 observations in each data set. Our theory shows that the 

Wald Z for blocks is bounded by (19 1)/2=3− .  The (approximate) Wald Z and the (exact) 

ANOVA F test for blocks is computed for each sample. In Figure 1 each panel uses one ratio 

of standard deviations, block to error. Reading left to right within each row the ratios are 

0.25, 0.5, 1 and 2. Variance ratios are thus 1/16, 1/4, 1, and 4.   

On each vertical axis is the calculated block F statistic, truncated at F=75 to retain 

reasonable resolution in the interesting parts of the graphs. A horizontal reference line 

appears at the 5% critical F. Data sets producing (red or blue) points above this line have F 

tests that reject the zero-block variance hypothesis. These are correct rejections of the 

(false) null hypothesis. The horizontal (X) coordinate of each point is the corresponding 

Wald Z for that data set. There are two vertical reference lines.  The leftmost thin line 

marks the 95th percentile, 1.645, of the N(0,1) asymptotic distribution of Z.  Points (red) 

lying to the right of this critical value represent rejections by Z of the 0 variance component 



hypothesis at the 5% level. As has been shown analytically, all points lie to the left of the 

thicker red reference line at (r 1)/2=3− . 

 

Figure 1: F test statistic versus Wald Z. Ratios of block to error standard deviations are 

sd=0.25, 0.5, 1, and 2. There are r=19 blocks and t=15 treatment levels.  

Points in the upper left quadrant formed by the F and Z critical value reference lines are 

blue. They represent cases with F significant but not Z. Dark brown points, to the left and 

below these are cases in which neither Z nor F is significant.  Some Wald Zs are missing 

(Zmiss) when the ratio of standard deviations is 0.25. The following table gives the counts. 

When missing Zs occur, as in the upper left quadrant, a point is displayed in purple at Z= 

−0.3 to so indicate. There is no point in the bottom right quadrant. There is no case with 

only Z significant.  

   std deviation ratio  

 

                      p<0.05   ‚    0.25‚     0.5‚       1‚       2‚  Total 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      F & Z    ‚    571 ‚   1926 ‚   2000 ‚   2000 ‚   6497 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      F only   ‚    690 ‚     62 ‚      0 ‚      0 ‚    752 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      Zmiss    ‚    109 ‚      0 ‚      0 ‚      0 ‚    109 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      neither  ‚    630 ‚     12 ‚      0 ‚      0 ‚    642 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      Total        2000     2000     2000     2000     8000 

Table 2.  Significance counts for F and Z (RCB, 19 blocks).  

When the ratio of standard deviations is 0.25 we see that there are 109 out of 2000 cases in 

which the Z statistic is missing (FBlock<1).  For these, the search for a likelihood maximizing 



value has been stopped at the domain boundary.  With 19 blocks we see 690 and 62 cases, 

respectively (for the two lowest sd values) in which F is significant but Z is not. 

Rerunning the simulation with r=6 blocks, the Z limit is 5/2=1.58  so Z cannot exceed 

1.645 and thus cannot be significant at the 5% level.  Figure 2 illustrates this case.  The red 

boundary line is now to the left of the critical Z value showing that Z cannot be significant 

even if the block variance is much larger than the error variance. The F statistic, however, 

has reasonable power. When the block variance is 4 times the error variance (bottom right 

panel) the empirical power is 100% for F, 0 for the Wald Z statistic.  

 

 

Figure 2: F test statistic versus Wald Z. Ratios of block to error standard deviations are 

sd=0.25, 0.5, 1, and 2 and there are r=6 blocks. 

 

The corresponding table of counts appears below.  

                                        std deviation ratio 

                      P<0.05   ‚    0.25‚     0.5‚       1‚       2‚  Total 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      F only   ‚    621 ‚   1539 ‚   1963 ‚   2000 ‚   6123 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      Neither  ‚    885 ‚    381 ‚     32 ‚      0 ‚   1298 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      Zmiss    ‚    494 ‚     80 ‚      5 ‚      0 ‚    579 

                      ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 

                      Total        2000     2000     2000     2000     8000 

Table 2. Significance counts for F and Z (RCB, 6 blocks). 



6. MORE ON THE RELATIONSHIP OF F AND Z 

The relationship  

Block
Block

2

Block

(F 1)(r 1)
Z

2 1
F

(t 1)

−−
=

+
−

  for FBlock ≥ 1 

is a monotone continuous relationship between FBlock and Z when FBlock ≥ 1.  An FBlock<1 is 

not significant at any reasonable level. In Figure 2, when sd = 0.25, there are 1379 cases 

with FBlock insignificant including 494 associated with missing Zs.  Every missing Z is 

associated with FBlock<1 and vice versa.  

Further light is cast on the missing Z problem by noting that, in a randomized complete 

block design, the variance structure is an nxn block diagonal matrix (n=tr).  It has t by t 

compound symmetric submatrices on the diagonal. Such a submatrix for t=4 treatments is 

2 2 2 2 2

Block Block Block Block
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in general. 

In addition to thinking of a randomized complete block (RCB) design as a two-way (block by 

treatment) structure this gives an alternate representation as a one way analysis with a 

compound symmetric block diagonal variance matrix. A notable restriction in the RCB design 

is that all elements are nonnegative. In general, a compound symmetric matrix is V= 

aI+b11’ as shown in the rightmost matrix above, where I is the identity matrix and 1 is a 

column of 1s. Any t by t compound symmetric matrix V satisfies V1 = (a+tb)1 showing that 

1 is an eigenvector with eigenvalue (a+tb). We can find t−1 mutually orthonormal 

eigenvector (orthogonal contrast columns)  with 1’=0. For each of these, V = 

a+b11’=a+(b1)(1’)=a+(b1)(0)=a. V is a valid covariance matrix as long as all 

eigenvalues, (a+tb) and a, are nonnegative. We only need b≥–a/t. In contrast we must 

have b=
2

Blockσ ≥ 0 in a RCB design.  Every randomized complete block design has a block 

diagonal compound symmetric variance structure, but not every block diagonal compound 

symmetric variance structure can be associated with a randomized complete block design. 

In SAS PROC MIXED for example, the RANDOM BLOCK statement assumes the design is a 

randomized complete block design with b=
2

Blockσ ≥0. Its REML likelihood exists only on the 

domain of possible variances, sometimes leading to estimates of 
2

Blockσ  that are 0, and 

missing Wald Z tests as seen above.  This is most likely to happen when the number of 

blocks and the block variance are small. Had REPEATED / SUBJECT=BLOCK been used 

rather than the RANDOM statement, there would be no such restriction on the domain of 

the REML likelihood. Doing this, the search always converges successfully to parameter 

estimates that occasionally imply negative b values off the diagonal. 

Negative covariances do occur in practice. Consider inoculating birds within a cage, where 

cage is supposedly a blocking factor.  If birds within each cage are inoculated with different 



growth stimulants (treatments), the natural within cage competition for food can produce a 

negative covariance in weight gains. This means the correct analysis is not that of a RCB. 

The experimenter intended this to be a RCB design but the appropriate model is a one way 

ANOVA with compound symmetric covariance matrix. 

7. NESTED VARIANCE COMPONENT MODEL  

There are several designs related to the RCB for which the REML contrast approach yields 

an informative relationship between the ANOVA F test and the Wald test. A RCB with no 

treatments becomes a nested design with two variance components. In genetics, the blocks 

might be family effects, the errors might be sibling effects, and the response might be 

intelligence in humans or weight gain in animals. Such a trait would be highly heritable if 

the intraclass correlation coefficient 
family

family sibling

2

2 2

σ

σ +σ
 (which is used as a simple heritability 

coefficient in genetics) were large. That is, a trait that varies quite a bit from family to 

family but varies little within families appears to be inherited and gives a large heritability 

coefficient.  The design is called a nested design with siblings nested within families. 

Estimation and testing of variance components is the main goal in such an experiment.  

A small modification of Display 1 serves to illustrate this situation. In Display 1, rows 2 and 

3 of CY were used to compute treatment effects. Without treatment effects these contrasts, 

which are still independent of the r−1 block (now family) contrasts, would be additional 

contrasts in the among sibling effects (errors) that are independent of family effects 

(blocks) by construction. Now there are r(t−1) error contrasts, coming from the (t−1) 

siblings in each of r families, rather than (r−1)(t−1) RCB error contrasts.  The expected 

mean squares from ANOVA still provide the expectations for each squared contrast and thus 

(MSFamily−MSSibling)/t is still the estimate of the family (block) variance. Applying formula (2) 

with dfN = (r−1) and dfD = r(t−1) we have, when  Ffamily ≥ 1,  
family

2

family

(F 1)r 1
Z

2 r 1
F +

r(t 1)

−−
=

−

−

.  The 

(r−1)/r factor arises when t siblings are nested within each of r families.  

8. PSEUDOREPLICATION, HIERARCHICAL MODELS, & GENERAL FORM  

Suppose in the RCB example above, the r=4 blocks represent r pots each with t plants.  

With no treatments this is just another nested design like the heritability one. If, however, 

fertilizers are applied to the pots, the pots are the (random) experimental units and the 

plants are termed “pseudo replicates.”  If f=2 levels of fertilizer are assigned at random to 

the 4 experimental units (the pots) then there is r−f=2 degrees of freedom for experimental 

error and f−1=1 df for fertilizer. The t plants within each pot are pseudo replicates.  If, in 

addition, different levels of a treatment, e.g. t different chemicals rubbed on leaves of the t 

individual plants within each pot, this would become a standard split plot. Split plots will be 

discussed later.  

The fertilizer example has r−2=2 df for estimating pot to pot variation among pots treated 

alike, this being the experimental error term. The fertilizer F test is the fertilizer mean 

square divided by the pot(fertilizer) mean square.  Using the REML approach, the F 

denominator is the average of 2 pot contrast sums of squares where the contrasts are 

orthogonal to the fertilizer contrast. For example with 3 plants per plot, where pots 1 and 2 



get one fertilizer and pots 3 and 4 get the other, the CY=L shown in Display 2 below could 

be used. The orthogonal C matrix has first row associated with the intercept and second row 

contrasting fixed fertilizer effects. The third and fourth rows of C are pot contrasts 

orthogonal to the mean and fertilizer contrasts.  The two pot rows are the source of the 

experimental error variance estimate. In the first four rows the coefficients are constant 

within each experimental unit (pot). The remaining rows are within pot contrasts of plants. 

The coefficients sum to 0 within each pot. In Display 2, the plant contrasts in rows 5-12 

consist of pairs of within pot contrasts, one pair per pot, to emphasize the nested nature but 

any orthogonal set of r(t−1) linear combinations that sum to 0 within pots would suffice. 

Even the CY in Display 1 would work. The t−1 former treatment columns would supply (t−1) 

additional pseudoreplication contrasts, giving (r−1)(t−1)+(t−1) = r(t−1) plant(pot) contrasts.  
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Display 2. Orthogonal contrasts for pseudo replication with r=4 pots and t=3 plants per 

plot. Yij is the plant i, pot j response.   

The proper fertilizer F test, as delivered by a RANDOM POT/TEST statement in the GLM 

procedure, will have 1 numerator and r−2=2 denominator df and the F test for pots within 

fertilizer will have r−2 numerator and r(t−1) denominator df. The Wald Z for the pot variance 

component will be, for Fpot ≥ 1,  

pot

2

pot

(F 1)r 2
Z

2 r 2
F +

r(t 1)

−−
=

−

−

 

Based on formula (2), a 5 step strategy for studying further designs begins to appear:   

(step 1) Write out orthogonal linear contrasts for the fixed treatment effects.  

(step 2) Write out carefully chosen orthogonal contrasts in the random effects, orthogonal 

to the fixed effect contrasts. Create them in sets associated with the analysis of variance 

sources so that each 1 df contrast sum of squares, (Ci’Y)2 (Ci’Ci), has expected value equal 

to the associated ANOVA expected mean square and all of the contrasts are independent. 

The RCB example shows how this can be done. Set the contrast coefficients to be constant 



within each level of the source and make sure the coefficients for any source lower in the 

hierarchy (like an interaction of the source with another factor or like the levels of a second 

factor nested within the source factor) sum to 0 within each source level to ensure 

independence.   

In the RCB example, the error contrast coefficients summed to 0 within each block level and 

within each treatment level because, in Table 1, elementwise products were used. The block 

coefficients summed to 0 within each treatment because each treatment appeared in every 

block.  

(step 3) Using the random effect contrasts as data, construct the REML likelihood.  If 

contrasts as in (step 2) can be found, the REML likelihood will factor into separately 

maximizable factors, each corresponding to a source in the ANOVA table and having a 

variance V equal to the expected mean square for that source.  

(step 4) Notice that each ANOVA source is associated with a term in −2(REML log likelihood) 

of the form 

−2 (REML log likelihood) = df(ln(2π))+df(ln(V))+SSq/Vwhere 

df

i=1

' 2 '

i i iSSq= ( ) ( ) C Y C C  

where df is both the number of contrasts and the ANOVA degrees of freedom for the source. 

Note that the resulting REML estimate, V=SSq/df, is the mean square for that source in the 

ANOVA table. It estimates the linear combination of variance components given in the 

expected mean square column of the ANOVA table.  

(step 5) If the ANOVA F test is the ratio of two mean squares, apply formula (2) from 

section 4.  If not, see section 11 below.  

The challenging part is step 2. To illustrate this approach, consider CY in Display 2 for the 

fertilizer example. Plants within pots are pseudo replicates. The fact that the coefficients in 

each of the last 8 rows of C sum to 0 within each pot ensures that the REML likelihood 

factors as desired. Looking at row 3 we see that C3’Y is a linear combination of block totals 

where each block total has variance 
2 2

Block9σ +3σ . Because C3’ is a row of pot contrast 

coefficients, each coefficient is repeated 3 times. It follows that the expected squared 

contrast is E(C3’Y)(C3’C3)= 
2 2

Pot3σ +σ . The same is true for row 4.  For rows 5-12 the same 

logic shows that the average of (Ci’Y)2/(Ci’Ci) values for these 8 rows maximizes the REML 

likelihood and gives the 8 df mean square for plants, MS(plant(pot)), from the ANOVA table. 

9. SPLIT PLOT DESIGN IN BLOCKS   

The split plot design in blocks has a nested random structure with ra whole plot treatment 

units in r blocks of a units, b split plot units within each whole plot unit, and an ANOVA table 

of this form where Q(effect) represents a quadratic form in a fixed effect:  

 

 

 

Source          df          expected mean square  



Block           r−1         
2 2 2

D blockσ +bσ +abσ  

Factor A      a−1         
2 2

Dσ +bσ +Q(A)  

Error A    (a−1)(r−1)   
2 2

Dσ +bσ  

Factor B       b−1        
2σ + Q(B)  

AB           (a−1)(b−1)  
2σ + Q(AB)  

Error B    a(r−1)(b−1)  
2σ  

 

The model is 
ijk i j ij k jk ijkY =μ+B +α +D +β +(αβ) +e , with random block effects Bi, random error A 

effects Dij, and error B effects eijk. We assume 
2 2 2

i B ij D ijkB ~N(0,σ ), D ~N(0,σ ), and e ~N(0,σ ) .  As 

before, the Wald Z for error B is a constant. For block and error A, the F tests are ratios of 

two mean squares. From the expected mean squares, the error A mean square is the 

appropriate denominator for blocks and for Factor A while Error B is appropriate for testing 

error A, fixed effects of factor B, and interaction AB. Appropriate contrasts in random effects 

can be found and thus formula (2) applies. We have these Wald Z statistics for variance 

components in terms of the corresponding F statistics: 
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To show how appropriate random effect contrasts can be found, suppose there are r=5 

blocks. We can use 4 contrast rows based on −1 1 0 0 0, 0 0 0 −1 1, −1 −1 0 1 1,  and       

−1 −1 4 −1 −1 with each entry repeated within each block. Alternatively use a set comparing 

each block to its predecessors: −1 1 0 0 0, −1 −1 2 0 0, −1 −1 −1 3 0, and  −1 −1 −1 −1 4. 

This second set easily generalizes to any number of levels of any factor. Similarly, for whole 

plot levels, there are an infinite number of sets of a−1 orthogonal contrasts.  For D 

contrasts, we simply take the elementwise products of the block and factor A coefficients 

just as in Table 1. Each block coefficient gets replicated ab times, each A contrast coefficient 

rb times and each D coefficient b times in the rows of contrast matrix C.  Likewise a set of 

b−1 factor B contrasts and, from elementwise products, a set of (a−1)(b−1) contrast 

coefficients for AB can be computed. For the error B terms, the (r−1)(b−1) elementwise 

products of the block by factor B coefficients and the (r−1)(a−1)(b−1) elementwise products 

of the block by AB contrast coefficients combine to give a(r−1)(b−1) error B contrast 

columns. 

 

By construction, appropriate subsets of these contrast coefficients sum to 0 in such a way 

that the block contrasts, the D contrasts, and the error B contrasts are independent, each 

with expected square equal to the expected mean square for the associated ANOVA source. 

For many balanced experiments, sets of elementwise crossproduct contrast coefficients 

(e.g. error A) or combinations of them (e.g. error B) provide the appropriate groups of 

independent contrasts. Once we see that such contrasts exist, formula (2) gives the 



relationship between the F and Wald Z tests. We again see that Z does not exist when F<1 

and that, in general balanced designs, Z2 is bounded by df/2 where df is the degrees of 

freedom for the variance component of interest. 

 

10. LATIN SQUARE  
 

When the rows and columns of an rxr Latin Square represent blocking factors, each is 

considered random at r levels. There are no interaction terms in the Latin Square model. 

There are r−1 df for rows, columns, and treatments and r2−1−3(r−1)=(r−1)(r−2) df for error. 

All three F tests have r−1 numerator df. The error Wald Z will be the constant 

(r 1)(r 2)/2− − regardless of the data. The row and column Wald Z tests will have the same 

form, differing only in the numerator mean square for F.  The common form, from formula 

(2), is 

2 2

r 1 (F 1) r 1 (F 1)
Z= =

2 2r 1 1
F + F +

(r 1)(r 2) (r 2)

− − − −

−

− − −

. Only Latin squares of size 3x3 or 

higher have enough data to supply an error term.  If the Latin square treatment is random, 

its F and Z tests will also have this relationship. 

 

11. MIXED FACTORIAL TREATMENTS 

 

An example for which F is not a simple ratio of mean squares (formula (2) will be slightly 

modified) is a factorial with some factors random. These may be the treatments in a Latin 

Square, RCB, completely randomized design, split plot, etc.  In some of these cases, a 

mean square, say that for random factor A, will have an expected mean square involving a 

multiple of the A variance component plus a linear combination of other variance 

components that is not matched by the expected mean square for any other single source. 

In that case, a linear combination of mean squares can usually be found whose expected 

value is the same as what remains in the expected mean square for A after the A variance 

component is set to 0. That linear combination forms the denominator for a “pseudo F test” 

whose distribution is approximately F and whose denominator degrees of freedom are 

approximated by a formula due to Satterthwaite.  For example, in the SAS GLM procedure 

the RANDOM statement with its TEST option will produce the pseudo F test and degrees of 

freedom. Because the Satterthwaite df formula involves calculated mean squares, it is a 

random variable, varying from sample to sample whereas formula (2) involves constant 

degrees of freedom.     

 
As an example, suppose drivers at a levels, factor A, along with b cars of the same model, 

factor B, and c locations, factor C, all picked at random from large populations, are used in 

an experiment. Assume each (driver, car, location) combination is used r times for a total of 

abcr observations in a completely randomized design. Because all factors are random, so 

are all of their interactions.  The model is Yijkm =  + Ai + Bj + Ck + (AB)ij + (AC)ik, + (BC)jk 

+ (ABC)ijk + eijkm with all random terms independent, normal, and each having mean 0. 

Using contrasts for A, B, and C and the elementwise product method of constructing 

interaction coefficients, orthogonal contrasts for all random sources satisfying (step 2) 

above can be found.  Formula (2) holds only after dfD is replaced by Satterthwaite’s df. 

Hence the previous comment that formula (2) does not exactly hold. Formula (2) is 

technically appropriate for random components whose F tests are ratios of 2 mean squares.  



The log likelihood form in Formula (1) still holds.  First, consider a subset of the rows of the 

ANOVA table, including the rows used in constructing the usual pseudo F test for factor A.  

Source         df                             Expected mean square  

A                a−1                       
2 2 2 2 2

ABC AC AB Aσ +rσ +rbσ +rcσ +rbcσ  

AB          (a−1)(b−1)                 
2 2 2

ABC ABσ +rσ +rcσ  

AC          (a−1)(c−1)                 
2 2 2

ABC ACσ +rσ +rbσ  

ABC     (a−1)(b−1)(c−1)            
2 2

ABCσ +rσ  

Error        abc(r-1)                   
2σ  

 

Looking at the expected mean squares, if 
2

Aσ were 0 the expected mean square for A would 

become 
2 2 2 2

ABC AC ABσ +rσ +rbσ +rcσ . We could estimate 
2

Arbcσ by subtracting, from the mean 

square for A, an estimate of 
2 2 2 2

ABC AC ABσ +rσ +rbσ +rcσ . Unlike previous examples, no single 

mean square has this expected value.  Using ANOVA notation, the expected value of 

MSAB+MSAC−MSABC is seen to be 
2 2 2 2

ABC AC ABσ +rσ +rbσ +rcσ .  The resulting pseudo F statistic, FA 

= MSA/( MSAB+MSAC−MSABC ), is produced with the GLM procedure’s RANDOM statement.  

Using the first derivative in formula (2) the REML estimate of the A variance component is 

MSA−(MSAB+MSAC−MSABC), matching the ANOVA table estimate.  Differences between F and 

Z2 are due to their denominators rather than to the estimated variance component common 

to the numerators.   

 

As before, the mean squares can be computed as averages of independent individual one df 

sums of squares computed in (step 2) of our REML analysis strategy. Using the Hessian 

derived variance of the estimated factor A variance component given by 

MSA−(MSAB+MSAC−MSABC), we have, similar to our development of formula (2), the Wald 

variance estimate  

 
22 2

AC ABCA AB
2MS 2MS2MS 2MS

+ + +
(a 1) (a 1)(b 1) (a 1)(c 1) (a 1)(b 1)(c 1)

=
− − − − − − − −

 

2 22
2 2 AC ABCAB
A A

MS MSMS2
F D + + +

(a 1) (b 1) (c 1) (b 1)(c 1)

 
 

− − − − − 

 

 

where 
A AB AC ABCD =MS +MS MS−  is the denominator for the FA pseudo F test for factor A. In 

order to produce a formula similar to formula (2), write the Wald variance as 

 
2 22 2 2

2 2Ac ABCA AB A
A A2 2 2

A A A

MS MS2D MS 2D 1
F + + + F +

(a 1) (b 1)D (c 1)D (b 1)(c 1)D (a 1) W

   
=   

− − − − − −   
 

where W is  



22

AB AC ABCA
Satterthwaite 2 2 2 22 2

Ac ABC AC ABCAB AB

(MS +MS MS )D
W df =

MS MS MS MSMS MS
+ + + +

(b 1) (c 1) (b 1)(c 1) (b 1) (c 1) (b 1)(c 1)

−
= =

− − − − − − − −

. 

 

Interestingly, W is Satterthwaite’s approximate degrees of freedom formula, dfSatterthwaite for 

the pseudo FA test. The formula for the Wald statistic thus has the form 

 

2

A

Satterth t

A

wai e

a 1
Z=

2 (a 1)
F +

df

(F 1)−

−

−  for FA≥0 

 

A few details should be mentioned before showing a graph. First, dfSatterthwaite is a random 

variable. No constant F critical value is available for a horizontal reference line. Instead, 

color will be used to distinguish significant (red) from non-significant (blue) FA tests. Second 

if any estimated variance component hits the boundary 0 it can affect all the other 

estimates and tests. All estimates may differ from what would have been found had the 

boundary restriction been removed. In Figures 5A and 5B, 6290 data sets were generated in 

order to get 5000 in which all PROC MIXED variance component estimates exceed 0.  In 

Figure 5A and 5B there were 5 levels of A, 4 of B, and 3 of C with 2 replicates of each of the 

60 A,B,C factorial combinations. Standard deviations of the 7 random effects (A, AB, C, …, 

ABC) are shown in the titles.  The left figure 5A graphs all pseudo FA tests from the SAS 

GLM procedure versus the Wald Z from the SAS procedure PROC MIXED.  Figure 5B shows 

the subset of these points having Z between 0.92 and 0.99. 

         

Figure 3. (A) F versus Z with red vertical limit line, and (B) the same graph restricted to a 

small interval of Z. 

Figure 3A is hardly distinguishable in form from Figures 1 and 2 in which the denominator 

degrees of freedom for F were constant. Figure 5B shows the effect of the random 

dfSatterthwaite. The effect is minor but not zero.  For a given Z and hence a given F numerator, 

a larger denominator is associated with a smaller F but larger Satterthwaite degrees of 

freedom. A smaller F could be significant while a slightly larger F might not, this being the 

predominant result in Figure 3B.  

 



 12. SOME ADDITIONAL EMPIRICAL RESULTS 

We have not covered all mixed models, for example unbalanced data, repeated measures 

with autoregressive errors, and random coefficient models among others.  Unbalanced data 

in general may differ with each pattern of missingness and extreme missingness could lead 

to non-estimable parameters.  Finding appropriate contrasts in our step (2) could be difficult 

or impossible. 

As a quick empirical look, we reran the 2000 RCB analyses in each panel of Figure 1, this 

time with points set to missing whenever a uniform [0,1] random variable (independently 

generated for each point) was less than 0.10. There was very little effect of missing values 

for our particular RCB example. A plot and table similar to those of Figure 1 matched that 

figure quite closely. A visual assessment of one particular case falls far short of a general 

proof.  Such a proof, however, may be difficult or impossible to obtain as it is not clear how 

to construct appropriate contrasts in the presence of missing values.    

13. CONCLUSION 

We have shown that, in many commonly encountered balanced experimental designs, there 

is an informative common functional relationship between the ANOVA F test for random 

effects and the Wald Z test. This relationship results in a severe lack of power for Z in cases 

in which there are only a few levels of the random factor.  We have shown that the large 

sample reputation of the Wald test needs clarification. Large, in fact, refers to the number of 

random effect levels, not the total number of observations. The relationship between Z and 

F shows that missing Wald tests in these most common designed experiments are 

associated with F<1 which suggests that a missing Wald test can be taken as a failure to 

reject the 0 variance component null hypothesis.  In general, if there is an F test available 

for a variance component it is preferred to the Wald Z test.  
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