
1

SESUG Paper 141-2023

So Close Yet How Far Away – Closest City Macro
Brooke Ellen Delgoffe, Marshfield Clinic Health System

ABSTRACT
Assuming many businesses have multiple locations, the task of finding which one is closest to your
customer is a common one. Maybe you are trying to approximate minimum traveling distance for
reimbursement, invitation lists to a given event, or recommending a list of locations by distance; the
applications are plentiful.

 This paper will introduce resources, such as SASHELP.ZIPCODE and ZIPCITYDISTANCE() or
GEODIST(), for finding the zip code distance between two cities, a list of cities, or specific zip codes. It
will cover concepts for calculating distance and present a macro with different options for calculation.
Subtopics will include PROC SQL for multiple distance considerations and pitfalls for each presented
method. References to existing publications and code base will facilitate readers in understanding options
beyond what is covered in this paper.

INTRODUCTION
The concept of ZIP codes originated in 1963 as a way to improve the speed of mail delivery by the US
Postal System (Terrall, 2013), but their uses today go far beyond the post office. Since zip codes are no
longer breaking news in the SAS programming world either many existing papers go over much of the
same concepts. To the extent possible, we provide these resources.

Information covered in this paper will seek to inform you on methods for obtaining information about zip
codes using resources provided by SAS and potential uses for the resulting data. No prior knowledge of
these resources is assumed; details cover not only what the resources are, but also where to find them
and how they can be used.

The macro %FIND_CLOSESTCITY will be used to demonstrate utility of several of the resources
covered. It is provided in full executable form in the appendix. Full code is provided and will not be
specifically broken down/explained in the body of the paper, but background on the purpose it was
designed for is given.

WHERE TO FIND INFORMATION ABOUT ZIPCODES
SAS provides an amazingly helpful dataset in the SASHELP library called ZIPCODES (subsequently
referred to as SASHELP.ZIPCODES). In that dataset there is information about each zip code, including
coordinates, area codes, cities, states, and aliases. Some of the information, like state in Data Preview
1,is presented in multiple forms (STATE, STATECODE, and STATENAME) to assist with matching or
reporting of this data in standard form.

In this same dataset, it will also give you the “centroid” of that zip code using X and Y coordinates that
align with latitude (Y) and longitude(X).

Data Preview 1. SASHELP.ZIPCODES
Fickbohm summarized the contents and gave instructions on how to obtain those datasets (Fickbohm,
2007). Hadden and Zdeb expanded on the different variables available in this dataset in their ZIP Code
411 papers (Hadden & Zdeb, 2006; 2010) and provided a link to the SAS Maps and Geocoding (See
Recommended Reading) that is still valid today. As previously noted, the contents of the dataset are
regularly updated but the variables have remained the same.

2

FUNCTIONS FOR CALCULATING DISTANCE
Both functions for calculating distance do so via geodetic distance and therefore allows calculating the
same results via the Haversine formula, as was the case prior to these functions (Hadden & Zdeb, 2010).

ZIP CODE DISTANCE
When it comes to determining the distance between two zip codes there is a very helpful function called
ZIPCITYDISTANCE(). This function calculates the distance (in miles) between two zip code centroids.
The only required arguments are the two zip codes in question (See Figure 1 below).

Figure 1. ZIPCITYDISTANCE() Syntax and Required Arguments from SAS Documentation (SAS
Institute Inc., 2016)
While reviewing the documentation you will soon discover that this function also uses the
SASHELP.ZIPCODES dataset. Therefore, the zip codes you provide the function must also be in the
dataset. Otherwise you will see the following note:

NOTE: Invalid argument to function ZIPCITYDISTANCE(<ZIP CODE>,<INVALID
ZIP CODE>) at line [location].

You will also notice a missing value for the associated variable. Since this is a NOTE and not an ERROR,
these can sometimes be easy to miss. Adding a simple check of the distinct zip code values presented
against the SASHELP.ZIPCODES dataset should help to avoid inadvertent missing data.

COORDINATE DISTANCE
The complement of the ZIPCITYDISTANCE() function for using coordinates as inputs instead of zip codes
is function GEODIST(). GEODIST() calculates the distance (in miles by default) between two sets of
coordinates. It also has options for changing the units (kilometers, degrees, radians). The required
arguments are presented in Figure 2 below.

3

Figure 2. GEODIST() Syntax and Required Arguments from SAS Documentation (SAS Institute
Inc., 2016)

POTENTIAL USE CASES AND METHODS OF APPLICATION
After locating the zip code information and understanding the functions, you’ll then be left to wonder if
they can help you achieve your goals. If your goal is one of these, then the answer is yes.

CLEANING
Address information can be very dirty data. Just as the USPS determined zip codes would help reduce
the amount of sorting, so can you! (Terrall, 2013) The zip code itself can tell you some information about
the location without considering the other parts of the address:

“the five-digit ZIP number is a structured code in which the first digit identifies one of ten large
areas of the Nation, and the second digit indicates a State, a geographic portion of a heavily
populated State, or two or more less populated States. The third digit identifies a major
destination area within a State, which may be a large city post office or a major mail concentration
point (Sectional Center) in a less populated area. Five hundred fifty-three of these Sectional
Centers have been designated across the country. The final two digits indicate either a postal
delivery unit of a larger city post office, or an individual post office served from a Sectional
Center.” (U.S. Postal Service, 1963)

As such, the zip code can be used to narrow in on the valid addresses parts applicable to that zip code.
Consider the example of zip code is 54449 (Table 1) and city is Marshfield (Table 2), transposed for
visibility below. In Table 3, the SPEDIS() function is used to evaluate spelling distance between

4

Marshfield and other city names; this identifies other valid city names that could be mistaken as
misspellings or the barrier between knowing what was being misspelled.

Table 1. SASHELP.ZIPCODE Results for ZIP = 54449

ZIP 54449

X -90.187920

Y 44.612100

ZIP_CLASS
CITY Marshfield

STATE 55

STATECODE WI

STATENAME Wisconsin

COUNTY 141

COUNTYNM Wood

MSA 0

AREACODE 715

AREACODES 715

TIMEZONE Central

GMTOFFSET -6

DST Y

PONAME Marshfield

ALIAS_CITY
ALIAS_CITYN Bakerville||Lindsey||McMillan

CITY2 MARSHFIELD

STATENAME2 WISCONSIN

Table 2. SASHELP.ZIPCODE Results for City='Marshfield'

ZIP 02050 05658 54404 54449 54472 65706

X -70.736310 -72.374820 -90.168447 -90.187920 -90.175187 -92.905687

Y 42.126517 44.328420 44.667961 44.612100 44.662245 37.339115

ZIP_CLASS U U
CITY Marshfield Marshfield Marshfield Marshfield Marshfield Marshfield

STATE 25 50 55 55 55 29

STATECODE MA VT WI WI WI MO

STATENAME Massachusetts Vermont Wisconsin Wisconsin Wisconsin Missouri

COUNTY 23 23 141 141 141 225

COUNTYNM Plymouth Washington Wood Wood Wood Webster

MSA 1120 0 0 0 0 7920

AREACODE 781 802 715 715 715 417

AREACODES 781/339 802 715 715 715 417

TIMEZONE Eastern Eastern Central Central Central Central

GMTOFFSET -5 -5 -6 -6 -6 -6

5

DST Y Y Y Y Y Y

PONAME Marshfield Marshfield Marshfield Marshfield Marshfield Marshfield

ALIAS_CITY

ALIAS_CITYN

Bakerville||
Lindsey||
McMillan

CITY2 MARSHFIELD MARSHFIELD MARSHFIELD MARSHFIELD MARSHFIELD MARSHFIELD

STATENAME2 MASSACHUSETTS VERMONT WISCONSIN WISCONSIN WISCONSIN MISSOURI

Table 3. SASHELP.ZIPCODES Results for SPEDIS('Marshfield',city) le 20

ZIP CITY STATENAME

02048 Mansfield Massachusetts

02050 Marshfield Massachusetts

05658 Marshfield Vermont

16933 Mansfield Pennsylvania

30055 Mansfield Georgia

38236 Mansfield Tennessee

44901 Mansfield Ohio

44902 Mansfield Ohio

44903 Mansfield Ohio

44904 Mansfield Ohio

44905 Mansfield Ohio

44906 Mansfield Ohio

44907 Mansfield Ohio

54404 Marshfield Wisconsin

54449 Marshfield Wisconsin

54472 Marshfield Wisconsin

57460 Mansfield South Dakota

61854 Mansfield Illinois

65704 Mansfield Missouri

65706 Marshfield Missouri

71052 Mansfield Louisiana

72944 Mansfield Arkansas

76063 Mansfield Texas

98830 Mansfield Washington

Identifying Entry Errors
Using that super helpful SASHELP.ZIPCODES dataset, you should have a list of all cities, states, and
area codes for a given zip code. In Table 1, it is clear that if you live in zip code 54449, that you live in
Marshfield, WI. However, while your mailing address may reflect Marshfield’s zip code you may live in an
area that goes by a different local name: Bakerville, Lindsey, or McMillian. Still if zip code is listed as
54449 and the city name isn’t one of those 4 names, then it could be a fixable mistake (like in Figure 3.)
or a case that needs to be handled differently.

Figure 3. Example of Identified Data Error and Correction

Considering the other direction is where things get tricky. If the zip code was not listed or does not align
with what you think valid values should be, then you might want to identify all applicable zip codes for a
given city. In Table 2, there appears to be multiple matches that come back that tell us we need to
provide more information. First, there are results that appear to be out of state and can be eliminated.
Finally, it appears that two of the zip codes are marked as ZIP_CLASS = ‘U’. The field label tells us:
P=PO Box U=Unique zip used for large orgs/businesses/bldgs Blank=Standard/non-unique. Based on
that information, we land with one valid option; 54449 is for Marshfield, WI. Unfortunately, that may not
always be the case.

6

In Table 3, there is a listing of cities that are within a spelling distance (See Recommended Reading) of
45 from Marshfield. While arbitrary, 45 identifies a variety of valid city names that could be easily
confused with Marshfield. By using the zip code information we can quickly come up with this list of
potential alternates. In the case of Wisconsin, there isn’t two separately named cities that appear, but
both Massachusetts and Missouri have both a Marshfield and a Mansfield. In this case, I would be less
comfortable “fixing” information identified as mismatched. However, in the case of Marshfield, WI we can
be pretty certain 54449 is the right zip code.

Standardizing Components of Addresses
In Figure 3, the problem was that the name didn’t match because it was the wrong name, but what if
instead it was the right name, but abbreviated or had extraneous punctuation like in Figure 4? In this
case, we can use the data to select a standard spelling and presentation for the city.

Figure 4. Selecting a Standard Name

MAPPING
When it comes to mapping, zip codes are one of the most commonly utilized regions, hypothetically due
to size of region and variety of use cases. This is the case not only for the United States, but also
worldwide. As demonstrated by Hadden, SASHELP.ZIPCODES can be used in conjunction with the
GMAP and MAPIMPORT Procedures and annotation to map and highlight zip codes in a variety of ways
(Hadden, 2014).

CALCULATING
If you have address data ready for use and have moved on to using distance functions, there is a few
ways to do so.

Distance to Destination
The most basic use of the ZIPCITYDISTANCE() function allows you to calculate how close a reference
zip code is from another. For example, if you wanted to tell someone about how far away they live from
your business, you could write something like:

DIST_FROM_MFLD = ZIPCITYDISTANCE(54449,patient_zip);

In this case, DIST_FROM_MFLD would be the number of miles between the zip code centroid for 54449
and the centroid of the patient’s zip code.

Destinations within a Distance
In macro %ZipsNear produced by Richard Koopman, you can identify a list of zip codes within a certain
distance of a given zip code using SASHELP.ZIPCODES and latitude / longitude coordinates
(Koopmann, 2015). This example uses the raw Haversine formula to calculate the distances. In the
%FIND_CLOSESTCITY macro discussed and presented below, I instead use the ZIPCITYDISTANCE()
function.

Closest Destination
Let’s say you have a business that has multiple locations. In this case, a common conversation with a
customer might indicate which location is closest. In the case of potential customers, indication of the
closest location would also commonly appear on advertisements.

7

There are several ways to get to the same answer programatically, but the basic concept would be to use
each reference zip code (business location) and compare it to the static reference zip code (person
location), then take the minimum.

To find the distance of the closest zip code, you might create a statement like such:
mindistance=min(zipcitydistance(54401,zip_5),zipcitydistance(54402,zip_5),
zipcitydistance(54403, zip_5));

or use a pairwise statement in the data step, sort, and keep the first using statements like these:

dist = zipcitydistance(pat_zip,ref_zip);

proc sort; by person dist;

if first.person;

Please note that each of those would be featured in a DATA step or SORT procedure and would not be
used as is.

%FIND_CLOSESTCITY MACRO: CONCEPT APPLICATION
Consider the macro %FIND_CLOSESTCITY, defined in APPENDIX 1. The main purpose of the macro is
to compare a reference zip code to a pre-defined list of reference zip codes. It explores:

• Minimal cleaning before merging to SASHELP.ZIPCODES
• How to obtain a list of reference zip codes by providing the cities and states and using

SASHELP.ZIPCODES
• Using PROC SQL to do the pairwise distance calculations using ZIPCITYDISTANCE () function
• Applying “closest” cities to a row per person identifier input

Development of this macro stemmed from desire to provide the nearest recruitment location for a given
patient address. The study in question, All of Us® (U.S. Department of Health & Human Services (HHS),
2023), is a multi-site program that offers an in person enrollment visit and bio specimen collection. Study
inclusion and exclusion criteria defined a list of potential participants to target. Since there were “pop-up”
enrollment events in different cities and a separate set of consistent places potential enrollees could
attend, it was important to identify the closest location for each potential participant given a list of input
locations. This executable takes the minimum known information: cities available for recruitment and
patient for targeting and runs from there. The interim data sets that identify closest zip code for a given
reference zip code were often used to determine area coverage for the study, so there are options which
allow for only generation of that file. Likewise, the distance that a person is willing to travel might be
arbitrary, but knowing how far away each additional zip code was and how many persons could be
added, was often used to make operational decisions on what radius to cover with marketing and
targeted mailing campaigns. Once a radius was selected, it needed to be applied, so additional options
are present to accomplish a final patient list faster by only considering those in a given radius to begin
with. By providing options, this same macro can accomplish many tasks in a timely manner.

There are some concepts applied in this macro that go outside the topic of zip codes. For example.
“Check Steps” that provide custom error messages to be sure the process stops and gives explanations if
assumptions of the data are not met. To learn more about custom error messages, good times to do so,
and macros for executing checks, check out Offensive Programming: A Threesome of Error-Throwing
Macros from SESUG 2022 (McMullen, 2022).

CONCLUSION

8

From their origination in 1963, zip codes have helped to save time in a variety of ways. SAS provides
several resources for making zip codes helpful to you: data sets, functions, and utilization procedures.
Each of these resources can save you time and help you to accomplish data cleaning, calculation, and
mapping tasks. Further, a combination of these resources can propel you toward of variety of ends such
as finding a nearest location, locations in a given radius, mapping, or calculation of distances. Many
different papers, presentations, and macros already exist to help you achieve all of these ends. Finally,
this paper directs you to resources while providing yet another macro to help you understand the basic
concepts and apply them.

REFERENCES
Fickbohm, D. (2007). SAS PROVIDES ZIPCODES. Western Users of SAS Software (WUSS). San Francisco, CA:

LexJansen. Retrieved from
https://www.lexjansen.com/wuss/2007/CodersCorner/COD_Fickbohm_SASProvides.pdf

Hadden, L. (2014). Where in the World Are SAS/GRAPH® Maps? MidWest SAS Users Group (MWSUG)
Conference. Chicago, IL: MidWest SAS Users Group. Retrieved from
https://www.mwsug.org/proceedings/2014/DV/MWSUG-2014-DV07.pdf

Hadden, L., & Zdeb, M. (2006). A Well-Kept SAS® Secret. North East SAS Users Group (NESUG) Conference.
Philadelphia: LexJansen. Retrieved from https://www.lexjansen.com/nesug/nesug06/po/po07.pdf

Hadden, L., & Zdeb, M. (2010). ZIP Code 411: Decoding SASHELP.ZIPCODE and Other SAS® Maps Online. SAS
Global Forum. Seattle: LexJansen. Retrieved from
https://support.sas.com/resources/papers/proceedings10/219-2010.pdf

Koopmann, R. (2015, March 13). ZIPSNEAR.SAS. MN, USA: GitHub Gist. Retrieved from
https://gist.github.com/rkoopmann/0cc179f496bd026a0171

McMullen, Q. (2022). Offensive Programming: A Threesome of Error-Throwing Macros. SouthEast SAS Users Group
(SESUG) Conference. Mobile, AL: LexJansen. Retrieved from
https://www.lexjansen.com/sesug/2022/SESUG2022_Paper_187_Final_PDF.pdf

SAS Institute Inc. (2016). SAS® 9.4 Functions and CALL Routines: Reference, Fifth Edition. Cary, NC: SAS Institute
Inc.

SAS Institute Inc. (2021, March 31). SAS® 9.4 and SAS® Viya® 3.5 Programming Documentation. Retrieved from
SAS® Help Center: https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/pgmsashome/home.htm

Terrall, E. (2013, June 28). ZIP Code Introduced. This Month in Business History. Retrieved from
https://guides.loc.gov/this-month-in-business-history/july/zip-code-
introduced#:~:text=The%20ZIP%20in%20ZIP%20Code,the%20speed%20of%20mail%20delivery.

U.S. Department of Health & Human Services (HHS). (2023, September 6). National Institutes of Health . Retrieved
from All of Us Research Program: https://www.joinallofus.org/

U.S. Postal Service. (1963). Annual Report of the Postmaster General. p. 8.

ACKNOWLEDGMENTS
This paper, presentation, and macro would not have come into existence if not for the National Institutes
of Health national All of Us Research Program® (National Institutes of Health , 2023) led locally at
Marshfield Clinic Health System by Scott Hebbring, PhD. To learn more about this exciting program, visit
https://www.joinallofus.org/ .

I want to thank and acknowledge the many authors that have published on this material previously and
acknowledge Louise Hadden for being my first insight into the topic. As I began my programming, her
papers were the first to assist me.

RECOMMENDED READING
• Maps and Geocoding Files - https://support.sas.com/en/knowledge-base/maps-geocoding.html

https://www.joinallofus.org/
https://support.sas.com/en/knowledge-base/maps-geocoding.html

9

• The SPEDIS Function -
https://documentation.sas.com/doc/en/vdmmlcdc/8.1/lefunctionsref/p0vmuxh8ljfn7on164nsgvmdrc5d.
htm

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Brooke Ellen Delgoffe, M.S.
Marshfield Clinic Health System
delgoffe.brooke@marshfieldresearch.org
brooke_delgoffe@hotmail.com
https://www.linkedin.com/in/brookedelgoffe/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

All of Us and the All of Us logo are registered service marks of the U.S. Department of Health and Human
Services.

Other brand and product names are trademarks of their respective companies.

APPENDIX 1: %FIND_CLOSESTCITY MACRO FULL CODE
/**
PROGRAM : Closest City in List (Zip Code)
PROGRAMMER : Brooke Ellen Delgoffe
DATE : 03-24-2022

PURPOSE: Used to determine which city specified
is closest based on zip code of the identifier and
a given list of city options.

Example Interpretation:

Of the options Marshfield and Wisconsin Rapids
the closest city to the patient is Marshfield, based on
zip code distance of 32.3 miles between the patients zipcode of 54401
(givenin input dataset) and zipcodes of Marshfield (54402,54472,54449) and
Wisconsin Rapids (54494,54495)

WORK.ZIP_CODE_DISTANCES =
ROW_ZIP CITY_ZIP CITY miles
54401 54404 Marshfield 32.3
54401 54472 Marshfield 32.8
54401 54449 Marshfield 35.5
54401 54495 Wisconsin Rapids 39.8
54401 54494 Wisconsin Rapids 42.2

Considerations:

--Uses zipcode distance to determine "closest"
--All Zip Codes associated with a given city are
 used to determine distance to that city
--In the case of equal distance, alphabetical first is
 arbitrarily selected
--May not have a variable in the input dataset named "identifier"

https://documentation.sas.com/doc/en/vdmmlcdc/8.1/lefunctionsref/p0vmuxh8ljfn7on164nsgvmdrc5d.htm
https://documentation.sas.com/doc/en/vdmmlcdc/8.1/lefunctionsref/p0vmuxh8ljfn7on164nsgvmdrc5d.htm
https://www.linkedin.com/in/brookedelgoffe/

10

 that is not used as the identfier variable. Use a
 rename parameter on input/output dataset names to avoid this
--To run without an identifier, create a column named identifer with
 value of zero that is droped in the drop statement on the named output
(OUTDAT = CLOSEST_CITY (drop=identifier)).

Minimum Definition:

%find_closestcity(POPDAT=SAMPLE (rename=(ZIP=ZIP_5))
 ,CITY_LIST=%bquote(Marshfield-Wisconsin Rapids)
);

Full Definition:

%find_closestcity (POPDAT=INDAT
 ,OUTDAT=CLOSEST_CITY
 ,CITY_LIST=%bquote(Marshfield)
 ,IDENTIFIER=[Variable Name]
 ,ZIP_OUT=[Y,N,[Name]]
 ,STATE_LIST=%bquote(WI)
 ,CLEAN_DATASETS=[Y/N]
);

Parameters:
--
POPDAT : Input Dataset
 REQUIRED VARIABLES: IDENTIFIER, ZIP_5

CITY_LIST : Dash delimited list of cities to
 consider. Contains spaces and wrapped
 with %bquote() in most cases.
 DEFAULT: Marshfield

OUTDAT : (Optional) Name of output dataset. Can contain libname.
 DEFAULT: CLOSEST_CITY

IDENTIFIER : (Optional) Set the name of the variable which will be used
 as a distinct identifier.
 Default: MHN

ZIP_OUT : (Optional) Indicates whether a list of zipcodes
 found for the city list is generated.
 VALUES:[Y,N,[Name]] DEFAULT: N
 N: No dataset created
 Y: Yes --Datasets CLOSEST_CITIES & ZIP_CODE_DISTANCES
 are created with listing of
 zipcodes
 [Name]: Specified name is used for
 dataset containing list of
 closest zip codes used. May contain
 libname reference.

STATE_LIST : (Optional) Dash delimited list of states to
 consider. Using two-letter acronym and
 wrapped with %bquote() in most cases.
 DEFAULT: WI

11

CLEAN_DATASETS : Indicates whether interim datasets
 should be deleted.
 VALUES:[Y,N] DEFAULT: Y

ZIP_DAT_ONLY : Allows for running only the input
 city list to zip codes portion.
 VALUES: [Y,N] DEFAULT: N

W_IN_MILES : Indicates how many miles from to consider.
 Adjusts interpretation to "Closest within X Miles".
 While it will not error if decimals given the
 measurement is in integer format so integers
 are expected.
 VALUES:[Number}, A DEFAULT: A
 A: Any Number of Miles

Areas for Improvement:

-Currently considers all valid combinations of city list
and state list. In the case where not all combinations
of city and state are desired, this may cause unintended
results. (i.e. Include Marshfield, WI , but not Marshfield, IN
when both WI and IN are in the state list)

***/

/****************************/
/* Settings */
/****************************/
options minoperator mindelimiter=','; *allow for use of in() with macro
statements;

/**
* *
* Define Macro Parameters *
* *
***/

%macro find_closestcity (
POPDAT=INDAT /*Input Dataset containing: IDENTIFIER , ZIP_5*/
,OUTDAT=CLOSEST_CITY /*Output Dataset*/
,CITY_LIST=%bquote(Marshfield) /*Dash delimited list of Cities considered*/

 ,ZIP_OUT=N /*Indicates if Zipcodes for CITY_LIST are output to a dataset*/
 ,STATE_LIST=%bquote(WI) /*Dash delimited List of States(two-letter)
considered*/
 ,CLEAN_DATASETS=Y /*Indicates whether interim datasets should be deleted*/
 ,ZIP_DAT_ONLY=N /*Allows for Running Just the Input Zip Code portion*/
 ,W_IN_MILES=A /*Allows for Maximum Mileage to be set*/
 ,IDENTIFIER=MHN /*Variable Name to Use as Distinct Identifier*/

);
/****************************/
/* Set identifier */
/****************************/
*To be sure they can select any variable name, set that variable to the
same name in a copy dataset. Do not change original dataset.;

12

%if &IDENTIFIER. ne IDENTIFIER %then %do;
 data IN_DATA;
 set &POPDAT.;
 IDENTIFIER = &identifier.;
 run;
 %end;

/****************************/
/* Check Parameters */
/****************************/
*makes sure the input dataset actually has data in it and has the
 identifier variable;
proc sql noprint;
select case when (select count(*) from IN_DATA) = 0 then "ERROR: No records
in input dataset."
 when n = 2 then "NOTE: Zip_5 and &Identifier. have been
found"
 else "ERROR: A Required Field (ZIP_5) or specified
identifier (&IDENTIFIER.) have not been found. Check input dataset contains
these variables and that they are spelled correctly."
 end as CHECK_MESSAGE
 into :CHECK_MESSAGE
 from (select count(*) as n
 from SASHELP.VCOLUMN
 where MEMNAME = 'IN_DATA'
 and upcase(NAME) in('ZIP_5',"IDENTIFIER")
)
;
select compress(put(count(distinct identifier),10.),,'kdp') 'Valid
Identifiers in Input Dataset' into :IDENTIFIER_COUNT
 from IN_DATA
;
select compress(put(count(distinct zip_5),10.),,'kdp') 'Valid Zip Codes in
Input Dataset' into :ZIP_COUNT
 from IN_DATA
;quit;

%put &check_message.;
%put NOTE: There are &identifier_count. distinct identifiers in dataset
&POPDAT.;
%put NOTE: There are &zip_count. distinct values of ZIP_5 in dataset
&POPDAT.;

/****************************/
/* City Zip Codes */
/****************************/

*read over each city in the list and each state
in state list and create a row in the CITIES
dataset for each combination. Perform minimal
cleaning to be sure it can merge with the
SASHELP.ZIPCODES dataset;
data CITIES;
length CITY_RAW CITY $35.; *Use Length Defined in SASHELP.ZIPCODES;
%let n=1;
%do %while (%scan(&city_list.,&n.,'-') ne %str());

13

%let CITY=%scan(&city_list.,&n.,'-');
CITY_RAW="&CITY.";
CITY=propcase(CITY_RAW);
 %let s=1;
 %do %while (%scan(&state_list.,&s.,'-') ne %str());
 %let STATE=%scan(&state_list.,&s.,'-');
 STATE_RAW="&STATE.";
 STATECODE=upcase(STATE_RAW);
 OUTPUT;
 %let s= %eval(&s.+1);
 %end;*state list scan loop;
%let n= %eval(&n.+1);
%end;*city list scan loop;
run;
proc sort; by CITY STATECODE;

*create a copy of SASHELP.ZIPCODES (contains all zipcodes and city/state)
that is sorted by city and statecode, then merge (inner join) to
get only the ones that match between them;
proc sort data=SASHELP.ZIPCODE OUT=ZIPCODE_DAT; by city statecode;
data ZIPCODE_DAT;
merge ZIPCODE_DAT(in=z) CITIES(in=c);
by CITY STATECODE;
if z and c;
run;

*check that at least one combination of city and state is found;
title h=2 'Cities/States with Zip Codes Found';
proc sql;
select distinct CITY, STATECODE
 from ZIPCODE_DAT
;quit;
title;

*check input dataset contains 1+ IDENTIFIERS;
%if &IDENTIFIER_count. = 0 %then %do;
 %put NOTE: There were no identifiers identified in the input dataset.
Execution will stop.;
%end;
%else %if &ZIP_DAT_ONLY.=Y %then %do;
 %put NOTE: ZIP_DAT_ONLY is Yes. Execution will not continue;
%end;
%else %do;

 /****************************/
 /* Inputted Zip Codes */
 /****************************/
 *select distinct combinations of identifier and
 zip code from the input dataset;
 data ROWS_W_ZIP; IDENTIFIER=0; ZIP_5=00000; run; *initialize dataset to
avoid errors;

 proc sql;
 insert into ROWS_W_ZIP
 select distinct
 IDENTIFIER

14

 ,ZIP_5
 from WORK.IN_DATA
 where IDENTIFIER not in(.,0)
 and zip_5 not in(.,0)
 ;quit;

 data ROWS_W_ZIP;
 set ROWS_W_ZIP;
 where IDENTIFIER ne 0 and zip_5 not in(.,0); *Remove initialization
row;
 run;

 *Report and Store number of distinct identifiers found;
 proc sql;
 select count(distinct IDENTIFIER) 'Identifiers with Valid Zip Code'
into :valid_zip_cnt
 from ROWS_W_ZIP
 ;quit;

/****************************/
/* Zip Codes Found Check */
/****************************/
*check if any identifiers were found and only continue
to the identifier specific distance portion if there is at least one;
%if &valid_zip_cnt.=0 %then %do;
 %put ERROR: There were no identifiers with a valid zip code found.;
%end;
%else %do;

 /****************************/
 /* Closest City */
 /****************************/
 *create an entry for each zip code combination.
 Pull in the city from SASHELP for use in standardization.
 Calculate zipcode distance (between zipcode centroids).
 Apply limitation on distance conditionally.;

 proc sql;
 create table zip_code_distances as
 select distinct
 p.ZIP_5 as ROW_ZIP
 ,i.ZIP as CITY_ZIP
 ,i.CITY
 ,zipcitydistance(p.ZIP_5,i.ZIP) as miles
 from (select distinct ZIP_5 from ROWS_W_ZIP) p
 full join ZIPCODE_DAT i on p.ZIP_5 ne 0
 %if &W_IN_MILES. ne A %then %do;
 having miles between 0 and &W_IN_MILES.
 %end;
 order by ROW_ZIP, miles
 ;quit;

 *Restrict to Only Closest;
 data CLOSEST_CITIES;
 set ZIP_CODE_DISTANCES;
 by ROW_ZIP;

15

 if first.ROW_ZIP; *Closest City;
 run;

 /************************************/
 /* Closest City per Identifier */
 /************************************/
 *create an output data set that is everything from the original dataset
 with the new variables attached to end. Do Not Change Input Data.;

 proc sql;
 create table &OUTDAT. as
 select distinct
 i.*
 ,c.CITY as CLOSEST_CITY
 ,c.CITY_ZIP as CLOSEST_REF_ZIP
 ,c.MILES as MILES_TO_REF_ZIP
 from &POPDAT. i
 left join ROWS_W_ZIP z on i.&IDENTIFIER.=z.IDENTIFIER
 left join CLOSEST_CITIES c on z.ZIP_5=c.ROW_ZIP
 ;quit;

%if &ZIP_OUT. ne Y and &ZIP_OUT. ne N %then %do;
 *Conditionally create a named dataset containing the closest cities;
 data &ZIP_OUT.;
 set CLOSEST_CITIES;
 run;
%end; *end zip out named data loop;
%if &CLEAN_DATASETS.=Y %then %do;
 *Conditionally drop intermediate tables;
 proc datasets nolist;
 delete IN_DATA ROWS_W_ZIP CITIES ZIPCODE_DAT ;

 %if &ZIP_OUT. ne Y %then %do;
 *drop zip code distance datasets unless requested;
 delete CLOSEST_CITIES ZIP_CODE_DISTANCES;
 %end; *end zip out loop;
 run;
%end;*end clean datasets loop;

%end; *Valid Zip > 0 Check;
%end; *Parameter Check Loop;
%mend;

	Abstract
	Introduction
	Where to Find Information About Zipcodes
	Functions for Calculating Distance
	Zip Code Distance
	Coordinate Distance

	Potential Use Cases and Methods of Application
	Cleaning
	Identifying Entry Errors
	Standardizing Components of Addresses

	Mapping
	Calculating
	Distance to Destination
	Destinations within a Distance
	Closest Destination

	%FIND_CLOSESTCITY Macro: Concept Application
	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information
	APPENDIX 1: %FIND_CLOSESTCITY Macro Full Code

