
1

SESUG 2023 Paper 226

For Clinical Trials: A Faster and Smoother Approach to Create your SDTM and
ADAM Define Specifications for Define.xml with SAS®

Star Nze, M.S.

ABSTRACT

After final TLFs have been sent to the Sponsor, it’s time for SAS programmers to create the SDTM and ADAM

Define specs for the Define.xml file. Define spec creation can be a tedious task at times, especially with studies that

have many different domains that were used for data analysis. Instead of referencing a previous study’s define

specs and manually entering data repetitively, we will explore a more programmatic way of completing the specs

to simplify the process and help speed up task time for end-of-study FDA submission requirements. The use of

Excel and SAS in tandem to pull annotations from the Case Report Form PDF document will be pivotal in aiding to

streamline the Define specification process. The resulting excel file and SAS program will be transferable between

studies with only minor updates being needed in the file and program for study-to-study usage.

INTRODUCTION

When clinical trials are conducted, clinical data is collected and analyzed using CDISC data standards. The purpose

of CDISC (Clinical Data Interchange Standards Consortium) is to allow for effective global standardization and

harmonization of clinical trial data interpretability across healthcare systems.

The following is an overview of the clinical trial data collection and analysis process:

• CDASH (Clinical Data Acquisition Standards Harmonization) standardizes the collection of clinical data

• SDTM (Study Data Tabulation Model) standardizes the organization and formatting of clinical data

• ADAM (Analysis Data Model) standardizes the performance of statistical analyses and traceability of

results from SDTM datasets

• SDTM IG/ADAM IG (Implementation Guides-IG) are used to explain specific instances of clinical data

assignment and use-cases for their respective models

• SDTM CT/ADAM CT (Controlled Terminology-CT) are pre-specified values that are used in CDISC-defined

and CDISC-compliant datasets for reassigning and standardizing purposes and is required for datasets that

are to be submitted to the FDA for their respective models

• aCRF (Annotated CRF) a form that is filled out by the study site that collects patient data during a clinical

trial study. When annotated, the information in the CRF is mapped to codelists located in the SDTM CT

Document

What is Define.xml?

Define.xml (Case Report Tabulation Data Definition Specification document) is a metadata document that explains

and itemizes contents in the datasets that were collected during the process of a clinical trial. It helps the viewer

understand the source of origination for the variables used in the SDTM datasets and how variables could relate to

one another. This document is usually expected by the FDA to accompany file packages that are sent to them for

study submissions. The Define-XML Specification document 2.1 version that we will be referencing in this paper is

located on the CDISC website. The link to this document is listed in the References section of this paper.

https://www.cdisc.org/standards/foundational/cdash
https://www.cdisc.org/standards/foundational/sdtm
https://www.cdisc.org/standards/foundational/adam
https://www.cdisc.org/standards/foundational/adam

2

What are Define Specifications?

Define Specifications is an excel file that is to be completed prior to Define.xml creation. This file is created after

the export files have been verified for CDISC IG and CT implementation accuracy with a data standard validator

system and it is directly used for the final Define.xml document.

Pinnacle 21® Community will be used as the data standard compliance validator in this paper for references to

outputs and file structures. It is not imperative that any one validator be used, but depending on the validator,

excel tab names may vary. Nonetheless, equivalent tab names containing similar information should be present in

the resulting file irrespective of the validation system used.

The purpose of this paper is to provide a foundation in which to streamline the Define Specifications creation

process. Due to the repetitive nature of the task, it could be possible to create a program that will allow for some

of the more time-consuming tasks of this file to be completed in minimal time. While the completion of the

Specifications Document will not be autonomous without any intervention, if it is possible by any measurable

amount to increase productivity and decrease task time, it is only then that one will have more time to build upon

current foundations for increased future efficiency. Because SDTMs are the foundation to ADAMs and our goal is

to take an introductory approach in the explanation of this process, we will be solely focusing on SDTM

foundations, however, the process for ADAM Define Specifications will be identical to what is discussed

throughout this paper. In some cases, the results used in the SDTM Specifications document can be used directly in

the ADAM Specifications document, allowing for even more efficiency and faster completion of the document(s).

A DEEP DIVE INTO THE DEFNE SPECIFICATIONS DOCUMENT

In this paper, we will be referencing The CDISCPILOT01 Study with the datasets and study information available on

the CDISC Pilot Project GitHub page (https://github.com/cdisc-org/sdtm-adam-pilot-project). A subset of the

available datasets for this study will be used for illustrative purposes. A synopsis of the study is shown below.

Figure 1: CDISCPILOT01 Study Synopsis

https://www.pinnacle21.com/projects/installing-opencdisc-community
https://github.com/cdisc-org/sdtm-adam-pilot-project

3

We will begin by assuming that there are no errors in the provided SDTM datasets which should be checked and

resolved using a validator before proceeding. Next, using a validator, generate the SDTM Define Specifications

excel file with the validated SDTM XPORT (.XPT) files. In the resulting excel file, you will find nine excel sheets

(Define, Datasets, Variables, ValueLevel, Codelists, Dictionaries, Methods, Comments, Documents).

An overview of the contents of an SDTM Define Specifications Excel File:

• Define – a general overview of the clinical study and specifies which IG was used to analyze the study

• Datasets – a general overview of each of the SDTM datasets that were created for the study

• Variables – a detailed list of each variable contained within each SDTM dataset and its attributes

• ValueLevel – detailed list about each generated finding or result variable in each SDTM dataset

• Codelists – detailed list of all variables generated in the SDTM datasets that have an associated codelist in

the Controlled Terminology document

• Dictionaries – itemizes any dictionaries used in the study for data collection and analysis

• Methods – itemizes any methods of numerical sorting or computations used throughout the study for

data analysis purposes

• Comments – for any further comments to explain SDTM variables

• Documents – any .PDF documents that are to be included as part of the submission package

Of the above listed tabs, the Variables, ValueLevel, and Codelists excel sheets are measurably the most time-

consuming to complete. Since all three excel sheets can be completed in a similar manner once the first instance of

the program is created, we will focus on the Variables excel sheet. The Variables excel sheet can be considered

foundational for which all other sheets in the document will be based upon. We will be able to integrate the

Variables excel sheet into a SAS program without too much difficulty and focusing on just this one tab will allow for

easier comprehension of the program creation process. After the creation of the Variables portion of the SAS

program and excel sheet output, one will have the freedom to then be creative in how to further implement code

for the completion of the rest of the specification file.

Figure 2: CDISCPILOT01 SDTM Define Specifications document - Define Tab

4

SDTM DEFINE SPECIFICATIONS SAS PROGRAM

Step 1 – IMPORT FILES

To create this SAS program, ensure that you are using an SAS environment that is either up-to-date or will be

compatible. In this paper, SAS Enterprise Guide 7.1 will be used. The first step in being able to create the SDTM

Define Specifications SAS program is importing the excel sheets that are associated with each tab that we would

like to work with as well as importing the SDTM CT and the SDTM IG files. For the SDTM CT we will be using the

2022-06-24 version and for the SDTM IG we will use the 3.3 version. The links to these documents are listed in the

References section of this paper. Both have corresponding .XLSX files and these files can be downloaded from the

CDISC library (https://library.cdisc.org/browser). To do this import, we will use the SAS XLSX engine. An example of

how to import an excel sheet from an excel workbook using the XLSX engine is shown. Repeat this step for all the

excel documents/files you would like to be imported into SAS.

/*Import an Excel Sheet into SAS*/

proc import datafile="\\source_path\source_folder\filename.xlsx" /*location of file to import*/

 dbms=xlsx /*xlsx engine selected*/

 out=work.sas_dataset_name /*assigns name of the output folder and new SAS dataset name*/

 replace;

 sheet=excel_sheet_name; /*the specific sheet name from the excel file*/

 getnames=yes; /*assigns first record as the column names*/

run;

We will import the Variables excel sheet from the SDTM Define Specifications Document, the SDTM CT, and the

SDTM IG files into SAS.

For the Variables dataset, there are variables that were already populated by the dataset validator system from

the imported datasets. We can use this pre-filled data to help us complete the rest of the Variables dataset. When

completed, we will then export the completed dataset as an excel file and copy-paste the data into the original

SDTM Define Specifications excel file. This will be the same step for each final dataset that is completed for each

corresponding tab or excel sheet in the excel file. To make the explanation of the process easier to follow, we will

be using only a subset of all the available sample datasets for this study in this paper. The remaining available

datasets populated in the file and those omitted for ease of viewing will all follow the same principles. The

following datasets shown are the subset of datasets that will be used. A portion of the current entries in the

Variables excel sheet is also shown below.

Figure 3: CDISCPILOT01 SDTM Define Specifications document – Datasets Tab

5

Figure 3.1: CDISC SDTM Implementation Guide v3.3 .XLSX file

Figure 3.2: CDISC SDTM Controlled Terminology, 2022-06-24 .XLSX file

6

After importing the necessary files into SAS as newly created datasets, we will retrieve and import the aCRF

information for this study. A page of the clinical report form (CRF) with annotations for our example study is

shown.

An efficient way to import the aCRF data is to first download a metadata document from a pdf viewing program

that includes annotations and page numbers of these annotations in the file. If using Adobe Acrobat then the file

will be saved as an .FDF file. Open notepad and drag the .FDF file into notepad. Next, open the SDTM CT excel file

and create a new tab called Pages. Copy what is in the notepad window and paste it into the SDTM CT Pages tab.

Finally, save the SDTM CT file. We can now import the Pages tab into SAS to create a Pages dataset.

Figure 4: CDISCPILOT01 SDTM Define Specifications document – Variables Tab (Note: This will be the main dataset)

Figure 5: CDISCPILOT01 Annotated Clinical Report Form (aCRF)

7

/*Importing Variables Tab*/

proc import datafile="\\source_path\source_folder\cdiscpilot01 study\SDTM Define

Specifications.xlsx"

 dbms=xlsx

 out=work.variables

 replace;

 sheet=Variables;

 getnames=yes;

run;

/*Importing SDTMCT*/

proc import datafile="\\source_path\source_folder\cdiscpilot01 study\sdtmct_20220624.xlsx"

 dbms=xlsx

 out=work.sdtmct

 replace;

 sheet=Terminology;

 getnames=yes;

run;

/*Importing SDTMIG*/

proc import datafile="\\source_path\source_folder\cdiscpilot01 study\SDTMIG_v3.3.xlsx"

 dbms=xlsx

 out=work.sdtmig

 replace;

 sheet=sdtmigv3_3;

 getnames=yes;

run;

/*Importing aCRF Page Numbers*/

proc import datafile="\\source_path\source_folder\cdiscpilot01 study\sdtmct_20220624.xlsx"

 dbms=xlsx

 out=work.pages

 replace;

 sheet=Pages;

 getnames=no;

run;

Figure 6: Imported aCRF into SDTM CT Excel file – Pages Tab

8

Step 2 – PREEMPTIVE DATA PRESERVATION

To preserve the order of the column names found in the Variables excel sheet from the SDTM Define Specifications

document for our final programmed SAS dataset(s), we will create an ATTRIB macro called “variable_order”, this

macro that will be called later in the program. To also preserve the original order of the imported data from the

SDTM Define Specifications document, in a new dataset called Variables1, we will create an ascending number

variable unique to each row of the dataset called “new_ord”.

/*Specifying the order of the column names in the Variables Tab found in the SDTM

Specifications Excel File*/

%macro variable_order;

attrib

Order label='var1'

Dataset label='var2'

Variable label='var3'

Label label='var4'

'Data Type'n label='var5'

Length label='var6'

'Significant Digits'n label='var7'

Format label='var8'

Mandatory label='var9'

'Assigned Value'n label='var10'

Codelist label='var11'

Common label='var12'

Origin label='var13'

Source label='var14'

Pages label='var15'

Method label='var16'

Predecessor label='var17'

Role label='var18'

'Has No Data'n label='var19'

Comment label='var20'

'Developer Notes'n label='var21'

;

%mend variable_order;

/*Preserving the inital order of the rows from the Excel File by creating an ascending

order variable for up to N total rows*/

data variables1;

 set variables;

 new_ord=_n_;

run;

Step 3 – CREATION OF COLUMN-VARIABLES

There will be six variables that will be created for the excel file in this program: “Pages”, “Codelist”, “Format”,

“Method”, “Origin”, and “Source”. Please note that not all variables shown in the SDTM Define Specifications

document will need to be completed. Completion of variables depends on the version of resources used and the

SDTM variable definition procedures.

9

PAGES

To create the “Pages” variable, we will have to parse the dataset to extract annotations and the pages those

annotations are on. Any annotation and page number replications should be filtered out. Data formatting and

cleaning to ensure uniformity for all the entries may be necessary. Perform data manipulation, either by

transposing or by use of macros, to create a single column of all SDTM variable names and a new column for each

unique page number for each variable name. Next, create a macro or use data step programming, to iterate

through all the available columns for each page number entry. This macro will result in one concatenated space-

delimited list variable containing all the page numbers. We will then clean up the dataset and fix naming

conventions for the finalized “Pages” variable. Merge the resulting Pages1 dataset onto the Variables1 dataset, we

will call this new dataset UPDATED_VARS dataset throughout the paper. Some of the intermediary datasets, the

final resulting dataset, and the code for this portion are shown.

Figure 7: Parsing dataset for data extraction – Pages column Figure 8: Extracted annotation variables and page
numbers – Pages column

10

Figure 9: Dataset prior to use of the iteration macro – Pages column

Figure 10: Concatenated page numbers and annotation variables – Pages column

11

/*Formatting pages dataset to extract the variable names and the associated

page numbers*/

data pages1;

 set pages(rename=(A=var1));

 if findw(var1,'Contents') ne 0;

 if findw(var1,'Not Entered In Database') = 0;

 var2=var1;

 vars=strip(scan(scan(substr(var2, index(var2,

'Contents(')),2,'(''þÿ'),1,')'']''when''='));

 vars=tranwrd(vars,'\r','');

 pgs=input(strip(scan(scan(substr(var2, index(var2, 'Page')),1,'/'),2,'

')),10.);

run;

proc sort nodupkey data=pages1;

 by vars pgs ;

run;

/*macro to iterate through each list item and create a new column and stack

as new dataset*/

%macro scanvar;

%do i=1 %to 8;

data pages1x_&i;

 set pages1_1;

 vars=scan(varsx,&i,',');output;

 drop varsx;

 %end;

run;

data pages1_2;

 set pages1x_:;

 where vars ne '';

run;

proc sort data=pages1_2;

by pgs vars;

run;

%mend scanvar;

%scanvar;

12

/*transposing dataset to stack page numbers horizontally*/

proc transpose data=pages3 out=pages3_1;

 by vars;

 var pgs;

run;

/*macro to combine all page numbers per variable delimited by a space*/

%macro stackpgs;

data pages3_2;

 set pages3_1;

 pgs=strip(col1)||' '||

 %do i=2 %to 40-1;

 strip(col&i)||' '||

 %end;

 strip(col40);

run;

%mend stackpgs;

%stackpgs;

/*final pages result*/

data pages3_3;

 length pages1 variable $150.;

 set pages3_2;

 variable=upcase(vars);

 pages1=tranwrd(pgs,'.','');

 keep pages1 variable;

run;

/*adding the pages to the imported Variables dataset*/

data pages_final;

 length pages1 variable $150.;

 merge variables1(in=a) pages3_3;

 by variable;

 if a;

 drop pages;

 rename pages1=pages;

run;

13

CODELIST AND FORMAT

To create the “Codelist” and “Format” variables, we will create a new dataset from the sdtmig dataset called

sdtmig1 and create new temp variables “codelistx” and “formatx” keeping only where entries are non-missing.

Next, remove duplicates and merge this new dataset onto the UPDATED_VARS dataset. We will then create a new

dataset from the sdtmct dataset called sdtmct1. We will assign new variables “codelistx” and “codelist_name”.

Next, remove duplicates and merge this new dataset onto the UPDATED_VARS dataset by “codelistx”. We will

then clean up the dataset and fix naming conventions for the finalized “Codelist” and “Format” variables. Some of

the intermediary datasets, the final resulting dataset, and the code for this portion are shown.

Figure 11: SDTM IG dataset with new assigned
variables – Codelist and Format columns

Figure 12: SDTM IG dataset merged with main dataset – Codelist and Format columns

14

Figure 13: SDTM CT dataset with new assigned
variables – Codelist and Format columns

Figure 14: SDTM CT dataset merged with main dataset – Codelist and Format
columns

15

/*renaming a variable to merge*/

data sdtmig1;

 set sdtmig;

 variable=strip('Variable Name'n);

 codelistx=scan(strip('CDISC CT Codelist Code(s)'n),1,';');

 formatx=strip('Described Value Domain(s)'n);

 where 'CDISC CT Codelist Code(s)'n ne '' or 'Described Value

Domain(s)'n ne '';

 keep variable codelistx formatx;

run;

proc sort data=sdtmig1 nodupkey;

 by variable codelistx formatx;

run;

/*merging sdtmig data onto resulting new Variable dataset with included pages

column*/

data merged_pg_ig;

 merge pages_final(in=a) sdtmig1;

 by variable;

 if a;

run;

proc sort data=merged_pg_ig;

 by codelistx;

run;

/*assigning variables for data manipulation*/

data sdtmct1;

 set sdtmct;

 codelistx=strip(code);

 codelist_name=strip('CDISC Submission Value'n);

 keep codelistx codelist_name;

run;

proc sort data=sdtmct1 nodupkey;

 by codelistx;

run;

/*merging sdtmct data onto resulting new current Variable dataset with added

IG data*/

data merged_pg_ig_ct;

 length variable $150.;

 merge merged_pg_ig(in=a) sdtmct1;

 by codelistx;

 if a;

run;

/*completion of adding Format and Codelist Variables*/

data merged_pg_ig_ct1;

 set merged_pg_ig_ct;

16

 codelist_name1=codelist_name;

 formatx1=formatx;

 if formatx='MedDRA' then codelist_name1=formatx;

 if formatx='MedDRA' then formatx1='';

 drop codelist format codelist_name formatx codelistx;

 rename codelist_name1=codelist formatx1=format;

run;

METHOD, ORIGIN, AND SOURCE

To create the “Method”, “Origin”, and “Source” variables, we will create a new dataset from the resulting

UPDATED_VARS dataset from the previous section. We will reference the Define-XML Specification document that

was introduced earlier in this paper for the assignment rules of the variables depending on the entries in the

related columns. An excerpt for the assignment rules from the Define-XML Specification document is shown.

Figure 15: Guide for Origin-column assignment –
Method, Origin, and Source columns

(CDISC Define-XML Specification v2.1 pg. 30)

Figure 16: Guide for Source-column assignment –
Method, Origin, and Source columns

(CDISC Define-XML Specification v2.1 pg. 31)

17

For the “Method” column: we will equate the “Variable” column to the “Method” column for any variable that was

computed algorithmically. SDTM variables such as age, sequences, and study days fall into this category since they

were computed within the SDTM programs.

For the “Origin” column: we will assign either Collected, Derived, Protocol, or Assigned to the “Origin” column

depending on the origination case of the variable. We can use variable-specific cases to increase efficiency by

assigning entries based on which variables are missing/non-missing, and indexing columns to check for certain

strings and words.

For the “Source” column: we will assign either Investigator, Sponsor, or Vendor to the “Source” column depending

on the specified origination case of the variable and who the data was collected by. We can use variable-specific

cases to increase efficiency by assigning entries based on the “Origin” column assignment, which variables are

missing/non-missing, and indexing columns to check for certain strings and words.

The final resulting dataset and the code for this portion are shown.

Figure 17: Completion of all column-variable updates and assignments needed for the final output

18

/*Now defining Method, Origin, and Source Variables*/

data merged_define;

 length method1 origin1 source1 $100.;

 set merged_pg_ig_ct1;

/*defining Method column -- any variable that was computed or derived by a

formula across all or within any SDTM(S) by an algorithm*/

 if (index(variable,'SEQ'))ne 0 then method1=variable;

 if (index(variable,'AGE'))ne 0 then method1=variable;

 if (index(variable,'USUBJID'))ne 0 then method1=variable;

 if (index(variable,'DY'))ne 0 then method1=variable;

/*defining Origin column -- describes how the variable originated*/

 if pages ne '' and format='' then origin1='Collected';

 if format ne '' or method ne '' then origin1='Derived';

 if (index(variable,'STUDYID'))ne 0 then origin1='Protocol';

 if (index(codelist,'MedDRA'))ne 0 then origin1='Assigned';

 if origin1='' then origin1='Assigned';

/*defining Source column -- indicates the deciding entity for the assignment

of the origin*/

 if pages ne '' and format='' and origin1='Collected' then

source1='Investigator';

 if format ne '' or method ne '' and origin1='Derived' then

source1='Sponsor';

 if (index(variable,'STUDYID'))ne 0 and origin1='Protocol' then

source1='Sponsor';

 if (index(codelist,'MedDRA'))ne 0 and origin1='Assigned' then

source1='Vendor';

 if origin1='Assigned' and (index(codelist,'MedDRA')) = 0 then

source1='Sponsor';

 drop method origin source;

 rename method1=method origin1=origin source1=source;

run;

Step 4 – THE FINALE

PRESERVING THE ORDER AFTER COMPLETION

To arrange the final dataset in the original order (both rows and columns) of the SDTM Define Specifications

document, we refer to a couple of items created when we first started making this program. First, to get the

dataset in the correct row-order, we will sort the final UPDATED_VARS dataset by the “new_ord” variable.

Secondly, to get the UPDATED_VARS dataset in the correct column-order, we will call the ATTRIB macro. The final

dataset name for this program section is called VARIABLES_TAB.

The final resulting dataset and the code for this portion are shown.

19

/*Order by original assigned order of variables from imported file*/

proc sort data=merged_define;

 by new_ord;

run;

/**/

/** FINAL VARIABLES TAB FOR EXCEL FILE **/

/**/

data Variables_Tab;

 %variable_order; /*keeps the same order of variable column names found in the

define document*/

 set merged_define;

run;

Figure 18: Result after using the ordering variable and calling the ATTRIB macro

20

EXPORTING THE DATASET

To export the VARIABLES_TAB dataset from SAS into Excel, ensure the dataset is open, then click on “Send To” and
choose “Microsoft Excel”. Afterwards, you should see an excel file pop-up called Book 1 and an excel sheet called
Sheet 1. This will be the output that should be copied into the SDTM Define Specifications Variables excel sheet.
Since SAS Enterprise Guide 7.1 is used for this example, if using a different SAS environment, the export process
may slightly differ. The resulting excel file is shown.

Figure 19: Exporting the dataset into an Excel file

Figure 20: The SAS dataset exported as an Excel file

21

The before and after completion of the SDTM Define Specifications document Variables excel sheet is shown.

Figure 21: Before the completion of the SDTM Define Specifications document

Figure 22: After the completion of the SDTM Define Specifications document

22

CONCLUSION

Completing SDTM and ADAM Define Specifications is not as tedious as it may seem. SAS and Excel are very useful

tools that can help in many ways to expedite and shorten task times. While this paper was only focused on the

completion of the Variables excel sheet in the SDTM Define Specifications document, the discussion and

presentation in this paper is translatable to all other instances of Define Specification creation. Such instances are

inclusive of all other tabs located in the SDTM Define Specifications document as well as all tabs located in the

ADAM Define Specifications document. Following the steps outlined, one can apply the same principles to create a

complete program that outputs datasets for all tabs in the SDTM Define Specifications document. One can then

copy the corresponding columns from the output excel sheets into the Specifications document.

While any program created for completing Define Specifications is a useful and time-saving tool, it is always

important to look over your outputs to ensure that correct rules and procedures are followed. If for any reason

there is an issue that is discovered after the creation of the SAS program or after completing the Define

Specification document, changes can either be made directly in the Define Specifications excel file, or in the Define

Specifications SAS program. After a SAS code change/update in the program, another final SAS dataset and excel

output sheet should be created. A well-organized and well-documented general-purpose SDTM and ADAM

program made for Define Specifications creation and completion can be used for future clinical trial study

specification documents, however, one should generally expect to modify variables and conditions in the program

to suite the study. Nonetheless, the overall functional aspect of the SAS program should still be applicable.

23

APPENDIX: FULL SAS CODE PROGRAM

/**/

/**** SDTM Define Specifications - SAS Code for "Variables" Tab Completion ****/

/**** Written By: Star Nze for SESUG 2023

****/

/**/

/*Importing Variables Tab*/

proc import datafile="\\source_path\source_folder\cdiscpilot01 study\SDTM Define

Specifications.xlsx"

 dbms=xlsx

 out=work.variables

 replace;

 sheet=Variables;

 getnames=yes;

run;

/*Importing SDTMCT*/

proc import datafile="\\source_path\source_folder\cdiscpilot01

study\sdtmct_20220624.xlsx"

 dbms=xlsx

 out=work.sdtmct

 replace;

 sheet=Terminology;

 getnames=yes;

run;

/*Importing SDTMIG*/

proc import datafile="\\source_path\source_folder\cdiscpilot01 study\SDTMIG_v3.3.xlsx"

 dbms=xlsx

 out=work.sdtmig

 replace;

 sheet=sdtmigv3_3;

 getnames=yes;

run;

/*Importing aCRF Page Numbers*/

proc import datafile="\\source_path\source_folder\cdiscpilot01

study\sdtmct_20220624.xlsx"

 dbms=xlsx

 out=work.pages

 replace;

 sheet=Pages;

 getnames=no;

run;

/*START OF VARIABLES PROGRAM*/

/*Specifying the order of the column names in the Variables Tab found in the SDTM

Specifications Excel File*/

%macro variable_order;

attrib

Order label='var1'

Dataset label='var2'

Variable label='var3'

Label label='var4'

'Data Type'n label='var5'

24

Length label='var6'

'Significant Digits'n label='var7'

Format label='var8'

Mandatory label='var9'

'Assigned Value'n label='var10'

Codelist label='var11'

Common label='var12'

Origin label='var13'

Source label='var14'

Pages label='var15'

Method label='var16'

Predecessor label='var17'

Role label='var18'

'Has No Data'n label='var19'

Comment label='var20'

'Developer Notes'n label='var21'

;

%mend variable_order;

/*Preserving the inital order of the rows from the Excel File by creating an ascending

order variable for up to N total rows*/

data variables1;

 set variables;

 new_ord=_n_;

run;

/*Formatting pages dataset to extract the variable names and the associated page

numbers*/

data pages1;

 set pages(rename=(A=var1));

 if findw(var1,'Contents') ne 0;

 if findw(var1,'Not Entered In Database') = 0;

 var2=var1;

 vars=strip(scan(scan(substr(var2, index(var2,

'Contents(')),2,'(''þÿ'),1,')'']''when''='));

 vars=tranwrd(vars,'\r','');

 pgs=input(strip(scan(scan(substr(var2, index(var2, 'Page')),1,'/'),2,'

')),10.);

run;

proc sort nodupkey data=pages1;

 by vars pgs ;

run;

/*subsetting for variables having -- prefixes*/;

data pages1_1;

 set pages1;

 where substr(vars,1,2)="--";

 varsx=scan(vars,2,'[');

 keep pgs varsx;

run;

25

/*subsetting for all other variables without -- prefix*/;

data pages2_1;

 set pages1;

 where substr(vars,1,2) ne "--";

 keep pgs vars;

run;

/*macro to iterate through each list item and create a new column and stack as new

dataset*/

%macro scanvar;

%do i=1 %to 8;

data pages1x_&i;

 set pages1_1;

 vars=scan(varsx,&i,',');output;

 drop varsx;

 %end;

run;

data pages1_2;

 set pages1x_:;

 where vars ne '';

run;

proc sort data=pages1_2;

 by pgs vars;

run;

%mend scanvar;

%scanvar;

/*more page data manipulation*/

data pages3;

 set pages1_2 pages2_1;

 vars=strip(vars);

 if vars='M H S T D T C' then vars='MHSTDTC';

run;

proc sort data=pages3;

 by vars pgs;

run;

/*transposing dataset to stack page numbers horizontally*/

proc transpose data=pages3 out=pages3_1;

 by vars;

 var pgs;

run;

/*macro to combine all page numbers per variable delimited by a space*/

%macro stackpgs;

data pages3_2;

 set pages3_1;

26

 pgs=strip(col1)||' '||

 %do i=2 %to 40-1;

 strip(col&i)||' '||

 %end;

 strip(col40);

run;

%mend stackpgs;

%stackpgs;

/*final pages result*/

data pages3_3;

 length pages1 variable $150.;

 set pages3_2;

 variable=upcase(vars);

 pages1=tranwrd(pgs,'.','');

 keep pages1 variable;

run;

proc sort data=pages3_3;

 by variable;

run;

data variables1;

 length variable $150.;

 set variables1;

 if dataset='SUPPQS' and variable='QVAL' then

variable=strip(dataset)||'.'||strip(variable);

run;

proc sort data=variables1;

 by variable;

run;

/*adding the pages to the imported Variables dataset*/

data pages_final;

 length pages1 variable $150.;

 merge variables1(in=a) pages3_3;

 by variable;

 if a;

 drop pages;

 rename pages1=pages;

run;

proc sort data=pages_final;

 by variable;

run;

/*renaming a variable to merge*/

data sdtmig1;

 set sdtmig;

 variable=strip('Variable Name'n);

 codelistx=scan(strip('CDISC CT Codelist Code(s)'n),1,';');

 formatx=strip('Described Value Domain(s)'n);

27

 where 'CDISC CT Codelist Code(s)'n ne '' or 'Described Value Domain(s)'n ne '';

 keep variable codelistx formatx;

run;

proc sort data=sdtmig1 nodupkey;

 by variable codelistx formatx;

run;

/*merging sdtmig data onto resulting new Variable dataset with included pages column*/

data merged_pg_ig;

 merge pages_final(in=a) sdtmig1;

 by variable;

 if a;

run;

proc sort data=merged_pg_ig;

 by codelistx;

run;

/*assigning variables for data manipulation*/

data sdtmct1;

 set sdtmct;

 codelistx=strip(code);

 codelist_name=strip('CDISC Submission Value'n);

 keep codelistx codelist_name;

run;

proc sort data=sdtmct1 nodupkey;

 by codelistx;

run;

/*merging sdtmct data onto resulting new current Variable dataset with added IG data*/

data merged_pg_ig_ct;

 length variable $150.;

 merge merged_pg_ig(in=a) sdtmct1;

 by codelistx;

 if a;

run;

/*completion of adding Format and Codelist Variables*/

data merged_pg_ig_ct1;

 set merged_pg_ig_ct;

 codelist_name1=codelist_name;

 formatx1=formatx;

 if formatx='MedDRA' then codelist_name1=formatx;

 if formatx='MedDRA' then formatx1='';

 drop codelist format codelist_name formatx codelistx;

 rename codelist_name1=codelist formatx1=format;

run;

/*Now defining Method, Origin, and Source Variables*/

data merged_define;

 length method1 origin1 source1 $100.;

 set merged_pg_ig_ct1;

28

/*defining Method column -- any variable that was computed or derived by a formula

across all or within any SDTM(S) by an algorithm*/

 if (index(variable,'SEQ'))ne 0 then method1=variable;

 if (index(variable,'AGE'))ne 0 then method1=variable;

 if (index(variable,'USUBJID'))ne 0 then method1=variable;

 if (index(variable,'DY'))ne 0 then method1=variable;

/*defining Origin column -- describes how the variable originated*/

 if pages ne '' and format='' then origin1='Collected';

 if format ne '' or method ne '' then origin1='Derived';

 if (index(variable,'STUDYID'))ne 0 then origin1='Protocol';

 if (index(codelist,'MedDRA'))ne 0 then origin1='Assigned';

 if origin1='' then origin1='Assigned';

/*defining Source column -- indicates the deciding entity for the assignment of the

origin*/

 if pages ne '' and format='' and origin1='Collected' then

source1='Investigator';

 if format ne '' or method ne '' and origin1='Derived' then source1='Sponsor';

 if (index(variable,'STUDYID'))ne 0 and origin1='Protocol' then

source1='Sponsor';

 if (index(codelist,'MedDRA'))ne 0 and origin1='Assigned' then source1='Vendor';

 if origin1='Assigned' and (index(codelist,'MedDRA')) = 0 then

source1='Sponsor';

 drop method origin source;

 rename method1=method origin1=origin source1=source;

run;

/*Order by original assigned order of variables from imported file*/

proc sort data=merged_define;

 by new_ord;

run;

/**/

/** FINAL VARIABLES TAB FOR EXCEL FILE **/

/**/

data Variables_Tab;

 %variable_order; /*keeps the same order of variable column names found in the

define document*/

 set merged_define;

run;

29

REFERENCES

1. SDTM Implementation Guide (SDTM-IG v3.3)

https://www.cdisc.org/system/files/members/standard/foundational/SDTMIG_v3.3_FINAL.pdf

2. CDISC SDTM/CDASH Controlled Terminology (SDTM-CT 2022-06-24)
https://evs.nci.nih.gov/ftp1/CDISC/SDTM/Archive/CDASH%20Terminology%202022-06-24.pdf

3. Define-XML Specification (Define-XML v2.1)
https://www.cdisc.org/standards/data-exchange/define-xml/define-xml-v2-1

4. CDISC Pilot Project GitHub Page
https://github.com/cdisc-org/sdtm-adam-pilot-project

5. CDISC Pilot SDTM/ADAM Pilot Project Final CSR with Synopsis of Study
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-
package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-
contr/cdiscpilot01/cdiscpilot01.pdf

6. CDISC Website

https://www.cdisc.org

7. CDISC Library Browser
https://library.cdisc.org/browser

CONTACT INFORMATION

For any comments, questions, and/or suggestions, contact the author at:

Star Nze, M.S.
Statistical Programmer
Email: Sn4512@gmail.com
LinkedIn: www.linkedin.com/in/starn
Website: https://sn4512.wixsite.com/starn

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://www.cdisc.org/system/files/members/standard/foundational/SDTMIG_v3.3_FINAL.pdf
https://evs.nci.nih.gov/ftp1/CDISC/SDTM/Archive/CDASH%20Terminology%202022-06-24.pdf
https://www.cdisc.org/standards/data-exchange/define-xml/define-xml-v2-1
https://github.com/cdisc-org/sdtm-adam-pilot-project
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf
https://github.com/cdisc-org/sdtm-adam-pilot-project/blob/master/updated-pilot-submission-package/900172/m5/53-clin-stud-rep/535-rep-effic-safety-stud/5351-stud-rep-contr/cdiscpilot01/cdiscpilot01.pdf
https://www.cdisc.org/

