
SESUG Paper 218-2023

Getting Started with PROC DS2
James Blum, University of North Carolina Wilmington;

Jonathan Duggins, North Carolina State University

Abstract

This workshop is designed to give DATA step programmers foundational information to develop programs
in PROC DS2. Starting with several common tasks given as DATA step program examples, the workshop
goes through transitioning the code examples to PROC DS2 code step-by-step. As part of the process,
various similarities and differences between the two steps are noted, and pros and cons of using each are
discussed. Suggested topics for study for building on the PROC DS2 concepts presented are also
provided, along with reference material to aid in further study.

Introduction

Introduced with SAS® 9.4, the DS2 procedure expands on the power of the DATA step, adding in SQL
support including ANSI SQL data types, user-defined methods and packages, and other language
extensions. Of course, these modifications come at the expense of learning new syntax rules. In the
examples that follow, common tasks from DATA step programming are transitioned to PROC DS2 to
illustrate many of the potentiall pitfalls you may encounter when making such a transition. Indeed, much of
this workshop is about how things go wrong in rather unexpected ways. However, as we look at some of
the challenges, some benefits to transitioning to PROC DS2 are also covered.

Basic Program Structure in PROC DS2

The DS2 procedure has some basic features that differentiate it from many other procedures. It ends with
a QUIT statement, it supports RUN-group processing, and it uses methods. There are three fundamental
RUN-groups permitted in PROC DS2: DATA, PACKAGE, and THREAD. Most of this paper focuses on the
DATA RUN-group, starting with the first example. There are three system methods available: INIT, RUN,
and TERM; here we focus primarily on RUN. User-defined methods are also permitted, and we take a look
at those near the end of the workshop. Program 1 gives a simple comparison of the DATA step and PROC
DS2 using a variation on the most mind-numbing coding example in history.

Program 1: Hello World Adapted to the DATA Step and PROC DS2

data _null_;
Say='I am from the DATA step';
put say;
run;➊

proc ds2;➋
data _null_;➌
method run();➍
Say='I am from DS2';
put say;
end;➍

enddata;➌
run;➎
quit;➋

1



➊ An obviously simple DATA step that puts the value of Say to the log.

➋ DS2 is a procedure, which is closed with a QUIT statement.

➌ The DATA statement begins this DS2 program, and names any output tables generated (which can
be no table, as here). It closes with the ENDDATA statement.

➍ All executable code lies within methods in DS2. DS2 uses system methods (like RUN), and also
supports user-defined methods. Methods close with an END statement.

➎ The RUN statement seems redundant here, but as Program 2 shows, it plays an important role.

As expected, the DATA step puts a single line into the SAS log with the value of the variable Say (along
with notes on execution). The DS2 program, in addition to execution notes, also writes the value for its
version of Say but, perhaps surprisingly, also generates a warning.

Log 1: PROC DS2 Declaration Warning

I am from DS2
WARNING: Line ##: No DECLARE for assigned-to variable say; creating it
as a global variable of type char(13).

The ability of PROC DS2 to work with multiple data platforms and data types makes DS2 much more
particular about variable declaration and scope than the DATA step. We will explore this further in later
examples but, before that, consider the following example on RUN-group processing.

Program 2: The RUN Statement in PROC DS2

proc ds2;
data _null_;

method run();
Say='I am from DS2';
put say;

end;
enddata;
data _null_;

method run();
Say='Me too!';
put say;

end;
enddata;
run;

quit;

Log 2: The RUN Statement in PROC DS2

ERROR: Compilation error.
ERROR: Parse encountered DATA when expecting end of input.
ERROR: Line ##: Parse failed: >>> data <<< _null_;

The RUN statement is not an optional step boundary in this setting and the attempt to invoke a second
DATA RUN-group fails (place a RUN statement after the first ENDDATA statement and the code functions).
The ENDDATA statements are not required here, but including them is considered a good programming
practice.

2



Starting Tasks: Read in a Data Set, Construct a New Variable

To begin with DATA step operations we are all familiar with, compute the EPA combined MPG for the Cars
data distributed in the SASHelp library. Typical DATA step code is shown in the first step of Program 3
followed by an attempt to do the same with PROC DS2;

Program 3: Computing a New Variable from the Cars Data

data Combo;
set sashelp.cars;
ComboMPG=0.55*mpg_city+0.45*mpg_highway;
run;➊

proc ds2;
data cars;

method run();
set sashelp.cars;
ComboMPG=0.55*mpg_city+0.45*mpg_highway;

end;➋
enddata;
run;
quit;

➊ A basic DATA step computation using the EPA formula for combined MPG.

➋ The same statements are used inside the RUN method in a DS2 DATA step.

The RUN method, used in a simple form in the previous section, actually performs much like the implicit
loop and implicit output structure of the typical DATA step. It also supports many common DATA step
statements like SET. In general, any execution-time statement from the DATA step that is permitted with
PROC DS2 must occur inside a method. Unfortunately, this seemingly simple program produces the set of
errors shown in Log 3.

Log 3: Computing a New Variable from the Cars Data

ERROR: Compilation error.
ERROR: BASE driver, schema name SASHELP was not found for this connection
ERROR: Table "SASHELP.CARS" does not exist or cannot be accessed
ERROR: Line ##: Unable to prepare SELECT statement for table cars
(rc=0x80fff802U).

This error set seems to imply that the SASHelp.Cars data set is not present—while it may not be present
on some computers, it most certainly was on the machine where this code was initially executed. SASHelp
is a concatenated library, made up of several directories. PROC DS2 does not support connections to
these types of libraries. Fortunately, a copy of the cars dataset has been supplied with the data for this
workshop. Program 4 assumes the library DS2HOW has been assigned to the folder where the workshop
datasets are stored.

3



Program 4: Computing a New Variable from the Cars Data–Try 2

proc ds2;
data cars;

method run();
set DS2HOW.cars;
ComboMPG=0.55*mpg_city+0.45*mpg_highway;

end;
enddata;
run;
quit;

While this still gives a type and scope declaration warning message in the log (not shown), it does create
the data set expected. Program 5 uses the DECLARE statement on ComboMPG to try to remove that
warning.

Program 5: Specific Declaration of a Variable and its Type

proc ds2;
data cars(overwrite=yes)➊;

method run();
declare double ComboMPG;➋
set DS2HOW.cars;
ComboMPG=0.55*mpg_city+0.45*mpg_highway;

end;
enddata;
run;
quit;

➊ OVERWRITE is a data set (table) option, and the default value is NO–do not overwrite the table if it
exists, even if it’s in the Work library.

➋ We use the DECLARE statement to make a specific type declaration–potential types are discussed
later.

The OVERWRITE=YES option is necessary here, if you do not use it, errors are produced in the log and
no execution occurs. Given the data sources it is designed to work with, DS2 is protective about potential
overwrites.

Now, if you open the Cars data set from the Work library (see Data View 5), or run PROC CONTENTS on
it—you see that the ComboMPG variable is not present. PROC DS2 allows variables to have either global
and local scope, with local variables being local to the method in which they are declared. In this instance,
ComboMPG is local to the RUN method. The net effect is then similar to dropping the variable in the DATA
step. Operationally, ComboMPG is known only to the RUN method, is destroyed when that method ends,
and is not part of the output data set (in fact, it is not part of the PDV).

4



Data View 5: Specific Declaration of a Variable and its Type

Variables derived from tables listed in a SET statement (or MERGE) are automatically assigned global
scope. Looking back at the warnings generated for undeclared variables, it is clear that these were given a
global scope as well. To make the declaration for ComboMPG have global scope, it must be moved
outside any method, as shown in Program 6

Program 6: Global Declaration of a Variable and its Type

proc ds2;
data cars(overwrite=yes);

declare double ComboMPG;
method run();

set DS2HOW.cars;
ComboMPG=0.55*mpg_city+0.45*mpg_highway;

end;
enddata;
run;
quit;

Now we get a clean log with no warnings (or errors) and ComboMPG appears in the output data set. If you
wish to be even more particular about variable declaration (or less so), PROC DS2 provides options to
control how undeclared variable references are handled. In the PROC DS2 statement, the SCOND option
can be set to NONE, NOTE, WARNING (the default), or ERROR. For each of the first three, the program
compiles and executes normally, with the corresponding information type for messages on undeclared
variables sent to the log. ERROR causes compilation to fail and the program does not execute. The SAS
system option DS2SCOND has the same possible settings and produces the same behavior. Program 7
revisits and earlier attempt without declarations; however, this time the SCOND setting of ERROR stops
execution of PROC DS2.

5



Program 7: Setting Behavior for Undeclared Variables

proc ds2 scond=error;
data cars(overwrite=yes);

method run();
set DS2HOW.cars;
ComboMPG=0.55*mpg_city+0.45*mpg_highway;

end;
enddata;
run;
quit;

Log 7: Setting Behavior for Undeclared Variables

ERROR: Compilation error.
ERROR: Line ##: No DECLARE for assigned-to variable combompg; creating
it as a global variable of type double.

The second error statement in Log 7 is inaccurate, ComboMPG (and the data set) are not created, the
compilation error stops execution also. This message is a recast of the warning you get under default
conditions, it does not reflect the actual behavior of PROC DS2 under these conditions.

SET, MERGE, and Other Data Assembly Tools

SET and MERGE in PROC DS2

In the DATA step, we can use the SET statement to concatenate multiple data sets, and the same is true in
PROC DS2. In the data given with this workshop, a split of the Cars data across origin is given in
AsiaCars, EurCars, and USCars; Program 8 puts them back together.

Program 8: Concatenating Data Sets in PROC DS2

proc ds2;
data carsBuild(overwrite=yes);
declare character(6) Origin;➊
method run();
set DS2HOW.AsiaCars(in=InAsia)

DS2HOW.EurCars(in=InEur)
DS2HOW.USCars;➋

if InAsia then Origin = 'Asia';
else if InEur then Origin = 'Europe';
else Origin = 'USA';➌

end;
enddata;
run;
quit;

➊ The split data sets do not include the Origin variable, so it is created during execution. It is declared
as having the Character type, with a length of 6.

➋ The SET statement looks much like it would in a DATA step, including the use of IN= variables.

➌ The IF-THEN-ELSE structure also has the same syntax as could be used in the DATA step.

6



If no length is given for the character variable in a DECLARE statement like ➊, the default length is 8. If the
DECLARE statement is omitted, the code still executes as SCOND is at the default of Warning. What is
the length assigned to Origin in that case? Hint: it is the same as it would be if you put the code in the
RUN method into the DATA step.

The cars data set is also split across its variable set: CarDims (which includes dimensions, engine specs,
gas mileage, along with make, model, and type information), CarPrices (price info with make and model
also), and CarOrigins (including only make and origin). The one-to-one match merge shown in Program 9
of the price and dimension information in PROC DS2 looks like that of the DATA step, but there are some
key differences.

Program 9: One to One Match Merge in PROC DS2

proc ds2;
data carMerge(overwrite=yes);
method run();
merge DS2HOW.CarDims DS2HOW.CarPrices;
by make model drivetrain;
end;

enddata;
run;
quit;

In the DATA step match merge, all data sets listed in the MERGE statement must be sorted in the manner
specified in the BY statement. However, if you check the CarDims and CarPrices data, you see that they
are not sorted on this key set. In a sense, the BY statement in DS2 is an indication to create these by
groupings, rather than an expectation they are already sorted into groups. We will revisit this in a later
example.

Joining the origin data to either the prices or the dimensions is a one-to-many match merge, Program 10
gives the code you would expect to run to merge CarOrigins to CarDims.

Program 10: One to Many Match Merge in PROC DS2

proc ds2;
data carMerge2(overwrite=yes);
method run();
merge DS2HOW.CarOrigins DS2HOW.CarDims;
by make;
end;

enddata;
run;
quit;

As in Program 9, the data sets being merged are not sorted in the manner specified in the BY statement,
but the matching of rows is correct. Inspecting the data shows that the there is another difference between
this merge in DS2 as opposed to the DATA step. The information that is the "one", Origin, does not
populate its value across the "many" rows for all matches on the Make variable, as it would in a DATA step
merge. If you have SAS 9.4M6 or later, you can use the RETAIN option in the MERGE statement (after a /)
to fix this issue. If you do not have M6 or higher, fear not, there is actually a more interesting way to do this,
and other data assembly, in PROC DS2.

7



Data View 10: One to Many Match Merge in PROC DS2

Embedded SQL in the SET Statement in PROC DS2

It is possible to embed SQL SELECT statements inside the SET statement, Program 11 puts together the
price and dimension information by performing a join inside the SET statement.

Program 11: Embedding a SELECT Statement into the SET Statement

proc ds2;
data carMerge3(overwrite=yes);
method run();
set ➊{

select➋ Origin, Dim.*
from DS2HOW.CarOrigins as Orig

inner join
DS2HOW.CarDims as Dim
on orig.make =➌ dim.make

};
end;

enddata;
run;
quit;

➊ Braces in the set statement are used as a container for an embedded SQL query.

➋ The SELECT statement is permitted, along with any clauses legal within it, though there is at least
one caveat noted in relation to Program 12.

➌ The SAS mneumonic eq cannot be used here, the embedded SQL here corresponds to PROC
FEDSQL, not PROC SQL.

To expand a bit on ➌, the SQL implementation in PROC DS2 adheres to the ANSI 1999 standard, just as
PROC FEDSQL does. Of course, this is done as a precaution, given the variety of data sources DS2 is
designed to work with directly. So, SAS-specific syntax legal in PROC SQL will not be legal in the
embedded SQL in DS2.

Program 12 packs a fair number of DATA step and SQL concepts into a single RUN method inside PROC
DS2, illustrating some of the power and flexibility you gain by using DS2. There is quite a bit to unpack
there, so look at it and the call outs carefully.

8



Program 12: Combining Multiple SQL and DATA Step Concepts

proc ds2;
data AboveAverage(overwrite=yes);
declare double CityDiff CityPctDiff HwyDiff HwyPctDiff;➊
method run();
set {select a.*, CityMean, HwyMean

from DS2HOW.cars as a
inner join

➋(select type,
mean(mpg_city) as CityMean,
mean(mpg_highway) as HwyMean

from DS2HOW.cars
group by type)➌ as b

on a.type = b.type
order by msrp➍

};
if mpg_city ge CityMean and mpg_highway ge HwyMean;➎
CityDiff = mpg_city - CityMean;
CityPctDiff = CityDiff/CityMean;
HwyDiff = mpg_highway - HwyMean;
HwyPctDiff = HwyDiff/HwyMean;
end;

enddata;
run;

quit;

➊ We can declare several variables of the same type in a single DECLARE statement.

➋ This SELECT statement includes a join where one table is actually an inline view.

➌ The inline view uses summary functions–make sure you use function names that are ANSI standard
compliant–PROC SQL allows some that are not. It also contains a GROUP BY clause.

➍ An ORDER BY clause is included in the main SELECT statement, but this is not the only way (or the
most reliable) to sort the resulting data set during DS2 execution.

➎ A subsetting IF is employed to limit the results to cars that are above average on both city and
highway MPG.

The embedded query is quite complex, but as it is all built from a SELECT statement, it is perfectly legal.
Personally, I like how SQL handles joins, permits inline views and subqueries, and allows grouping and
ordering. I am not a particular fan of how new columns are defined, especially if they require conditional
logic–for that I prefer DATA step syntax. In DS2, you can work with both. The ORDER BY clause
discussed in ➍ can also be achieved with the DS2 BY statement, and the subsetting done by the IF
statement noted in ➎ could have been achieved with a WHERE clause in the SQL statement. So,
opportunities to mix SQL structures and DATA step structures abound.

As a further note on ➍, in regards to reliability of ORDER BY in this context, the SAS 9.4 DS2
Programmer’s Guide states (p. 227): "Some environments might preserve the order imposed by the
ORDER BY clause, but others do not." The Programmer’s Guide goes on to give a better way to get the
ordering in PROC DS2, which is part of the many items illustrated in Program 13.

9



Program 13: Combining More SQL and DATA Step Concepts

proc ds2;
data Cars

TypeMPGSummary(keep=(Type CityMeanMPG HwyMeanMPG))
/ overwrite=yes;➊

declare integer count;➋
declare double CityMPGTot HwyMPGTot CityMeanMPG HwyMeanMPG;
method run();
set {select 'Asia' as origin, *

from DS2HOW.AsiaCars
union corresponding
select 'Europe' as origin, *
from DS2HOW.EurCars

union corresponding
select 'USA' as origin, *

from DS2HOW.USCars
};➌

by type descending msrp;➍
output Cars;➎

if first.type then do;➏
count=0;
CityMPGTot=0;
HwyMPGTot=0;

end;

count+1;
CityMPGTot+MPG_City;
HwyMPGTot+MPG_Highway;➐

if last.type then do;➑
CityMeanMPG = CityMPGTot/count;
HwyMeanMPG = HwyMPGTot/count;
output TypeMPGSummary;

end;
end;
enddata;
run;
quit;

➊ As with the DATA step, mulitple data sets can be listed in the DATA statement in DS2. The KEEP
option has slightly different syntax than in the DATA step (and other locations). The OVERWRITE
option is given as a statement option to apply it to both data sets.

➋ While INTEGER is a legal type declaration, and a reasonable one for count, check Log 13 to see its
actual type.

➌ This is more work than the concatenation done in Program 8, but it illustrates that a wide variety of
SELECT statement logic can be embedded in the SET statement.

➍ Obviously the embedded query does not have this sort order, but it does not matter. The BY
statement in DS2 does not refer to the incoming data rows’ expected order, it is an instruction for how
to order them.

➎ We direct every record to the Cars data set using the OUTPUT statement with a target.

➏ Even though BY operates differently in DS2, one way in which it is the same is in the creation of first.

10



and last. variables.

➐ Sum statements are permitted using the same syntax we would use in the DATA step.

➑ To enter this DO group, we condition on a last. variable, and inside we target a specific data set for
output.

Programs 12 and 13 give a taste of what is possible when you are permitted to combine SQL and DATA
step syntax and processing, along with a few extensions (like the BY statement) that are unique to DS2.
You can also use many DATA step functions, build your own functions (methods), and build packages from
those. Some examples of these concepts are covered in the next section.

Functions, User-Defined Methods, and Packages

DATA Step Functions and DS2 Functions

A data set named Employees is also provided with the files given for this workshop, and for this data the
following modifications are to be made:

1. Create a retirement eligibility flag for any employees at least 65 years of age, or at least 60 years of
age with at least 30 years of service.

2. Compute an updated salary base on a 2% raise for level 1 employees, 1.5% for level 2 employees,
1% for level 3, and 1.75% for all others. If the job has a level, it is stored as a digit in the third
character of the JobCode variable.

A first attempt at this based on DATA step principles is given in Program 14.

Program 14: Computing Retirement Eligibility and Raises

proc ds2;
data emps(overwrite=yes);
method run();
set DS2HOW.employees;

Age=yrdif(DateOfBirth,Today());
Service=yrdif(DateOfHire,Today());➊

if age ge 65 or (age ge 60 and Service ge 30) then RetEligible='Y';
else RetEligible='N';

Level=input(substr(JobCode,3,1),1.);➋

select(Level);
when(1) salary=1.02*salary;
when(2) salary=1.015*salary;
when(3) salary=1.01*salary;
otherwise salary=1.0175*salary;

end;➌
end;
enddata;

run;
quit;

➊ The YRDIF function is used to create two variables for the employee age and years of service.

➋ We create a numeric value for job level–this does not need to be created as a separate variable, of
course, nor does it need to be numeric. It is done this way for diagnostic purposes.

11



➌ The SELECT group is available, the syntax and logic matches what you expect from the DATA step

Log 14: Computing Retirement Eligibility and Raises

ERROR: Compilation error.
ERROR: Compilation error.
ERROR: Parse encountered INPUT when expecting one of:

identifier constant expression.
ERROR: Line ##: Parse failed: Level= >>> input <<< (substr(JobCode,3,1)

Unfortunately, as Log 14 shows, compilation errors occur, and execution does not. The parse failure with
"input" is a reflection of the fact that INPUT is not one of the many DATA step functions available in DS2.
Program 15 fixes that issue by using INPUTN in place of INPUT.

Program 15: Using INPUTN in Place of INPUT

proc ds2;
data emps(overwrite=yes);
method run();
set DS2HOW.employees;

Age=yrdif(DateOfBirth,Today());
Service=yrdif(DateOfHire,Today());

if age ge 65 or (age ge 60 and Service ge 30) then RetEligible='Y';
else RetEligible='N';

Level=inputn(substr(JobCode,3,1),1.);

select(Level);
when(1) salary=1.02*salary;
when(2) salary=1.015*salary;
when(3) salary=1.01*salary;
otherwise salary=1.0175*salary;

end;
end;
enddata;

run;
quit;

Replacing INPUT with INPUTN allows execution to commence, even though Log 15 notes a compilation
error, and reveals yet another problem. The invalid conversion messages come from the calculation of Age
and Service using the YRDIF function on DateOfBirth and DateOfHire.

Log 15: Using INPUTN in Place of INPUT

ERROR: Compilation error.
ERROR: Line ##: Invalid conversion for date or time type.
ERROR: Line ##: Invalid conversion for date or time type.

DateOfBirth and DateOfHire originate from a SAS data set where they are stored as numeric, double
precision values. However, since they have a date format applied, DS2 interprets them as having the date
type. This may seem strange, but remember, DS2 is designed to operate across multiple data platforms,
where dates are often stored with a date type, so this implicit conversion is another form of protection.

12



YRDIF only accepts double precision inputs, so the TO_DOUBLE function is added in Program 16 to fix
the issue.

Program 16: Dates in DS2 Versus DATA Step

proc ds2;
data emps(overwrite=yes);
method run();
set DS2HOW.employees;

Age=yrdif(to_double(DateOfBirth),Today());
Service=yrdif(to_double(DateOfHire),Today());

if age ge 65 or (age ge 60 and Service ge 30) then RetEligible='Y';
else RetEligible='N';

Level=inputn(substr(JobCode,3,1),1.);

select(Level);
when(1) salary=1.02*salary;
when(2) salary=1.015*salary;
when(3) salary=1.01*salary;
otherwise salary=1.0175*salary;

end;
end;
enddata;

run;
quit;

Log 16: Dates in DS2 Versus DATA Step

WARNING: Line ##: No DECLARE for assigned-to variable age; creating it as
a global variable of type double.
WARNING: Line ##: No DECLARE for assigned-to variable service; creating it
as a global variable of type double.
WARNING: Line ##: No DECLARE for assigned-to variable reteligible; creating
it as a global variable of type char(1).
WARNING: Line ##: No DECLARE for assigned-to variable level; creating it as
a global variable of type double.➊
NOTE: BASE driver, creation of a DATE column has been requested, but is not
supported by the BASE driver. A DOUBLE PRECISION column has been created
instead. A format has been associated with each column.➋
ERROR: Unexpected error detected in function inputn.➌

➊ We still have several warnings about undeclared variables to clean up.

➋ DateOfBirth and DateOfHire were given the date type at read in, but they cannot be written to a SAS
data set as that type, so another implicit type conversion occurs.

➌ Several of these errors appear, only one is shown. Every time INPUTN encounters a non-digit input
this error is thrown. The value returned is missing, so the net effect is the same as using INPUT, but
we would prefer to clean up these messages.

Program 17 adds in fixes for the issues shown in Log 16, and notes some other issues of importance.

13



Program 17: Retirement and Raise Calculations, Cleaned Up

proc ds2;
data emps(overwrite=yes);
declare char(1) RetEligible;➊
method run();
declare double Age Service;
declare integer Level;➋
set DS2HOW.employees;

Age=yrdif(to_double(DateOfBirth),Today());
Service=yrdif(to_double(DateOfHire),Today());

if age ge 65 or (age ge 60 and Service ge 30) then RetEligible='Y';
else RetEligible='N';

if AnyDigit(Reverse(Level)) eq 1
then Level=inputn(substr(JobCode,3,1),1.);
else Level = .;➌

select(Level);
when(1) salary=1.02*salary;
when(2) salary=1.015*salary;
when(3) salary=1.01*salary;
otherwise salary=1.0175*salary;

end;
end;
enddata;
run;
quit;

➊ The RetEligible flag variable is declared prior to the RUN method, making it global and placing it into
the PDV and output data set.

➋ Age, Service, and Level are all declared inside the RUN method, making them local to the RUN
method and not part of the output data set.

➌ We use the ANYDIGIT and REVERSE functions to determine whether or not to pull a digit off the
end. In the ELSE statement, we did not use CALL MISSING to set missing values because we
cannot–no CALL routines are supported in DS2.

Program 18 performs a variation on the process in Program 17. Variables for the raise amount and
updated salary are added, and included in the output data set, with formats and labels. The FORMAT and
LABEL statements are not legal anywhere in PROC DS2, so they must be assigned in a different manner.
A HAVING clause in a DECLARE statement can be used to make these assignments. In this case, it
requires separate declare statements for Raise and NewSalary as they have different label attributes. The
remainder of Program 18 is largely similar to Program 17.

14



Program 18: Retirement and Raise Calculations, Extended

proc ds2;
data empsB(overwrite=yes);
declare char(1) RetEligible;
declare double Raise having format dollar12.2;
declare double NewSalary having format dollar12.2 label 'Updated Salary';
method run();
declare double age service;
declare integer level;
set DS2HOW.employees;

Age=yrdif(to_double(DateOfBirth),Today());
Service=yrdif(to_double(DateOfHire),Today());

if age ge 65 or (age ge 60 and Service ge 30) then RetEligible='Y';
else RetEligible='N';

if AnyDigit(Reverse(Level)) eq 1 then
Level=inputn(substr(JobCode,3,1),1.);

else Level = .;

select(level);
when(1) Raise=.02*salary;
when(2) Raise=.015*salary;
when(3) Raise=.01*salary;
otherwise Raise=.0175*salary;

end;
NewSalary=Salary+Raise;

end;
enddata;
run;
quit;

User-Defined Methods

Some of you may be users of PROC FCMP for defining functions and/or call routines, and PROC DS2 can
use these (though it is not covered here). However, it is also possible to define methods and packages
within DS2 to provide such functionality. Program 19 revisits Program 18, re-defining some of the
computations via methods.

15



Program 19: Creating a Method

proc ds2;
data empsC(overwrite=yes);
declare char(1) RetEligible;
declare double Raise having format dollar12.2;
declare double NewSalary having format dollar12.2 label 'Updated Salary';

method retire(double age, double serve) returns char;➊
declare char(1) Retire;➋
if age ge 65 or (age ge 60 and serve ge 30) then Retire='Y';
else Retire='N';

return Retire;➌
end;

method Raise(double salary, integer group, double rate1, double rate2,
double rate3, double rate0) returns double;

select(group);
when(1) Raise=rate1*salary;
when(2) Raise=rate2*salary;
when(3) Raise=rate3*salary;
otherwise Raise=rate0*salary;

end;
return Raise;
end;➍

method run();
declare double age service;
declare integer level;
set DS2HOW.employees;

Age=yrdif(to_double(DateOfBirth),Today());
Service=yrdif(to_double(DateOfHire),Today());
RetEligible=Retire(Age,Service);➎

if AnyDigit(Reverse(Level)) eq 1
then Level=inputn(substr(JobCode,3,1),1.);
else Level=.;

Raise=Raise(Salary,Level,0.02,0.015,0.01,0.0175);➎
NewSalary=Salary+Raise;

end;
enddata;

run;
quit;

16



➊ User-defined methods are defined with a METHOD statement of the form: METHOD method-name
(parameter-list) RETURNS type. METHODS are always defined in blocks and terminate with an
END statement.

➋ This DECLARE statement is important–if it is not present, the variable Retire is established as global
and is placed into the PDV and output data set.

➌ The RETURN statement returns the value of the indicated variable as the return from the method. Its
type should match the one stated in the METHOD statement.

➍ The computation for raise is also defined as a method, with several parameters, and no DECLARE
statement for the returned variable.

➎ Each method is called at an appropriate point in the code in the same manner as a function is called.

The parameter list for a method is a comma separated list of names, each of which must be preceded by
its type. The named parameters are variables local to the method, and the values passed can be variables
or expressions that have the appropriate type, or constants that fit the type. Other variables created in the
method must be explicitly declared inside the method if they are to be local to that method. If not, they are
either given global scope, or an error occurs, depending on your SCOND setting. If you remove the
DECLARE statement noted in ➋, you get both a Retire and a RetEligible variable in the PDV and in the
output data set.

The fact that the Raise method returns a variable called Raise and there is also a global declaration for a
variable named Raise, probably looks a bit strange, and it is perhaps not the best practice–but it is there
for a reason. To test your understanding of variable scope, try each of the following and explain the result.

1. Remove Raise= from the expression noted in ➎.

2. Remove the global declaration for Raise in line 4 of Program 19.

There are certainly times when you will want a method to return and/or update an existing variable, and a
direct method is given to do so. In Program 20, we revert to the problem of simply updating Salary based
on the raise rules. Since Salary is a parameter passed to the method, and it is intended to be updated, it is
taken as an IN_OUT parameter.

17



Program 20: In-Out Parameters

proc ds2;
data empsD(overwrite=yes);
declare char(1) RetEligible;

method retire(double age, double serve) returns char;
declare char(1) Retire;
if age ge 65 or (age ge 60 and serve ge 30) then Retire='Y';
else Retire='N';

return Retire;
end;

method SalaryBump(in_out double salary, integer group, double rate1,
double rate2, double rate3, double rate0);➊

select(group);
when(1) salary=(1+rate1)*salary;
when(2) salary=(1+rate2)*salary;
when(3) salary=(1+rate3)*salary;
otherwise salary=(1+rate0)*salary;

end;
end;

method run();
declare double age service;
declare integer level;
set DS2HOW.employees;

Age=yrdif(to_double(DateOfBirth),Today());
Service=yrdif(to_double(DateOfHire),Today());
RetEligible=Retire(Age,Service);

if AnyDigit(Reverse(Level)) eq 1
then Level=inputn(substr(JobCode,3,1),1.);
else Level=.;

SalaryBump(Salary,Level,0.02,0.015,0.01,0.0175);➋
end;
enddata;

run;
quit;

➊ The IN_OUT designation precedes the type declaration for the parameter in the list.

➋ The SalaryBump method is called directly, no assignment expression is used.

Methods can have multiple IN_OUT parameters, and they may also return other values (as of 9.4M5).

Now, there was probably no reason to write these computations as methods. It is actually extra code, and
the extra effort is only reasonable if you plan to use these functions repeatedly (a similar rationale for using
PROC FCMP to define functions or macros to define dynamic code). If you find yourself in this situation,
there is one more step you will want to take, collecting your related methods into packages. The next
section generalizes these methods and puts them into a package.

Defining Packages

Packages are collections of methods whose rules are stored in a data set, which can (should) be placed in
a permanent library. They can then be loaded into any DS2 routine–and PROC FEDSQL can also access

18



them. Variations on the Retire and SalaryBump methods are constructed as part of a package, and
Program 21 shows the package definition through the methods for raise. The full code for the package is
located in the Appendix

Program 21: A Package Definition

proc ds2;
package DS2HOW.EmployeeStuff / overwrite=yes;➊

method EmployeeStuff();➋
put;
put 'Methods Available in EmployeeStuff:';
put ' Retire';
put ' Raise';
put;

end;
method retire();➋
put 'RETIRE Method';
put 'General Syntax: Retire(Age, AgeLim <,Serve, AgeServLim, ServLim>)';
put ' Age is double, employee age';
put ' AgeLim is double, cutoff for age-based retirement eligibility';
put ' Serve is optional years of service parameter, also requires:';
put ' AgeServLim: age cutoff when service is included together with...';
put ' ServLim: Years of service required in conjuction with age';

end;
method retire(double age, double agelim, double serve, double ageservlim,

double servlim) returns char;➌
declare char(1) Retire;
if age ge agelim or (age ge ageservlim and serve ge servlim)

then Retire='Y'; else Retire='N';
return Retire;

end;
method retire(double age, double agelim) returns char;➌
declare char(1) Retire;
if age ge agelim then Retire='Y'; else Retire='N';
return Retire;

end;
➍
endpackage;
run;
quit;

➊ The package definition establishes a package name and a library for storage. Like data sets, the
default is to not overwrite a package. Unlike data sets, the option must be given as a statement
option, after the /, and cannot be given in the form of a data set option.

➋ Any method can be defined with a null parameter set, as can the package itself. We use the
convention that a null reference is set up to print information to the log about the package or method.

➌ The Retire method is defined three times in this package, which is legal as long as its type
signature is different in each definition. This is a practice known as method stacking.

➍ There are also methods for SalaryBump in the package definition, but they are not displayed here.
The full package definition is given in the Appendix.

The type signature of a method is an ordered list of the parameter types. So, methods with the same name
have a different type signature when they have a different number of parameters. If they have the same
number of parameters, at least one parameter position must have a different type. Either of these are

19



sufficient for the list of parameters passed to correctly map to a specific instance of the requested method.
One note, the CHAR and NCHAR types are not sufficiently different to give different type signatures when
used in the same position–hopefully you do not run into that situation.

Once the package is defined, it can be used in any subsequent DS2 routine. Program 22 shows how to do
this–as an extra step, you can restart your SAS session before running this code to show that the methods
are available at the start of the session without any code submission (other than a library assignment,
perhaps).

Program 22: Using the Package

proc ds2;
data Retire NonRetire / overwrite=yes;
declare package DS2HOW.EmployeeStuff ES();➊

method init();➋
ES.Retire();
ES.SalaryBump();➌

end;

method run();
declare double age;
declare double service;
declare integer level;
set DS2HOW.employees;

Age=yrdif(to_double(DateOfBirth),Today());
Service=yrdif(to_double(DateOfHire),Today());

if AnyDigit(Reverse(Level)) eq 1
then Level=inputn(substr(JobCode,3,1),1.);
else Level=.;

ES.SalaryBump(Salary,Level,0.02,0.015,0.01,0.0175);➍

if ES.retire(age,65,service,60,30)➎ eq 'Y' then output retire;
else output NonRetire;

end;
enddata;
run;
quit;

➊ To access a package, we use a DECLARE statement, pointing to the library and package name, and
giving a name to the package, ES here. The empty argument ensures the information about the
EmployeeStuff package is printed to the log when the package is delcared.

➋ This is our first look at the SAS-supplied INIT method. As INIT is short for intialization, this package
executes before the RUN method (no matter the order in the code).

➌ The null argument references here print the information for each method to the log before execution
of the RUN method starts.

➍ The SalaryBump method uses Salary as an In_Out parameter, so this reference updates salary
based on the parameters passed, no assignment is needed.

➎ The retirement flag is created only for evalutating the condition, just as any other function might be
used. Methods do not have to be used in assignment statements/expressions.

20



Conclusion

Transitioning from the DATA step to PROC DS2 is not simple, and seemingly minor issues can frustrate
you along the way. But the value and power of PROC DS2 is high if you can exploit it, so hopefully some of
the concepts discussed here will help you make the transition. The books by Mark Jordan and Peter
Eberhardt are highly recommended if you plan to go down this path, along with a multitude of SAS Blogs
on DS2 and related concepts.

Recommended Reading

• SAS® 9.4 DS2 Programmer’s Guide

• Mastering the SAS® DS2 Procedure, Mark Jordan, SAS Institute, Cary, NC, 2018

• The DS2 Procedure: SAS Programming Methods at Work, Peter Eberhardt, SAS Institute, Cary, NC,
2016

Contact Information

Your comments and questions are valued and encouraged. Contact the authors at:

James Blum, University of North Carolina Wilmington
blumj@uncw.edu
http://people.uncw.edu/blumj

Full Employee Package Definition

proc ds2;
package DS2HOW.EmployeeStuff / overwrite=yes;

method EmployeeStuff();
put;
put 'Methods Available in EmployeeStuff:';
put ' SalaryBump';
put ' Raise';
put;
end;
method retire();
put 'RETIRE Method';
put 'General Syntax: Retire(Age, AgeLim <,Serve, AgeServLim, ServLim>)';
put ' Age is double, employee age';
put ' AgeLim is double, cutoff for age-based retirement eligibility';
put ' Serve is optional years of service parameter, also requires:';
put ' AgeServLim: age cutoff when service is included together with...';
put ' ServLim: Years of service required in conjuction with age';
end;
method retire(double age, double agelim, double serve, double ageservlim,

double servlim) returns char;
declare char(1) Retire;
if age ge agelim or (age ge ageservlim and serve ge servlim)

then Retire='Y'; else Retire='N';
return Retire;

end;

21

https://documentation.sas.com/api/docsets/ds2pg/9.4/content/ds2pg.pdf?locale=en


method retire(double age, double agelim) returns char;
declare char(1) Retire;
if age ge agelim then Retire='Y'; else Retire='N';
return Retire;
end;

method SalaryBump();
put;
put 'SalaryBump Method';
put 'General Syntax: SalaryBump(Salary,Group,List of Rate Parameter)

or SalaryBump(Salary,rate)';
put ' Salary is double for input and is updated for output';
put ' Group is integer';
put ' Rates are double, number of parameters is one more than

levels of group available--';
put ' Levels of group can be 1, 1 and 2, or 1 and 2 and 3';
put ' Rates are given in sequence for each level plus another

for all other categories';
put 'Without a group, a single rate is given to apply to all records';
put ;
end;
method SalaryBump(in_out double salary, integer group, double rate1,

double rate2, double rate3, double rate0);
select(group);
when(1) Salary=(1+rate1)*salary;
when(2) Salary=(1+rate2)*salary;
when(3) Salary=(1+rate3)*salary;
otherwise Salary=(1+rate0)*salary;

end;
end;
method SalaryBump(in_out double salary, integer group, double rate1,

double rate2, double rate0);
select(group);
when(1) Salary=(1+rate1)*salary;
when(2) Salary=(1+rate2)*salary;
otherwise Salary=(1+rate0)*salary;

end;
end;
method SalaryBump(in_out double salary, integer group, double rate1,

double rate0);
select(group);
when(1) Salary=(1+rate1)*salary;
otherwise Salary=(1+rate0)*salary;

end;
end;
method SalaryBump(in_out double salary, double rate0);
Salary=(1+rate0)*salary;
end;

endpackage;
run;
quit;

22


