

Page 1

SESUG Paper 195-2023

The Battle of the Titans: DATA Step versus PROC SQL

Kirk Paul Lafler, sasNerd
Richann Jean Watson, DataRich Consulting

Joshua M. Horstman, Nested Loop Consulting
Charu Shankar, SAS Institute Inc.

Abstract
Should I use the DATA step or PROC SQL to process my data? Which approach will give me the control, flexibility, and scale to

process data exactly the way I want it? Which approach is easier to use? Which approach offers the greatest power and

capabilities? And which approach is better? If you have these and other questions about the pros and cons of the DATA step versus

PROC SQL, this presentation is for you. We will discuss, using real-life scenarios, the strengths (and even a few weaknesses) of the

two most powerful and widely used data processing approaches in SAS® (as we see it). We will provide you with the knowledge you

need to make that difficult decision about which approach to use to process all that data you have.

Introduction
Borrowing from the theme of the “ORIGINAL” Battle of the Titans: PROC REPORT versus PROC TABULATE where Ray Pass and Dan

Bruns engaged in historic battles to showcase the power and features of PROC REPORT and PROC TABULATE, four new warriors –

Kirk, Richann, Joshua, and Charu – will step onto the field of combat to showcase two colossus data processing approaches: the

DATA step versus PROC SQL. Our intent is to showcase the strengths, and even a few weaknesses, of the DATA step and PROC SQL,

as well as basic coding techniques that demonstrate the many DATA step and PROC SQL features and capabilities. We emphasize a

few “fun”, engaging, and even controversial scenarios describing general concepts and practical applications that users will likely

encounter while using the DATA step and/or PROC SQL.

Data Sets Used in Examples
To provide readers with the ability to reproduce and experiment with the examples presented in this paper, we chose to use the

HEART data set from the SASHELP library. This data set was selected because it possesses many of the same characteristics of data

sets/database tables found in many production relational database management systems (RDBMS) such as Oracle, SQL-Server,

Teradata, DB2, and others. The SASHELP.HEART data set consists of 5,209 observations and 17 variables, illustrated below.

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 2

The second SAS data set, High_Blood_Pressure_Medications, consists of 1 observation and 5 variables, illustrated below.

Introduction to the DATA Step
Power of the DATA Step. The power of the DATA step has enabled SAS users to leverage many capabilities and features since

the SAS software was conceived. Programmers, developers, data engineers, data scientists, statisticians, and users from various

industries utilize the DATA step to create, retrieve, update, and process SAS data set with various SAS statements.

General Syntax:
DATA outdsn;

 SET <MERGE, UPDATE> indsn(s)

 SAS statements ;

RUN;

Introduction to the SQL Procedure
An important relational model conceived and developed by Edgar F. Codd in 1969 described data represented in terms of tuples,

grouped into relations. Ultimately, the relational model gave way to the development of a standardized approach to communicate

called Structured Query Language (or SQL). SQL became the standard for accessing and manipulating stored data in one or more

tables in relational database management systems (RDBMS). PROC SQL is a powerful tool for data access, retrieval, and analysis

tool and a popular technique for combining data from multiple relational database tables.

The purpose of the SELECT statement (or clause) is to describe how the results will look. The syntax consists of the SELECT

statement and several sub-clauses. The sub-clauses name the input data set, select rows matching specific conditions (such as

subsetting), grouping (or aggregating) the data, and ordering (or sorting) the data, as follows.

General SELECT Syntax:
PROC SQL options ;

 SELECT column(s)

 FROM table-name | view-name

 WHERE expression

 GROUP BY column(s)

 HAVING expression

 ORDER BY column(s) ;

QUIT;

Battle #1 – SAS Data Set Creation
In this first battle users will create SAS data sets (or tables) using the DATA step and PROC SQL. We will find out if one method has a

distinct advantage over the other by demonstrating both methods below.

DATA Step Code:
LIBNAME MYDATA "/home/username/Data Sources" ;

DATA MYDATA.High_Blood_Pressure_Medications ;

 LENGTH BP_Status $7.

 BP_Medication_1

 BP_Medication_2

 BP_Medication_3

 BP_Medication_4 $50. ;

 BP_Status = "High" ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 3

 BP_Medication_1 = "Thiazide Diuretics" ;

 BP_Medication_2 = "ACE (angiotensin-converting enzyme) inhibitors" ;

 BP_Medication_3 = "Angiotensin receptor blockers (ARBs)" ;

 BP_Medication_4 = "Calcium channel blockers" ;

RUN ;

PROC PRINT DATA=MYDATA.High_Blood_Pressure_Medications NOOBS ;

RUN ;

Results:

PROC SQL Code:
LIBNAME MYDATA "/home/username/Data Sources" ;

PROC SQL ;

 CREATE TABLE MYDATA.High_Blood_Pressure_Medications

 (BP_Status CHAR(7)

 ,BP_Medication_1 CHAR(50)

 ,BP_Medication_2 CHAR(50)

 ,BP_Medication_3 CHAR(50)

 ,BP_Medication_4 CHAR(50)) ;

 INSERT INTO MYDATA.High_Blood_Pressure_Medications

 VALUES("High"

 ,"Thiazide Diuretics"

 ,"ACE (angiotensin-converting enzyme) inhibitors"

 ,"Angiotensin receptor blockers (ARBs)"

 ,"Calcium channel blockers") ;

 SELECT * FROM MYDATA.High_Blood_Pressure_Medications ;

QUIT ;

Results:

While both techniques yield the same result, notice that to display the data set to the results window for the DATA step, the PRINT

procedure is used. However, with PROC SQL, the SELECT statement will display the data set in the results window. Thus, with PROC

SQL, the data set is created, populated, and displayed in one procedure.

Multiple Data Sets
In the previous battles, at the outset, it appears that both the DATA step and PROC SQL result in the same outcome and indeed that

is correct. However, it is important to point out one edge the DATA step has. That is the ability to create multiple output data sets

in one read of the input table, thereby saving valuable input/output resources.

Let’s take the weight-status column to do some conditional processing. First, a FREQ procedure is used to identify unique values of

Weight_status.

PROC FREQ DATA=SASHELP.Heart ORDER=FREQ ;

 TABLES weight_status ;

RUN ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 4

Now a DATA step can be used to create separate data sets for the unique values of weight_status. We do this by listing the table

names on the DATA statement and then sending rows of data to the appropriate tables by using IF-THEN-ELSE conditional logic.

Notice that the DATA step reads the HEART data set one time, and in that one read of the input table it can be made to divert data

to multiple output tables.

DATA Step Code:

DATA WORK.overWt WORK.normalWt WORK.underWt ;

 SET SASHELP.Heart ;

 IF weight_status="Overweight" THEN

 OUTPUT WORK.overWt ;

 ELSE IF weight_status="Normal" THEN

 OUTPUT WORK.normalWt ;

 ELSE IF weight_status="Underweight" THEN

 OUTPUT WORK.underWt ;

RUN ;

How would PROC SQL handle the same challenge? See below how SQL innately can build just one output table for each read. Thus,

we would need to read the HEART data set 3 times to build 3 output tables.

PROC SQL Code (Two Techniques):
PROC SQL ;

 CREATE TABLE WORK.overWt AS

 SELECT * FROM SASHELP.Heart

 WHERE weight_status="Overweight" ;

QUIT ;

PROC SQL ;

 CREATE TABLE WORK.normalwt AS

 SELECT * FROM SASHELP.Heart

 WHERE weight_status="Normal" ;

QUIT ;

PROC SQL ;

 CREATE TABLE WORK.underWt AS

 SELECT * FROM SASHELP.Heart

 WHERE weight_status="Underweight" ;

QUIT ;

PROC SQL ;

 CREATE TABLE WORK.overWt AS

 SELECT * FROM SASHELP.Heart

 WHERE weight_status="Overweight" ;

 CREATE TABLE WORK.normalwt AS

 SELECT * FROM SASHELP.Heart

 WHERE weight_status="Normal" ;

 CREATE TABLE WORK.underWt AS

 SELECT * FROM SASHELP.Heart

 WHERE weight_status="Underweight" ;

QUIT ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 5

Battle #2 – Data Access / Retrieval / Data Manipulation
In this second battle we turn our attention to data access, data retrieval, and data manipulation techniques. In the next example,

we’ll access and read an Excel spreadsheet by specifying a LIBNAME statement with the XLSX engine in a DATA step.

DATA Step Code:
LIBNAME MYDATA XLSX "/home/Data Sources/Heart.xlsx" ;

DATA WORK.Heart_DATA_Step ;

 SET MYDATA.Heart ;

RUN ;

SAS Log:

LIBNAME MYDATA XLSX "/home/Data Sources/Heart.xlsx" ;

NOTE: Libref MYDATA was successfully assigned as follows:

 Engine: XLSX

 Physical Name: /home/Data Sources/Heart.xlsx

DATA WORK.Heart_DATA_Step ;

 SET MYDATA.Heart ;

RUN ;

NOTE: The import data set has 5209 observations and 17 variables.

NOTE: There were 5209 observations read from the data set MYDATA.Heart.

NOTE: The data set WORK.HEART_DATA_Step has 5209 observations and 17 variables.

In the next example, we’ll access and read an Excel spreadsheet by specifying a LIBNAME statement with the XLSX engine and PROC

SQL.

PROC SQL Code:
LIBNAME MYDATA XLSX "/home/Data Sources/Heart.xlsx" ;

PROC SQL ;

 CREATE TABLE WORK.Heart_PROC_SQL AS

 SELECT *

 FROM MYDATA.Heart ;

QUIT ;

SAS Log:

LIBNAME MYDATA XLSX "/home/Data Sources/Heart.xlsx" ;

NOTE: Libref MYDATA was successfully assigned as follows:

 Engine: XLSX

 Physical Name: /home/Data Sources/Heart.xlsx

PROC SQL ;

 CREATE TABLE WORK.Heart_PROC_SQL AS

 SELECT *

 FROM MYDATA.Heart ;

QUIT ;

NOTE: The import data set has 5209 observations and 17 variables.

NOTE: There were 5209 observations read from the data set MYDATA.Heart.

NOTE: The data set WORK.HEART_PROC_SQL has 5209 observations and 17 variables.

The result of running both approaches is that there is no appreciable difference between the DATA step and PROC SQL approach.

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 6

Battle #3 – Logic Scenarios
Both the DATA step and PROC SQL provide us with the ability to apply logic scenarios in our programs so they can conditionally do

or perform the operations we desire – “if one condition is true, then do X but if another condition is true, then do Y.” But before

engaging in this battle of logic scenarios we’ll introduce comparison and logical operators.

Comparison Operators

Comparison operators are used in the DATA step and PROC SQL to compare one character or numeric value to another. As in the

DATA step, SQL comparison operators, mnemonics, and their descriptions appear in the following table.

SAS Operator Mnemonic Operator Description

= EQ Equal to

^= NE Not equal to

< LT Less than

<= LE Less than or equal to

> GT Greater than

>= GE Greater than or equal to

Logical Operators

Logical operators are used to connect two or more expressions together. The three operators include AND, OR, and NOT as is

displayed in the following table.

SAS

Operator

Mnemonic Operator Description

AND & All expressions (conditions) must be true.

OR | Any of the expressions (conditions) can be true.

NOT ^ or ~ Negate or reverse the logic of a comparison.

In this battle we’ll explore the application of “IF-THEN-ELSE”, “SELECT-WHEN-OTHERWISE” and WHERE conditional logic scenarios

used in the DATA step and WHERE-clauses and Case expressions used in PROC SQL.

IF-THEN-ELSE Syntax in the DATA Step:

IF condition-1 THEN condition1-result

< ELSE IF condition-2 THEN condition2-result ; >

< ELSE IF condition-3 THEN condition3-result ; >

< … … … >

< ELSE condition-n ; >

Two types of select (DATA step) or case (PROC SQL) expression constructs exist:

✓ DATA Step Logic

- IF-THEN-ELSE condition

- WHEN-THEN-ELSE condition

- Does not support AND / OR between Boolean expressions

✓ PROC SQL Case Expression

- Simple Case Expression - Compares an expression against multiple values

- Searched Case Expression - Specifies an equality check

❖ Supports one or more WHEN-THEN-ELSE conditions

❖ Permits the use of comparison operators

❖ Supports the use of AND / OR between Boolean expressions

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 7

General SELECT Expression Syntax in the DATA Step:

SELECT (<select-expression>)

 WHEN (when-condition) statement ;

 <WHEN (when-condition) statement ;>

 < … … … >

 <OTHERWISE statement ;n>

END ;

DATA Step Code:
DATA WORK.Smoke ;

 SET SASHELP.Heart ;

 SELECT (Smoking_Status) ;

 WHEN (“Non-smoker”) My_Smoking_Status = “Non-smoker” ;

 WHEN (“Light (1-5)”) My_Smoking_Status = “Light-smoker” ;

 WHEN (“Moderate (6-15)”) My_Smoking_Status = “Moderate-smoker” ;

 WHEN (“Heavy (16-25)”) My_Smoking_Status = “Heavy-smoker” ;

 WHEN (“Very Heavy (> 25)”) My_Smoking_Status = “Very Heavy-smoker” ;

 OTHERWISE My_Smoking_Status = “Unknown” ;

 END ;

 KEEP Sex Status Smoking_Status My_Smoking_Status ;

RUN ;

PROC PRINT DATA = WORK.Smoke NOOBS ;

RUN ;

A Select with case expressions in PROC SQL provides a method of reclassifying or regrouping data into separate and unique groups.

A simple SELECT or CASE expression reduces the number of keystrokes required in constructing logic scenarios.

CASE Expression Syntax in PROC SQL:

CASE <column-name>

 WHEN when-condition THEN result

 <WHEN when-condition THEN result>

 < … … … >

 <ELSE result-expression>

END <AS user-defined-column-name>

PROC SQL Code:
PROC SQL ;

 SELECT Sex

 , Status

 , Smoking_Status

 , CASE Smoking_Status

 WHEN "Non-smoker" THEN "Non-smoker"

 WHEN "Light (1-5)" THEN "Light-smoker"

 WHEN "Moderate (6-15)" THEN "Moderate-smoker"

 WHEN "Heavy (16-25)" THEN "Heavy-smoker"

 WHEN "Very Heavy (> 25)" THEN "Very Heavy-smoker"

 ELSE "Unknown"

 END AS My_Smoking_Status

 FROM SASHELP.Heart ;

QUIT ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 8

Results:

A DATA step SELECT-WHEN-OTHERWISE expression supports the application of logic scenarios for conditional processing with

comparison and logical operators.

DATA Step Code:
DATA WORK.Smoke_BP ;

 SET SASHELP.Heart ;

 LENGTH My_Smoking_Status $50;

 SELECT ;

 WHEN (Smoking_Status = “Non-smoker”) My_Smoking_Status = “Non-smoker” ;

 WHEN (Smoking_Status = “Light (1-5)”) My_Smoking_Status = “Light-smoker” ;

 WHEN (Smoking_Status = “Moderate (6-15)”) My_Smoking_Status = “Moderate-smoker” ;

 WHEN (Smoking_Status = “Heavy (16-25)” and BP_Status = “High”)

 My_Smoking_Status = “Heavy-smoker with High Blood Pressure” ;

 WHEN (Smoking_Status = “Very Heavy (> 25)” and BP_Status = “High”)

 My_Smoking_Status = “Very Heavy-smoker with High Blood Pressure” ;

 OTHERWISE My_Smoking_Status = “Unknown” ;

 END ;

 KEEP Sex Status Smoking_Status My_Smoking_Status ;

RUN ;

A PROC SQL searched CASE expression supports the application of logic scenarios for conditional processing with comparison and

logical operators.

PROC SQL Code:
PROC SQL ;

 SELECT Sex

 , Status

 , BP_Status

 , Smoking_Status

 , CASE

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 9

 WHEN Smoking_Status = "Non-smoker" THEN "Non-smoker"

 WHEN Smoking_Status = "Light (1-5)" THEN "Light-smoker"

 WHEN Smoking_Status = "Moderate (6-15)" THEN "Moderate-smoker"

 WHEN Smoking_Status = "Heavy (16-25)"

 AND BP_Status = "High" THEN "Heavy-smoker with High Blood Pressure"

 WHEN Smoking_Status = "Very Heavy (> 25)"

 AND BP_Status = "High" THEN "Very Heavy-smoker with High Blood Pressure"

 ELSE "Unknown"

 END AS My_Smoking_Status

 FROM SASHELP.Heart ;

QUIT ;

Results:

In this scenario, we may have to call it a draw. There is no clear ‘winner’ in this battle. It comes down to which syntax you are most

comfortable with.

Battle #4 – BY-group Processing
SAS users often need the ability to identify the first (beginning) and last (ending) observation as well as the between observation(s)

in a by-group. The DATA step is the “go-to” approach used by many but PROC SQL can also be used to emulate this stalwart DATA

step approach. In the next example, a PROC SORT and DATA step illustrates a popular BY-group processing technique where two

temporary variables: FIRST(dot) and LAST(dot) are automatically created to identify and select the first and last observation in a BY-

group.

Identify the Maximum Value in BY-Groups
SAS provides users with several ways to identify the maximum value in a group. In the next example, we illustrate how to identify

the maximum value in a group using PROC SORT, a DATA step, and PROC PRINT.

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 10

DATA Step Code:
PROC SORT DATA=SASHELP.Heart(KEEP=Sex Status Weight Smoking_Status)

 OUT=WORK.Heart_Sorted ;

 BY Smoking_Status DESCENDING Weight ;

 WHERE Smoking_Status NE "" AND Weight NE . ;

RUN ;

DATA WORK.BY_Group_Obs ;

 SET WORK.Heart_Sorted ;

 BY Smoking_Status ;

 IF FIRST.Smoking_Status THEN OUTPUT ;

RUN ;

PROC PRINT DATA=WORK.BY_Group_Obs NOOBS ;

 VAR Sex Status Weight Smoking_Status ;

RUN ;

Results:

In the next example, we illustrate how to identify the maximum value in a group using PROC SQL.

PROC SQL Code:
PROC SQL ;

 SELECT Sex

 , Status

 , Weight

 , Smoking_Status

 FROM SASHELP.Heart(KEEP=Sex Status Weight Smoking_Status)

 GROUP BY Smoking_Status

 HAVING Weight = MAX(Weight) AND Smoking_Status NE "" ;

QUIT ;

Results:

As seen both approaches yield the same results, but PROC SQL is more concise and does not require the pre-sorting that is needed

in the DATA step or the display of the results.

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 11

Count the Number of Observations by Group
SAS provides users with several ways to count the number of observations (or rows) in a group. We will illustrate two methods to

count the number of observations contained in a group: a DATA step and PROC SQL. By default, the results produced in both

examples are ordered in ascending order by the value contained in the Smoking_Status variable.

DATA Step Code:
PROC SORT DATA=SASHELP.Heart(KEEP=Smoking_Status)

 OUT=WORK.Heart_Sorted ;

 BY Smoking_Status ;

RUN ;

DATA WORK.BY_Group_Obs ;

 SET WORK.Heart_Sorted ;

 BY Smoking_Status ;

 IF FIRST.Smoking_Status THEN CTR_Smoking_Status = 0 ;

 CTR_Smoking_Status + 1 ;

 IF LAST.Smoking_Status THEN OUTPUT ;

 FORMAT CTR_Smoking_Status COMMA10. ;

RUN ;

PROC PRINT DATA=WORK.BY_Group_Obs NOOBS ;

RUN ;

Results:

PROC SQL Code:
PROC SQL ;

 SELECT Smoking_Status

 , COUNT(*) AS CTR_BY_Group FORMAT=COMMA10.

 FROM SASHELP.Heart

 GROUP BY Smoking_Status ;

QUIT ;

Results:

While PROC SQL may have won this skirmish, the DATA step is not giving up this dogfight.

An added feature provided with the FIRST(dot) and LAST(dot) automatic variables is the ability to identify and select the BETWEEN

observations contained in a BY-group.

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 12

DATA Step Code:

PROC SORT DATA=SASHELP.Heart(KEEP=Smoking_Status Weight_Status)

 OUT=WORK.Heart_Sorted ;

 BY Smoking_Status Weight_Status ;

RUN ;

DATA WORK.Weight_Status_Groups ;

 RETAIN Smoking_Status Weight_Status ;

 SET WORK.Heart_Sorted ;

 BY Smoking_Status Weight_Status ;

 WHERE Smoking_Status NE "" ;

 WHERE Weight_Status NE "" ;

 IF Weight_Status="Normal" THEN CTR_Normal + 1 ;

 IF Weight_Status="Underweight" THEN CTR_Underweight + 1 ;

 IF Weight_Status="Overweight" THEN CTR_Overweight + 1 ;

 Total_Weight_Status = CTR_Normal + CTR_Underweight + CTR_Overweight ;

 IF LAST.Smoking_Status THEN DO ;

 OUTPUT ;

 CTR_Normal = 0 ;

 CTR_Underweight = 0 ;

 CTR_Overweight = 0 ;

 Total_Weight_Status = 0 ;

 END ;

RUN ;

PROC REPORT DATA=WORK.Weight_Status_Groups ;

 COLUMNS Smoking_Status CTR_Normal CTR_Underweight CTR_Overweight

 Total_Weight_Status ;

 FORMAT CTR_Normal CTR_Underweight CTR_Overweight Total_Weight_Status COMMA10.0 ;

 DEFINE Smoking_Status / ORDER ;

RUN ;

Results:

PROC SQL Code:
PROC SQL ;

 SELECT Smoking_Status

 , Weight_Status

 , COUNT(Weight_Status) AS CTR_Weight_Status FORMAT=COMMA10.0

 FROM SASHELP.HEART

 WHERE Smoking_Status NE ""

 AND Weight_Status NE ""

 GROUP BY Smoking_Status, Weight_Status

 HAVING COUNT(Weight_Status) > 0 ;

QUIT ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 13

Results:

Notice that with PROC SQL it does not produce the overall Total_Weight_Status. To incorporate the total counts with the in-

between counts, an additional PROC SQL statement is needed. Furthermore, to put the data from PROC SQL in the same format as

the data from the DATA step, additional processing is needed and the data from PROC SQL would need to be transposed.

Nearest Neighbor Processing by Emulating LAG and LEAD Functionality
As a rule, SQL queries are designed to perform operations on a row-by-row basis. But sometimes a problem comes along where

row-by-row processing will not work. For example, nearest neighbor problems identify content that is close to another value. In the

DATA step, functions such as LAG are often used to perform operations. Since PROC SQL does not support the use of the LAG (or

LEAD) functions, another approach must be used.

DATA Step Code:

DATA WORK.Nearest_Neighbor(KEEP=Sex Status Smoking_Status Previous_Smoking_Status

 Next_Smoking_Status) ;

 RETAIN Sex Status Smoking_Status Previous_Smoking_Status Next_Smoking_Status ;

 ARRAY FLAG {10000} $1 _TEMPORARY_;

 SET SASHELP.Heart(KEEP=Sex Status Smoking_Status) ;

 Current_Obs+1 ;

 Loop=0 ;

 DO POINT=(Current_Obs-1) to (Current_Obs+1) ;

 Loop+1 ;

 SET SASHELP.Heart(KEEP=Sex Status Smoking_Status

 RENAME=(Smoking_Status=Smoking_Status1)) POINT=POINT NOBS=NOOBS ;

 IF Loop=1 THEN Previous_Smoking_Status=Smoking_Status1 ;

 IF Loop=2 THEN Smoking_Status=Smoking_Status ;

 IF Loop=3 THEN Next_Smoking_Status=Smoking_Status1 ;

 END ;

 OUTPUT WORK.Nearest_Neighbor ;

RUN;

An alternative to using a DO loop in the DATA step is to utilize the double SET statement within the DATA step.

DATA WORK.Nearest_Neighbor;

 SET SASHELP.Heart (KEEP=Sex Status Smoking_Status) END = EOF;

 Previous_Smoking_Status=LAG(Smoking_Status) ;

 IF NOT(EOF) THEN

 SET SASHELP.Heart (KEEP=Sex Status Smoking_Status

 RENAME=(Smoking_Status=Next_Smoking_Status)

 FIRSTOBS=2) ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 14

 ELSE IF EOF ;

RUN;

PROC PRINT DATA=WORK.Nearest_Neighbor NOOBS ;

RUN ;

Results:

PROC SQL Code:

ODS OUTPUT SQL_RESULTS = Heart_with_Row_Numbers ;

PROC SQL NUMBER ;

 SELECT Sex, Status, Smoking_Status

 FROM SASHELP.Heart ;

QUIT ;

PROC SQL NONUMBER ;

 CREATE TABLE WORK.Nearest_Neighbor(drop=Row) as

 SELECT *,

 (SELECT Smoking_Status

 FROM Heart_with_Row_Numbers

 WHERE Row = H.Row - 1) AS Previous_Smoking_Status,

 (SELECT Smoking_Status

 FROM Heart_with_Row_Numbers

 WHERE Row = H.Row + 1) AS Next_Smoking_Status

 FROM Heart_with_Row_Numbers H ;

 SELECT * FROM WORK.Nearest_Neighbor ;

QUIT ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 15

Results:

When it comes to “look behind” or “look ahead”, the DATA step utilizes the double SET within the one DATA step which makes the

code more concise.

Battle #5 – Combining Data Sets (or Tables)
In the fifth, and final, battle we illustrate various DATA step and PROC SQL techniques to combine two data sets (or tables)

together. The following table illustrates merge / join techniques using Venn diagrams, see below.

INNER MERGE / JOIN

LEFT OUTER MERGE / JOIN

 RIGHT OUTER MERGE / JOIN

FULL OUTER MERGE / JOIN

Illustration of Merges / Joins using Venn Diagrams

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 16

MATCH-MERGE / INNER JOIN (Intersect)

In the next example we illustrate how to combine tables together by constructing a MATCH-MERGE (or Intersect) construct using a

DATA step.

DATA Step Code:
PROC SORT DATA=SASHELP.Heart

 OUT=WORK.Heart_Sorted ;

 BY BP_Status ;

 WHERE BP_Status = "High" ;

RUN ;

DATA WORK.Heart_HBP_Medications_MM ;

 MERGE WORK.Heart_Sorted(IN=H)

 MYDATA.High_Blood_Pressure_Medications(IN=HBP) ;

 BY BP_Status ;

 IF H AND HBP ;

RUN ;

PROC PRINT DATA=WORK.Heart_HBP_Medications_MM NOOBS ;

RUN ;

Results:

2,267 Observations and 21 Variables

In the next example we illustrate how to combine tables together by constructing an INNER JOIN construct (or Intersect) using

PROC SQL.

PROC SQL Code:
LIBNAME MYDATA "/home/username/Data Sources" ;

PROC SQL NONUMBER ;
 CREATE TABLE WORK.Heart_HBP_Medications_IJ AS
 SELECT *
 FROM SASHELP.HEART H
 INNER JOIN
 MYDATA.High_Blood_Pressure_Medications HBP
 ON H.BP_Status = HBP.BP_Status ;

 SELECT *
 FROM WORK.Heart_HBP_Medications_IJ ;
QUIT ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 17

Results:

2,267 Observations and 21 Variables

LEFT OUTER MERGE / JOIN (Intersect + Unmatched Rows from Left Table)

In the next example we illustrate the process of combining two tables together using a Left Outer Merge in a DATA step.

DATA Step Code:
PROC SORT DATA=SASHELP.Heart

 OUT=WORK.Heart_Sorted ;

 BY BP_Status ;

RUN ;

DATA WORK.Heart_HBP_Medications_LOM ;

 MERGE WORK.Heart_Sorted(IN=H)

 MYDATA.High_Blood_Pressure_Medications(IN=HBP) ;

 BY BP_Status ;

 IF H ;

RUN ;

PROC PRINT DATA=WORK.Heart_HBP_Medications_LOM NOOBS ;

RUN ;

Results:

5,209 Observations and 21 Variables

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 18

In the next example we illustrate the process of combining two tables together using a Left Outer Join in PROC SQL.

PROC SQL Code:
PROC SQL NONUMBER ;

 CREATE TABLE WORK.Heart_HBP_Medications_LJ AS

 SELECT *

 FROM SASHELP.HEART H

 LEFT JOIN

 MYDATA.High_Blood_Pressure_Medications HBP

 ON H.BP_Status = HBP.BP_Status ;

 SELECT *

 FROM WORK.Heart_HBP_Medications_LJ ;

QUIT ;

Results:

5,209 Observations and 21 Variables

RIGHT OUTER MERGE / JOIN (Intersect + Unmatched Rows from Right Table)

In the next example we illustrate the process of combining two tables together using a right outer merge in a DATA step.

DATA Step Code:
PROC SORT DATA=SASHELP.Heart

 OUT=WORK.Heart_Sorted ;

 BY BP_Status ;

RUN ;

DATA WORK.Heart_HBP_Medications_ROM ;

 MERGE WORK.Heart_Sorted(IN=H)

 MYDATA.High_Blood_Pressure_Medications(IN=HBP) ;

 BY BP_Status ;

 IF HBP ;

RUN ;

PROC PRINT DATA=WORK.Heart_HBP_Medications_ROM NOOBS ;

RUN ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 19

Results:

2,267 Observations and 21 Variables

In the next example we illustrate the process of combining two tables together using a right outer join in PROC SQL.

PROC SQL Code:
PROC SQL NONUMBER ;

 CREATE TABLE WORK.Heart_HBP_Medications_RJ AS

 SELECT *

 FROM SASHELP.HEART H

 RIGHT JOIN

 MYDATA.High_Blood_Pressure_Medications HBP

 ON H.BP_Status = HBP.BP_Status ;

 SELECT *

 FROM WORK.Heart_HBP_Medications_RJ ;

QUIT ;

Results:

2,267 Observations and 21 Variables

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 20

FULL OUTER MERGE / JOIN (Intersect + Unmatched Rows from Left and Right Tables)

In the next example we illustrate the process of combining two tables together using a full outer merge in a DATA step.

DATA Step Code:
PROC SORT DATA=SASHELP.Heart

 OUT=WORK.Heart_Sorted ;

 BY BP_Status ;

RUN ;

DATA WORK.Heart_HBP_Medications_FOM ; /* FULL OUTER MERGE */

 MERGE WORK.Heart_Sorted(IN=H)

 MYDATA.High_Blood_Pressure_Medications(IN=HBP) ;

 BY BP_Status ;

 IF H OR HBP ;

RUN ;

PROC PRINT DATA=WORK.Heart_HBP_Medications_FOM NOOBS ;

RUN ;

Results:

5,209 Observations and 21 Variables

In the next example we illustrate the process of combining two tables together using a full outer join in PROC SQL.

PROC SQL Code:
PROC SQL NONUMBER ;

 CREATE TABLE WORK.Heart_HBP_Medications_FJ AS

 SELECT *

 FROM SASHELP.HEART H

 FULL JOIN

 MYDATA.High_Blood_Pressure_Medications HBP

 ON H.BP_Status = HBP.BP_Status ;

 SELECT *

 FROM WORK.Heart_HBP_Medications_FJ ;

QUIT ;

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 21

Results:

5,209 Observations and 21 Variables

Conclusion
So, “Which colossus approach is better?”, you might ask. Well, our task was not to declare a winner or a loser, but rather to show

that the DATA step and PROC SQL could both be used to meet your data processing needs. This paper is intended to illustrate the

differences, and the similarities, between the DATA step and PROC SQL. What we have attempted to do is give you an insightful

way, and hopefully ignite a curiosity for further discovery about these two SAS “TITANS” (To be clear, we’re talking about the DATA

step and SQL procedure here, not the authors.) It is also worth mentioning that each technique has a definite set of strengths over

the other depending on the desired result. The tools are available, and they serve as powerful foundations to valuable and

productive processing.

References
Lafler, Kirk Paul, Joshua Horstman, Ben Cochran, Ray Pass, and Dan Bruns (2023). “Battle of the Titans (Part II): PROC REPORT versus

PROC TABULATE,” Proceedings of the 2023 PharmaSUG Conference.

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul, Joshua Horstman, Ben Cochran, Ray Pass, and Dan Bruns (2022). “Battle of the Titans (Part II): PROC REPORT versus
PROC TABULATE,” Proceedings of the 2022 SouthEast SAS Users Group (SESUG) Conference.

Lafler, Kirk Paul, Joshua Horstman, Ben Cochran, Ray Pass, and Dan Bruns (2022). “Battle of the Titans (Part II): PROC REPORT versus
PROC TABULATE,” Proceedings of the 2022 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul, Ben Cochran, Josh Horstman, and Ray Pass (2019). “Battle of the Titans (Part II): PROC TABULATE versus PROC
REPORT,” Proceedings of the 2019 SouthEast SAS Users Group (SESUG) Conference.

Lafler, Kirk Paul, Ben Cochran, and Ray Pass (2017). “Battle of the Titans (Part II): PROC TABULATE versus PROC REPORT,”
Proceedings of the 2017 MidWest SAS Users Group (MWSUG) Conference.

Acknowledgments
The authors thank the SESUG 2023 Conference Committee, particularly the Learning SAS I Section Chairs, Isaiah Omari, Dave

Maddoc, and Jak Andan, for accepting our abstract and paper; the SESUG 2023 Academic Chair, Mel Alexander, and the Operation

Chair, Kelly Smith, for organizing and supporting a great “live” conference event; SAS Institute Inc. for providing SAS users with

wonderful software; and SAS users everywhere for being the nicest people anywhere!

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration. Other brands and product names are trademarks of their respective

companies.

https://www.pharmasug.org/proceedings/2023/SD/PharmaSUG-2023-SD-082.pdf
https://www.pharmasug.org/proceedings/2023/SD/PharmaSUG-2023-SD-082.pdf
https://www.sas.com/store/prodBK_71650_en.html
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-143_Final_PDF.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-143_Final_PDF.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-143_Final_PDF.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-143_Final_PDF.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-143_Final_PDF.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-143_Final_PDF.pdf
https://www.mwsug.org/proceedings/2017/SA/MWSUG-2017-SA14.pdf

Battle of the Titans: DATA Step versus PROC SQL, continued

Page 22

About the Authors
Kirk Paul Lafler is an educator, developer, programmer, consultant, and data analyst; currently working as a lecturer and adjunct
professor at San Diego State University and the University of California San Diego Extension; and teaching SAS, SQL, Python, Excel,
and cloud-based technology courses to users around the world. Kirk has decades of programming experience and specializes in SAS
software, SQL, RDBMS technologies (Oracle, SQL-Server, Teradata, DB2), Python, and other languages and productivity tools. Kirk is
the author of the popular PROC SQL: Beyond the Basics Using SAS, Third Edition (SAS Press. 2019) and is actively involved with SAS,
SQL, Python, R, ML, and cloud-computing user groups, conferences, and blogs as an Invited speaker, educator, keynote, and leader;
and is the recipient of 27 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Richann Jean Watson is an independent statistical programmer and CDISC consultant based in Ohio who loves to code and is very
active in the SAS User Group community. When Richann is not busy coding or volunteering in the SAS User Group community, she is
spending time with her family and cute but psycho puppy, Loki, or doing some of her favorite crafts such as crocheting or sewing.

Joshua Horstman is an independent statistical programming consultant and trainer based in Indianapolis with over 25 years of
experience using SAS, primarily in the life sciences industry. Josh is a SAS Certified Advanced Programmer who loves coding and
presenting at SAS user group conferences and other industry conferences. Josh also enjoys travelling and hiking with his family and
has been to 47 states and 27 national parks.

Charu Shankar has been teaching SAS for over 15 years. She teaches by engaging with logic, visuals, and analogies to spark critical
thinking. In addition to teaching public classes, and academia, Charu has presented at over 150 SAS international conferences on
SAS, SAS Viya, SQL, Macro, Hadoop, Python, DS2, tips and tricks, efficiencies When she's not teaching SAS, Charu is a food blogger,
yoga teacher & loves to hike Canadian trails with Miko, her husky.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Data Scientist, Developer, Programmer, Consultant, Educator, Data Analyst, and Author

sasNerd
E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

Richann Jean Watson

Statistical Programmer and CDISC Consultant
DataRich Consulting

E-mail: richann.watson@datarichconsulting.com
LinkedIn: https://www.linkedin.com/in/richann-watson-31435422/

Website: https://datarichconsulting.com/

Joshua M. Horstman
Statistical Programming Consultant and Trainer

Nested Loop Consulting
E-mail: josh@nestedloopconsulting.com

LinkedIn: https://www.linkedin.com/in/joshuahorstman

Charu Shankar
SAS® Educator

SAS Institute Inc.
E-mail: Charu.shankar@sas.com

LinkedIn: https://www.linkedin.com/in/charushankar/

mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler
mailto:richann.watson@datarichconsulting.com
https://www.linkedin.com/in/richann-watson-31435422/
https://datarichconsulting.com/
mailto:jmhorstman@gmail.com
https://www.linkedin.com/in/joshuahorstman
mailto:Charu.shankar@sas.com
https://www.linkedin.com/in/charushankar/

