
1

SESUG Paper 189-2023

Wildcarding in Where Clauses

David B. Horvath, MS, CCP

ABSTRACT

This mini-paper (and the resulting short session) is a focused discussion of wildcarding within the Where
clause and related functionality within SAS®. There is wildcarding allowed within where clause like
expressions by using special characters. But if you want to search for those specific characters, you have
to override them. If you forget to escape the character, you’ll get unexpected matches.

Topics include:

 proc sql; select x from y where x like %a/_b escape /;
 _ matches 1 character
 % matches any characters
 / escapes the next character (says next is actual character, not special meaning)
 set sorted_ddl (obs=max where=(name like '%/_ORD%' escape '/'));

INTRODUCTION

Wildcarding within the where clause has been available within SQL since the 1980s. SAS has supported
that capability for almost that long. In addition to use within the where clause, SAS provides additional
methods of wildcard text searches.

WHERE CLAUSE WILDCARDING BASICS

The general format of wildcarding within the where clause is:

Where variable like “%val%” escape “/”;

In this case, ‘%’ matches zero to many characters while ‘_’ matches to exactly one character. The
‘escape’ clause is optional (and is normally set to ‘/’). Note that there is no default escape character within
SAS. If you want to match to a ‘%’ or ‘_’ within the string, you will need to escape them by prefixing with
the escape character:

Where variable like “%string/_with/_underscore” escape “/”;

YOU MUST USE CORRECT SYNTAX

You do have to be careful when coding escape sequences. For instance if you make a mistake like:

Where product_group like "%/%" escape "%";

Or

Where product_group like "%Kid/s%" escape "/";

You’ll see

ERROR: Like pattern is not a valid pattern due to the invalid use of the
escape pattern.

2

USABILITY

The ‘Like’ statement has a lot of functionality. Of course, it can be used in PROC SQL. Because it is part
of ANSI SQL, it can be passed through to your database engine. Why do you care? Because the search
will take place on the database server with only resulting rows being returned – not tying up the network
or SAS Server for the matching.

In addition, the database may make use of any relevant indexes. Typically, the index will be scanned
based on the string up to the first %, then the result filtered based on the rest of the string. And,
importantly, processing load is usually better than a full table scan with filter

‘Like’ can be used in DATA step ‘where’ as well. Both stand-alone and as part of the set statement are
allowed. It will not work as part of an ‘if’ statement though.

One nice feature is that SAS Indexes will be used whenever possible – DATA and PROC SQL both!

SOME EXAMPLES

Given the Initial List, the following are a series of strings in a like clause and the matching result. The best
way to understand it is to review the list, the like string, and which examples actually match.

Table 1 List of Search Candidates

3

Table 2 First Set of Results

4

Table 3 Second Set of Results

5

Table 4 Third Set of Results

There are many places you can use the like clause itself within SAS. Some code examples include:
Like can be used in many contexts

It can be used in any data= where clause (with or without an escape):

proc print data=list (where=(name like 'David')); run;

proc print data=list (where=(name like 'Dav//id' escape '/')); run;

It can be used on the set where clause in a data statement. Escape is optional – you only need to include
it if you need to escape a value (in this case, searching for the string “Dav%” followed by any other
characters.

data list2;
 set list (where=(name like 'Dav/%%' escape '/'));
run;

And, it can be used as a standalone where.
data list2;
 set list;
 where name like 'Dav/%%' escape '/';
run;

ALTERNATIVES TO ‘LIKE’

6

SAS has multiple alternatives to using ‘like’. Some provide even more flexibility.

Within a where clause, you can use ‘contains’ which is equivalent to a like “%string%” statement. As with
‘like’, it will use SAS indexes but it is unlikely to pass through to a database engine.

The prxmatch() function allows the use of extremely complex search strings coded as Regular
Expressions. Although this function provides extreme flexibility, it will make use of SAS Indexes nor pass
through to a database engine.

There is also the limited functionality with EQ:. The following if/eq: is equivalent to name like “Dav/%%”
escape “/”. It matches characters in name up to the length of the comparison string (effectively
wildcarding everything to the right.

if name eq: 'Dav%' ;

The importance of SAS Indexes are that they allow SAS to search for strings by reading through the
highly search-efficient structure of the index rather than reading in every field on every record. The
importance of database pass-through is that the searches take place on the database engine and only
the matching rows are returned to the SAS server. The advantage of making use of database indexes is
similar to that of SAS – more efficient than reading raw data rows.

CAUTION

In any commands in this paper, the single and double quotation marks should be simple, not the “smart
quotes” forced my Microsoft. The same applies to dashes or minus signs – they should not be “em
dashes” (- versus –)

You can safely ignore this warning:

where product_group like "%Kid's%";
WARNING: Apparent invocation of macro KID not resolved.

Because of the ‘%’ one part of the SAS interpreter thinks there should be a macro here.

CONCLUSION

SAS provides many capabilities for string searching within fields that allow for wildcarding or fuzzy
matches. ‘like’ is just one of many!

REFERENCES

SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition:
https://documentation.sas.com/?docsetId=acreldb&docsetTarget=n05b4mygsvt845n1vnr6r5kchbjf.htm&d
ocsetVersion=9.4&locale=en

The Basics of Using SAS® Indexes
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/247-30.pdf

ACKNOWLEDGMENTS

I would like to thank the organizers of this conference. This is neither my first SESUG nor first time
speaking at SESUG – I’ve always enjoyed working with the organizers.

7

I also want to thank my employer for their support in attending (and speaking at) this conference even
though I’m not allowed to mention their name. Last, and certainly not least, is my spouse Mary who
doesn’t complain when I spend time working on conference materials.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

David B. Horvath, CCP
+1-610-859-8826
dhorvath@cobs.com
http://www.cobs.com
LinkedIn: https://www.linkedin.com/in/dbhorvath/

