

ORION: A Non-Server-Based Interactive SAS Report Builder
Authors: Bruce Nawrocki, Scott Proescholdbell and Shana Geary

Background
The North Carolina (NC) Injury and Violence Prevention Branch of the Division of Public Health is tasked
with reporting injuries and drug overdoses gathered from statewide Death Certificates, Hospitalization
Discharges and Emergency Department visits. The SAS code to determine injury categories (mechanisms
and intents) can be tricky to write, and our staff – which consists of some people in the midst of their
advanced university degree programs or perhaps an early career epidemiologist – may not be well-
versed in SAS or our data table structure and its nuances. This led to lengthy responses to both internal
and external data requests, as new staff worked through the proper SAS program logic and syntax,
which potentially led to inconsistent or incorrect reports due to user error.

Implementation
We decided to build some standard SAS report templates, shielding staff from the complexities of the
SAS logic involved. We also built a User Interface to gather the report-writer's requirements, which were
then fed into the SAS code as parameters. The SAS code creates fully formatted reports in either PDF or
Excel files, which are saved within specific sub-folders for that staff-member and reporting date. The
reports contain all that is necessary (NC state logos, footnotes, data suppression rules) for both internal
and external data requesters. We named the system ORION - On-demand Reporting of Injury
and Overdose in North Carolina.

Results
With ORION, we have greatly enhanced our core reporting process. We now provide more consistent
reporting (and more quickly) to our data requestors and for internal data needs. New staff members
require less training to become productive. Currently, ORION submits SAS batch programs that run on
the staff's own local Windows computers, but we also have a prototype process that submits the SAS
programs to run on a remote SAS Server instead.

ORION's user interface has evolved over time. It can now:

• Display a message that the SAS program is running, and determine when it has finished.

• Scan the SAS log, looking for occurrences of "Error" or "uninitialized". If found, it opens Notepad
to display the log file.

• Save a person's most recent SAS code and SAS log, which can be useful for debugging purposes.

• Save each person's reports under the "Output" folder on our network Windows drive, within
sub-folders named with that person's unique network userID, then saved into sub-folders
named with date the report was run.

Our User Interface

When someone runs the ORION.HTA file (by double-clicking it from Windows Explorer), this screen
appears:

They can choose from one of our multiple core injury datasets – Deaths, Hospitalizations or Emergency

Department Visits, statewide or for specific counties, by year. Output can be sent to Excel and/or PDF

files. There's a second report parameter screen (not shown) that optionally combines the core injury

datasets into one report.

In the above screen-shot, a person has selected Data Set = "Hospital – Overdoses", but they can choose

from these other Data Sets:

After selecting the choices above, three Hospital Overdose reports are created – by Age-Group, Race

and Sex – both in Excel and PDF formats, since both checkboxes have checkmarks. An example of the

Age-Group PDF report that gets created is:

Details on the HTA file
Let's go into more detail regarding these topics:

• The main HTA file

• How does it gather parameters to pass to SAS?

• How does it call SAS?

• How does it know who you are?

• Where does it write output?

• What is in MAIN.SAS?

• Can it call SAS Server? Yes!

The main HTA file

The main program file is ORION.HTA. The HTA file extension, specific to Microsoft Windows, is a text file
format that may contain HTML, VBScript and/or JavaScript code. HTA files run with enhanced privileges,
and thus have access to information such as user's ID.

You can create and edit your HTA file with Notepad or your favorite text editor. The SciTE editor formats
different sections of the code, and what was used for this process. The code was written using Windows
7, and it still works OK in Windows 11. Again, to start the HTA application, just double-click the HTA file
within File Explorer.

How does it gather parameters to pass to SAS?

Think of your HTA file as describing an HTML form and the fields within that form – which might include
text boxes, combo-boxes, checkboxes, etc.

The SAMPLE.HTA file (see Appendix 1) creates:

• Two text boxes for year range

• Two checkboxes to select output format

• A progress message text box

• Two buttons: Create Report and Reset Form

When you run the HTA file, a form appears, looking like this:

In the HTA file, you can add client script (such as VBScript or JavaScript).
For example, we might want to write client script to hide the "Please wait" text box when the app first
loads, because the SAS program hasn't started running yet. In SAMPLE.HTA, the VBScript subroutine
Sub Window_onLoad does that by setting the text box's visibility attribute to "hidden".

You probably will also want to add verification code. Perhaps you want to set the minimum and
maximum values for the Years, or you don't want to allow Start Year to be after End Year. You might also
want to ensure that at least one Output Format checkbox is checked. For simplicity reasons, verification
code is not included in SAMPLE.HTA.

How does it call SAS? How does it know who you are?

You may already know that you can run Windows PC SAS in batch from a Windows (MS-DOS) Command
line, using a command like this:

path\sas.exe -sysin sas-program-name -log output-log-filename

 -print results-filename -nologo -rsasuser -sysparm input-parameters

In the HTA file, you can assign a subroutine (in VBScript) or function (in JavaScript) to the "Create

Report" button's onClick event, which could gather the bolded parameter values (above) and then pass

them to the sas.exe command to run. In SAMPLE.HTA, the "Create Report" button's onClick event is set

to run the subroutine Sub Submit.

When someone presses the "Create Report" button, the VBScript does several things:

• Runs some optional verification subroutines (not shown)

• Stores user-selected choices into "Output" variable

• Shows pop-up box to allow user to select OK or Cancel before proceeding

• Stores full SAS.EXE command into "RunLine" variable, which it passes to the Windows "shell" for
execution

• Unhides the "Please wait … SAS program running" textbox

When the SAS program has finished running, the VBScript:

• Opens SAS LOG file, searching for "Error" or "uninitialized" text
o If found, it opens Notepad and shows LOG file to user.
o If not found, shows "Report run successfully" message, and shows location of report

How does it know who you are?

You could ask the user to enter their network ID into a text box, then use that. But HTA files can use a
Windows backdoor approach, by running this VBScript:

Set oNetwork = CreateObject("WScript.Network")
Dim userID

userID = oNetwork.UserName

Where does it write output?
You could write it anywhere. In our case, we wanted each user's reports to be sent to an Ouptutoutput
folder, then a subfolder based their network (Windows) ID, and within that, a subfolder with the
report's date. So, the folder structure might appear as this:

 Output
 UserID1
 2023-09-19
 2023-09-15
 UserID2
 2023-08-15
 2023-08-14

What is in MAIN.SAS?
In ORION, the MAIN.SAS code includes all our LIBNAME statements, pointing to directories where SAS
data is stored. It sets up a macro pointing to the location for output reports, using the SYSUSERID
automatic SAS macro variable:

%let OutputDir = I:\ORION\Output\&sysuserid\%SYSFUNC(date(), YYMMDD10.);

Our ORION SAS code then calls several macros in sequence which gather the parameters passed in on

SAS.EXE command line, and run customized SAS code to create PROC REPORT output which is saved to

&OutputDir. Each macro is stored in its own .SAS file within a Macro subfolder, but you could also

reference a SAS autocall macro library.

The SAS macros in our ORION system can reference any passed-in parameters as if they were SAS macro

variables, such as dataset type, date range, county selections, output filetypes, etc.

In the sample MAIN.SAS code, we can reference &StartYear, &EndYear, &chkExcel and &chkPDF values.

See Appendix 2 for a complete sample version of MAIN.SAS code.

Can it call SAS Server?
Yes, it can. See Appendix 3 for more information.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the primary author at:

 Bruce Nawrocki

North Carolina Division of Public Health, Injury and Violence Prevention Branch

 5505 Six Forks Rd, Raleigh NC 27613

 E-mail: bruce.nawrocki@dhhs.nc.gov

SAS and all other SAS Institute, Inc. product or service names are registered trademarks or trademarks

of SAS Institute, Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:bruce.nawrocki@dhhs.nc.gov

Appendix 1 – The SAMPLE.HTA code

The code in this HTA file makes some assumptions about the location of Main.sas (in I:\ORION) and

SAS.exe (C:\Program Files\SASHome\SASFoundation\9.4\sas.exe). It also assumes you have already

created an empty I:\ORION\UserPrograms folder.

<html>

<script language="VBScript">

Dim BadYear, BadCheckbox
Dim SASexe, SASProg, SASProgDir, Output

' Get userID
Set oNetwork = CreateObject("WScript.Network")
Dim userID
userID = oNetwork.UserName

'SAS program directory – where SAS program (ExecutionFile.sas) and its LOG and LST files are stored
SASProgDir = "I:\ORION\UserPrograms\" & userID & "\"

' Use File System Object to create new folder to store SAS program if necessary. Copy standard
ExecutionFile.sas file into this folder for processing
Set oFSO = CreateObject("Scripting.FileSystemObject")
If Not oFSO.FolderExists(SASProgDir) Then
 oFSO.CreateFolder SASProgDir
End If
oFSO.CopyFile "I:\ORION\Main.sas", SASProgDir, true 'Overwrite if existing

SASProg = SASProgDir & "Main.sas"

Sub Window_onLoad
 window.resizeTo 400,250
 window.moveTo 350,50
 document.getElementbyID("txtProgress").style.visibility = "hidden"

End Sub

Sub Reset
 Location.Reload(True)
End Sub

Sub Submit

 'Call Verification_Sub(s) which return BadYear and BadCheckbox as "Good" or "Bad"
 If BadYear="Bad" or BadCheckbox = "Bad" Then
 Exit Sub
 End If

 Output = "Report=1," & _
 "StartYear=" & document.getElementbyId("StartYear").value & "," & _

 "EndYear=" & document.getElementbyId("EndYear").value & ","
 If document.getElementByID("chkExcel").checked = True Then
 Output = Output & "," & "chkExcel=1"

 End if
 If document.getElementByID("chkPDF").checked = True Then
 Output = Output & "," & "chkPDF=1"

 End if

 SASExe = "C:\Program Files\SASHome\SASFoundation\9.4\sas.exe"

 Call SASBatch
End Sub

Sub SASBatch

 Set FSO = CreateObject("Scripting.FileSystemObject")
 If not FSO.FileExists(SASProg) Then
 Msgbox "ERROR. The execution file is missing: " & vbcrlf & SASProg & "."

 Exit Sub
 End If
 If not FSO.FileExists(SASExe) Then
 Msgbox "ERROR. Location of SAS executable is mistyped or missing: " & vbcrlf & SASExe & "."
 Exit Sub
 End If

 Dim Msg, Response
 Msg = "If you want to run this SAS program press OK, or press Cancel to return."
 Response = MsgBox(Msg, vbOKCancel)
 If Response = vbCancel Then
 Exit Sub
 End If

 document.getElementbyID("txtProgress").style.visibility = "visible"

 BaseFileName = FSO.GetParentFolderName(SASProg) & "\" & FSO.GetBaseName(SASProg)
 LogFile = BaseFileName & ".log"
 ListFile = BaseFileName & ".lst"

 RunLine = DQ & """" & SASExe & """" _
 & DQ & " -sysin " _
 & DQ & """" & SASProg & """" _
 & DQ & " -log " _
 & DQ & """" & LogFile & """" _
 & DQ & " -print " _
 & DQ & """" & ListFile & """" _

 & DQ & " -nologo " _
 & " -rsasuser " _

 & " -sysparm " & DQ & """" & Output & """" & DQ

 Dim oShell
 Set oShell = CreateObject("WScript.Shell")

 Call oShell.Run(RunLine, SHOWMINIMIZED, True)

 Dim LogFile, Contents
 Const FORREADING = 1
 Set LogFilePath = FSO.OpenTextFile(LogFile, FORREADING)
 Contents = LogFilePath.ReadAll

 'Hide progress textbox after program has run
 document.getElementbyID("txtProgress").style.visibility = "hidden"

 Set Rgx = New RegExp
 With Rgx

 .Pattern = "(error:|uninitialized)(?! your system is scheduled to expire on)"
 .Pattern = "(error:|uninitialized)(?! (the .{4,15} product with which|your system is scheduled))"

 .Pattern = "(\n(error:)|uninitialized|remerg)(?! (the .{4,15} product with which|your system is
scheduled))"
 .Global = False
 .IgnoreCase = True
 End With

 If Rgx.Test(Contents) Then

 MsgBox FSO.GetFileName(SASProg) & " ran with 'Error' or 'Uninitialized' value --check your log

file!", vbOKOnly + vbCritical, "Warning"
 oShell.Run("notepad " & DQ & LogFile & DQ)
 Else

 MsgBox "Report ran successfully!" & vbcrlf & vbcrlf & "It is saved to a subfolder in:" & vbcrlf &
vbcrlf & "I:\ORION\Output" & vbcrlf & vbcrlf & "The subfolder is your userID, then today's date, as in
'YYYY-MM-DD'"
 End If

End Sub
</script>

<body STYLE="font:14pt verdana;color:black">

<table>

<tr><td>Start Year:</td>

<td><input type="text" name="StartYear" size=5 value="1980"

onChange="ChangeEndYear"></td></tr>

<tr><td> End Year:</td>

<td><input type="text" name="EndYear" size=5 value="1994"

onChange="ChangeChkSplitYear"></td></tr>

<tr><td>Output Format: </td>

<td><input type="checkbox" id="chkExcel" name="chkExcel" checked>

<label for="chkExcel">Excel</label>

<input type="checkbox" id="chkPDF" name="chkPDF" checked>

<label for="chkPDF">PDF</label> </td></tr>

<tr><td colspan=2 align="center"><input type="text" name="txtProgress" size=40

style="background-color:#FCF508;color:#FF0000;"value="Please wait ... SAS Program is

running"></td></tr>

<tr><td colspan=2 align="center"><input type="button" value="Create Report" onClick="Submit">

<input type="button" value="Reset Form" onClick="Reset" > </td></tr>

</table>

</body></html>

Appendix 2: SAS Code called from above SAMPLE.HTA file → MAIN.SAS

This code assumes you already have an I:\ORION\Output folder created

options mlogic symbolgen noquotelenmax;

%let Folder = I:\ORION;

** Set output location;

%let OutputLocation = I:\ORION\Output;

%let OutputDir = &OutputLocation.\&sysuserid\%SYSFUNC(date(), YYMMDD10.);

*** Where is the SAS Data Stored?;

* LIBNAME references go here;

*** Load the macros - if you have them as separate .sas files, or call autocall macro

library

*** For simplicity, all macros are written inside this code (below);

***%include "&Folder./Prod/Macro Files/*.sas";

*** Load formats or reference format library, if any;

%macro CheckandCreateDir(dir);

* Check if output directories exist;

 %put &dir;

 options noxwait;

 %local rc fileref;

 %let rc = %sysfunc(filename(fileref,&dir));

 %if %sysfunc(fexist(&fileref)) %then %put The directory "&dir" already exists;

 %else %do;

 %sysexec mkdir "&dir";

 %if &sysrc eq 0 %then %put The directory &dir has been created.;

 %else %put There was a problem while creating the directory &dir;

 %end;

%mend CheckandCreateDir;

%CheckandCreateDir(&OutputDir);

%macro GetSystemParameters;

*** Load Report Parameters From GUI;

 data _null_;

 length sysparm express param value $ 20000;

 sysparm = symget('sysparm');

 do i=1 to 50 until(express = '');

 express = left(scan(sysparm, i, ','));

 param = left(upcase(scan(express, 1, '=')));

 value = left(scan(express, 2, '='));

 valid = not verify(substr(param, 1, 1),

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ_')

 and not verify(trim(param),

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789')

 and length(param) <=32;

 if valid then do;

 call symput(param, trim(left(value)));

 sss = trim(left(value));

 put param "=" sss;

 end;

 end;

 run;

%mend GetSystemParameters;

%GetSystemParameters;

%macro RunReport();

*** Create the PROC PRINT report;

 options nonumber nodate missing=' ';

 OPTIONS papersize=letter orientation=landscape LEFTMARGIN=0.1in

RIGHTMARGIN=0.1in TOPMARGIN=0.25in BOTTOMMARGIN=0.1in;

 %IF %symexist(chkPDF) %THEN %DO;

 ods pdf file="&OutputDir.\MyReport.pdf" notoc style=journal dpi=300;

 %END;

 %IF %symexist(chkExcel) %THEN %DO;

 ods excel file="&OutputDir.\MyReport.xlsx";

 %END;

 proc print data=sashelp.retail;

 title "Report for &StartYear to &EndYear";

 where year between &StartYear and &EndYear;

 var year date day month sales;

 run;

 ods excel close;

 ods pdf close;

%mend;

%RunReport();

Appendix 3: How to connect to a remote SAS Server

First, in your .HTA script you would change the location of "sas.exe" on your server:

 SASExe = "/opt/sas/spre/home/SASFoundation/bin/sas_u8"

You must also modify the SASProgDir variable, so it points to location of remote SAS Server, and add a

few other bits of information. The added complexity is due to you having to keep track of the Linux path

and the references to Linux path from Windows:

'SAS program directory – where SAS program (ExecutionFile.sas) and its LOG and LST files are stored

SASProgDir = "\\server-name\ORION\Prod\UserPrograms\" & userID & "\"
SASServer = "server-name"
SASProgDirOnLinux = "/home/EADS/ORION/Prod/UserPrograms/" & userID & "/"
SASLogDir = "Y:\ORION\Prod\UserPrograms\" & userID & "\"

' Use File System Object to create new folder to store SAS program if necessary. Copy standard
ExecutionFile.sas file into this folder for processing

 Set oFSO = CreateObject("Scripting.FileSystemObject")
 If Not oFSO.FolderExists(SASProgDir) Then
 oFSO.CreateFolder SASProgDir
End If
oFSO.CopyFile "\\server-name\IVP\ORION\Prod\ExecutionFile.sas", SASProgDir, true 'True means
overwrite if already existing

 SASProg = SASProgDirOnLinux & "ExecutionFile.sas"

You must also change this section of the original code, since how we call SAS, which is now on remote
Linux server) is different:

 BaseFileName = SASProgDirOnLinux & "ExecutionFile"
 LogFile = BaseFileName & ".log"
 ListFile = BaseFileName & ".lst"

 SSHExe = "cmd /K C:\Temp\ssh.exe"

 RunLine = SSHExe & " -t " & userid & "@" & SASServer & " " _
 & DQ & """" & SASExe & """" _
 & DQ & " -sysin " _
 & DQ & """" & SASProg & """" _
 & DQ & " -log " _
 & DQ & """" & LogFile & """" _
 & DQ & " -print " _

 & DQ & """" & ListFile & """" _
 & " -rsasuser " _
 & " -sysparm " & DQ & """" & Output & """" & DQ
 Msgbox "On next screen, enter your NCID password to log into SAS Server. SAS program will run.

Window will remain open while SAS programs runs."

 Dim oShell

 Set oShell = CreateObject("WScript.Shell")
 Call oShell.Run(RunLine & "& exit", 1, True)

 Dim LogFile
 Dim Contents
 Const FORREADING = 1

 LocalLogFile = SASProgDir & "ExecutionFile.log"

 Set LogFilePath = FSO.OpenTextFile(LocalLogFile, FORREADING)
 Contents = LogFilePath.ReadAll
 Set Rgx = New RegExp

 With Rgx
 .Pattern = "(error:|uninitialized)(?! your system is scheduled to expire on)"
 .Pattern = "(error:|uninitialized)(?! (the .{4,15} product with which|your system is scheduled))"
 .Pattern = "(\n(error:)|uninitialized|remerg)(?! (the .{4,15} product with which|your system is
scheduled))"
 .Global = False
 .IgnoreCase = True

 End With

 'Hide progress textbox after program has run
 document.getElementbyID("txtProgress").style.visibility = "hidden"

 If Rgx.Test(Contents) Then

 MsgBox FSO.GetFileName(SASProg) & " ran with 'Error' or 'Uninitialized' value --check your log
file!", vbOKOnly + vbCritical, "Warning"
 oShell.Run("notepad " & DQ & LocalLogFile & DQ)
 Else
 MsgBox "Report ran successfully!" & vbcrlf & vbcrlf & "It is saved to a subfolder in:" & vbcrlf &
vbcrlf & "Y:\ORION\Output" & vbcrlf & vbcrlf & "The subfolder is your userID, then today's date, as in
'YYYY-MM-DD'"

 End If

