

1

SESUG Paper 125-2023

Getting a Handle on All of Your SAS® 9.4 Usage

 Stephen Sloan, Accenture

ABSTRACT

SAS is popular, versatile, and easy to use, so it proliferates rapidly through an organization.

It can handle systems integration, data movement, and advanced statistics and AI, has

links to a large amount of file types (Oracle, Excel, text, and others), and has functionality

for almost every need. In addition to SAS Base, there are a large number of specialized
SAS products, some of the most popular of which are SAS STAT, SAS OR, SAS Graph, SAS

Enterprise Miner, and SAS Forecast Server. SAS EG allows for quick creation of useful

artifacts and facilitates saving the generated code for later use as part or all of another

program.

As a result, sometimes it is difficult to track all the SAS programs and artifacts being used

across an organization, economies of scale can be overlooked, and repetition and

“reinventing the wheel” sometimes take place. Programs and macros developed in one area

can be useful in other areas and they can be improved by this internal crowd-sourcing.

Understanding all the places where SAS is used is also important when upgrading a system

that makes heavy use of SAS, or when upgrading SAS itself to a new version like Viya. It

can also help an organization identify which SAS products it is using and how much use

these products are getting.

To accomplish the above, we’ve developed a set of programs to search a Unix server or a

Windows server or machine to find, catalog, and identify the SAS usage on the machine.

INTRODUCTION

SAS is a very dynamic language and is continually improving its products. Therefore there

may be PROCs, functions, and capabilities that are not currently available in SAS 9.4M6 in

early 2020 that might have become available in a later release.

The purpose of this paper is to describe a mechanism for identifying SAS programs,

classifying their structure, identifying their complexity, and compiling information about

them. If that is the desire of the organization this paper will provide a road map. If the

organization then desires to rationalize the use of the SAS software or prepare systems
upgrades or conversion to SAS Viya, the next steps would be to dig into the programs for

further analysis on an individual basis. The actual treatment of individual programs would

proceed after the steps in this paper are completed.

CREATE A CATALOG THAT CLASSIFIES THE SAS PROGRAMS AND

FUNCTIONS

First, the organization needs to decide how to classify its SAS usage. Some usage

categories might be:

• Select, sort, and total

• Move data between systems

• Generate complex reports

2

• Advanced statistics and AI

Next, the organization will need to create a catalog that classifies the SAS PROCs and

functions into the categories it has defined. I have included spread sheets at the back of

this paper that list of all the SAS 9.4 PROCs and functions and identify the SAS-identified

categories of the functions.

We then need to use the categories that the organization has defined and classify the

PROCs and functions into those categories. We also need to determine how to classify

programs that contain PROCs and functions in more than one category. It’s often useful,
although not required, to take the most complex category identified in a program and use

that to classify the program. For example, if the program contains both basic PROCs and

advanced High-Performance Function (HPF) PROCs, we should probably classify it according

to the classification assigned to the HPF PROCs.

Sorting the programs into categories will be helpful when identifying resources to implement

the conversions. The required skill sets can vary depending on the types of programs being

converted.

NOW FIND THE SAS PROCS AND FUNCTIONS THAT ARE USED

THROUGHOUT THE ORGANIZATION

Next we need to search through all the directories and sub-directories on the servers or
drives and look for SAS programs. This can be done by using SAS to parse the programs,

logs, macros, and other objects, and using Unix or Windows commands to locate the

objects. The program code in the programs or logs will be the input to the SAS programs

that we run. Through using the wide variety of text functions in SAS, the PROCs, functions,
macro calls, and references to external files and programs can be identified and placed into

categories.

The logs can be useful as a supplement to the programs because they identify the amount

of space used and the amount CPU and real time taken by the programs. If the options like

MACROGEN, MLOGIC, SYMBOLGEN, and MPRINT have been turned on the log can provide

detailed information that may be useful in tracing the program’s progress.

SAS PROGRAMS

The SAS programs will be of the form program_name.sas and the logs produced by these

programs will be of the form program_name.log.

SAS ENTERPRISE GUIDE (EG) OBJECTS

The SAS EG outputs will require some iterative programming to locate.

• Look for .EGP files.

• Unzip the .EGP files

• Go through directories under .EGP files recursively to find SAS programs and logs

SAS ENTERPRISE MINER OBJECTS

SAS Enterprise Miner programs can be found as follows:

• Look for directories containing .EMP files. When someone uses Enterprise Miner, a

file named PROJECT.EMP is produced.

• SAS programs and logs in the same directories or in subdirectories of that directory

are related to Enterprise Miner calls. They will be under subdirectories whose name

starts with EMWS, with one EMWS subdirectory for each node on the Enterprise

Miner analysis.

3

SAS MACROS

At this point, we might want to see programs or macros called by other programs in order

to get frequency of use and relative importance. We can do this by looking for %INCLUDE

commands in the programs, logs, and macros to find SAS code called by other programs,

looking for %MACRO statements to identify macros, and then looking for the programs in
which the macros are called.

• The name of the SAS program will follow the %INCLUDE statement

o %INCLUDE program_name.sas;

• The macros used can be identified as follows:

o %MACRO macro_name; identifies the macro being defined.

o %MEND; identifies the end of the macro.

o %macro_name is the call to the macro

• Also check for autocalls to macros. The autocall libraries can be identified in the

MAUTOSOURCE option in an OPTIONS statement.

If we want to find all macro executions, we can look for words in the program that start with
the % sign. However, there are also SAS commands that start with %. Therefore, we need

to exclude those commands from our search. The SAS commands and functions that start

with % are listed in the appendix. The autocall macros that start with % are not listed in

the appendix because they contain logic that might need to be examined.

EXTERNAL REFERENCES

It will be valuable to our effort to identify the external files being read, updated, or created

by the SAS programs. This will help pinpoint areas where the programs might be missed if
not modified and the organizational importance of the files being written can help set

priorities.

External databases can be identified by the following statements:

• LIBNAME statements can identify SAS data sets, Oracle tables, and other types of

data bases

• CONNECT statements can identify non-SAS data sets like Oracle, Teradata, and

Netezza tables

• FILENAME statements can identify sequential files and outputs like FTP and Email as

destinations for the sequential files

• PROC IMPORT and PROC EXPORT can be used to read and write external files like

Excel spread sheets

• INFILE and FILE can be used to read sequential files into at DATA step and to write

sequential files from a DATA step.

We should now look through the programs and logs and identify all PROCs, functions, macro
creations, macro usages, and references to external programs and files.

REFERENCES TO SAS DATA SETS

• The SET and MERGE statements can be used to bring SAS data sets into a DATA

step.

• A DATA statement, which is the beginning of the DATA step, will identify one or more

SAS data sets being created by the DATA step.

• A PROC step can create or update a SAS data set if it contains an OUT= parameter.

4

CLASSIFICATION

The final step is to use the categorizations mentioned above to classify the programs by

what categories of PROCs and functions they used, both internally and through external

references. This can be especially helpful if we want to rationalize the use of the programs

and macros by having people use the same programs to accomplish the same ends. In
these cases, we need to check the external references to make sure that we’re not

eliminating any valuable information.

Another attribute that helps reveal complexity, and perhaps repetitiveness, is the length of
the programs and macros and being used and/or called by %INCLUDE statements. Longer

programs can be parsed to see if they have pieces matching parts of other programs. The

program length can be calculated either as the number of lines in a program or the number

of words.

The size of the data sets being created can also be a classification variable if the programs

that produce or modify larger data sets are deemed to be more crucial, or more in need of

study when being replaced.

Now we can use the classifications defined by the organization to classify the PROCs and

functions in each program. Depending on the algorithm that makes the most sense for the

organization, the programs can then be classified and counts of the different types of

programs can be compiled. Also, since the PROCs are identified by the SAS product, usage

of the individual SAS products can be tracked.

CONCLUSION

When an organization has a multitude of SAS users and programmers who use SAS in a

variety of processes, it can be difficult to gain an overall understanding of how SAS is used

throughout the organization. By using the scripting language on the servers containing SAS
implementations, we can get a high-level view of the SAS usage and drill down where

necessary to find individual sections that might be relevant to our analysis. We can also

find overlapping uses to drive efficiencies, identify infrequently used SAS objects, and make

creative solutions available more widely within an organization.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Stephen B. Sloan

Accenture

Data Science Senior Principal
Stephen.b.sloan@accenture.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX

mailto:Stephen.b.sloan@accenture.com

5

SAS PROCs .xlsx SAS Functions.xlsx

WINDOWS FILE EXTENSIONS AND THEIR ASSOCIATED MEMBER TYPES

http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#introsasfiles.htm

V6 File

Extension

V7 and Beyond File

Extensions

Short

Extensions

SAS Member

Type Description

.sas .sas none none SAS program

.ss2 .sas7bpgm ss7 Program stored program (DATA step)

.cfg (Version 8 and

beyond)

none none configuration file

.lst .lst none none output file

.log .log none none log file

none .sas7baud st7 Audit audit file

.sd2 .sas7bdat sd7 Data data set

.sv2 .sas7bvew sv7 View data set view

.si2 .sas7bndx si7 Index data set index. Indexes are stored as

separate files but are treated by SAS

as integral parts of the SAS data file.

.sc2 .sas7bcat sc7 Catalog SAS catalog

.sa2 .sas7bacs sa7 Access access descriptor file

.sf2 .sas7bfdb sf7 FDB consolidation database file

.sm2 .sas7bmdb sm7 MDDB multi-dimensional database file

none .sas7bdmd s7m DMDB data mining database file

none .sas7bitm sr7 Itemstor item store file

.su2 .sas7butl su7 Utility utility file

.sp2 .sas7bput sp7 PUtility permanent utility

.stx None none none transport file

none .sas7bbak none none back up file

http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#introsasfiles.htm

6

COMMANDS BEGINNING WITH % THAT ARE NOT SAS MACRO CALLS
%*

%’

%”
%(

%)

%%
%/

%\

%ABEND %IF %OPEN %SYMLOCAL

%ABORT %INC %PAUSE %SYSCALL

%ACT %INCLUDE %PUT %SYSEVALF

%ACTIVATE %INDEX %QKCMPRES %SYSEXEC

%BQUOTE %INFILE %QKLEFT %SYSFUNC

%BY %INPUT %QKSCAN %SYSGET

%CLEAR %KCMPRES %QKSUBSTR %SYSLPUT

%CLOSE %KINDEX %QKTRIM %SYSMACDELETE

%CMS %KLEFT %QKUPCASE %SYSMACEXEC

%COMANDR %KLENGTH %QSCAN %SYSMACEXIST

%COPY %KSCAN %QSUBSTR %SYSMEXECDEPTH

%DEACT %KSUBSTR %QSYSFUNC %SYSMEXECNAME

%DEL %KTRIM %QUOTE %SYSPROD

%DELETE %KUPCASE %QUPCASE %SYSRPUT

%DISPLAY %LENGTH %RESOLVE %THEN

%DMIDSPLY %LET %RETURN %TO

%DMISPLIT %LIST %RUN %TSO

%DO %LISTM %SAVE %UNQUOTE

%EDIT %LOCAL %SCAN %UNSTR

%ELSE %MACRO %STOP %UNTIL

%END %MEND %STR %UPCASE

%EVAL %METASYM %SUBSTR %WHILE

%FILE %NRBQUOTE %SUPERQ %WINDOW

%GLOBAL %NRQUOTE %SYMDEL

%GO %NRSTR %SYMEXIST

%GOTO %ON %SYMGLOBL

