
1

SESUG 2023 Paper 160

Generating Mock Data in SAS®
Imelda C. Go, PhD, I Go, LLC and

Abbas S. Tavakoli, DrPH, MPH, ME, University of South Carolina

ABSTRACT
Programmers often develop SAS programming code before actual/real data are available. To fill the
gap, simulated/mock data can be used to test the code and verify the code is performing as
intended. Mock data can be based on real data, be generated using randomization techniques, or
be a combination of both. The data will contain ideally enough test cases to test our code against.
Generating realistic data with internally consistent data can be challenging. This paper will discuss
considerations and include examples of a way to generate discrete mock data, while controlling the
distribution of univariate and multivariate values.

INTRODUCTION
Computer programmers need data to test their code against. If we use enough records and test
cases, we can conduct performance/load/stress testing and get insights into run time, necessary
disk space for output, how final reports will appear, etc. Having the data well in advance to test
your programs is ideal, but this may not be possible especially when it’s the first year of a project.
Creating mock data by tapping into real data sets (e.g., using last year’s data as the basis of this
year’s mock data) and simulation data are alternatives.

The following are a number of considerations when generating mock data:

 PROBABILITIES. In randomly generating simulated data, we may need to control how
often a simulated value will appear. Controlling a univariate distribution is simpler than
controlling a multivariate distribution.

o Univariate: gender
o Multivariate: gender and race/ethnicity

 TEST CASES. In the ideal, the mock data will resemble real data and have enough test
cases to determine if the code is addressing all the business rules/specifications/
requirements.

 SORT ORDER. When generating character values, be aware of how capitalization and
embedded blanks/numbers/punctuation affect the data’s sort order.

o A1, A2, A10, A20 will sort in ascending order as A1, A10, A2, A20 in SAS.
o A01, A02, A10, A20 will sort in ascending order as A01, A02, A10, A20 in SAS.

 REPLICABILITY OF SIMULATED DATA. This paper will use the RANUNI random number
generator for creating simulated data. The RANUNI function returns a value from a uniform
distribution (0, 1). RANUNI(0) invokes the function with a seed of zero, which will cause
SAS to use the time of day as the seed. You can replicate the value generated by controlling
the seed (positive integer).

 USING LAST YEAR’S DATA. If this year’s data will look just like last year’s data, then
that’s perfect. Often, this year’s processing has some changes and last year’s data needs to
be adjusted to become this year’s mock data.

 DATA PRIVACY. Some of us work with data governed by privacy laws. We need to observe
those laws in the process of generating/using the mock data. There is an advantage to
using clearly fake values (e.g., Firstname1, Firstname2, Firstname3, …) instead of real ones
(e.g., Jack, Jill).

2

EXAMPLE 1: UNIVARIATE VALUES ARE EQUALLY LIKELY TO OCCUR

Let us suppose we need a variable with Y and N as possible values. If we want to assume that each
value is equally likely to occur, then the probability that each response occurs is 1/2. We can do
the following:

if ranuni(0)<=.5 then response=’Y’;
else if ranuni(0)>.5 then response=’N’;

Another way of producing a selection is to create a string with the two delimited values and
randomly pick one of the values with equal probability of selection.

Code Description
drawstring=’Y,N’; The possible values (Y and N) are separated

by a delimiter (comma in this case). The
delimiter visibly sets the values apart in
drawstring especially when possible values
have variable lengths.

count=count(drawstring,',')+1; The number of possible values is the number
of commas in the drawstring value plus 1.
Count=2 here.

randompick= ceil(ranuni(0)*count); The RANUNI function returns a value between
0 and 1. Because 0 and 1 are not included, the
CEIL function is applied to produce a
randompick value of 1 or 2.

randomvalue=scan(strip(drawstring),
randompick ,',');

Randomvalue value is Y or N by randomly
selecting the 1st or 2nd value delimited by the
comma in drawstring. The selection is
specified by the randompick value.

EXAMPLE 2: UNIVARIATE VALUES ARE NOT EQUALLY LIKELY TO OCCUR

Let us suppose that we want to have 3 values instead with the following probabilities of occurrence.

Value Probability Value Occurs Weight (Total of weights is 10)
Y .40 = 4/10 4
N .50 = 5/10 5
Blank (missing) .10 = 1/10 1

We can use the same method described above. The drawstring value will have 4 Y values, 5 N
values, and 1 blank/missing value, which reflects the probabilities of occurrence.

drawstring=’Y,Y,Y,Y,N,N,N,N,N,’;

We can use the rest of the coding statements in Example 1 to complete the random selection in the
drawstring.

drawstring=’Y,Y,Y,Y,N,N,N,N,N,’;
count=count(drawstring,',')+1;
randompick= ceil(ranuni(0)*count);
randomvalue=scan(strip(drawstring),randompick,',');

3

This technique lends itself well to generalization/automation. Let us suppose we want to generate
mock data for three variables:

 GENDER variable with M (probability of 3/5) and F (probability of 2/5) values
 GENDER2 variable with equally likely X and Y values
 LEVEL variable with equally likely 1, 2, 3, 4 values (Note that with the code used, the LEVEL

variable will be a character variable. You need extra coding if you want a numeric variable.)

We can use the following specifications with the above technique.
Variable Name Value Probability Value Occurs Weight
GENDER M 3/5 3
GENDER F 2/5 2
GENDER2 X .5 2
GENDER2 Y .5 2
LEVEL 1 .25 2
LEVEL 2 .25 2
LEVEL 3 .25 2
LEVEL 4 .25 2

When a variable’s values are equally likely, the weights for each value just need to be the same. A weight of two
was used for all GENDER2 and all LEVEL values in this example. The weight value will be used with the REPEAT
function below. (Syntax note: repeat(string,n) repeats the value of string n+1 times (and not n
times)—This is why we use weight–1 with the REPEAT function below.)

The following is an example of how to generate a data set with 5 records that contain simulated values for each
of the three variables. This example codes for a situation where one of the variables needs to be numeric
instead of character.

Code Description
%let numrecords=5; This macro variable is equal to the number of records

we need (5).
data attributes;
input varname $ 1-8 vartype $ 9 varlength
11;
cards;
gender C 1
gender2 C 1
level N 8
;

This attributes data set shows that LEVEL variable
should be numeric, while GENDER and GENDER2 are
character variables with a length of 1.

data chars;
retain lengthstring;
length lengthstring $1000.;
set attributes (where=(vartype='C'))
end=eof;
lengthstring=strip(strip(lengthstring)||'
'||strip(varname)||' $'||strip(varlength));
if eof then do; keep lengthstring; output;
call symputx('lengthstring',lengthstring);
end;
run;

This generates a string that we will use later to
control the length of the character variables. The
lengthstring macro variable contains the following
value:

4

Code Description
data specs;
input varname $ value $ weight;
cards;
gender M 3
gender F 2
gender2 X 2
gender2 Y 2
level 1 2
level 2 2
level 3 2
level 4 2
;

proc sort data=specs; by varname;

This is the specs data set that provides the
information on how to create the drawstring values
for GENDER, GENDER2, and LEVEL.

data drawstring;
length drawstring $200.;
retain drawstring '' ;
set specs; by varname;
if first.varname then drawstring='';
drawstring=cats(drawstring,
repeat(cats(',',strip(value)), weight-1));
if last.varname
then do;
drawstring=substr(drawstring,2,
length(drawstring)-1);
count=count(drawstring,',')+1;
drop value weight;
output; end;
run;

The drawstring values are created. The count value
contains the total number of values that can be
selected randomly.

proc sql noprint;
select max(Length(strip(value))) INTO:
MaxLength from specs;
quit;

Macro variable MaxLength contains the length of the
longest string among the values specified. This will
be needed in a DATA step later. The value is 1 here.

proc sort data=specs; by varname;

data process;
length randomvalue $&MaxLength..;
retain seed 0;
set drawstring;
do iteration=1 to &numrecords;
randompick= ceil(ranuni(0)*count);
randomvalue=scan(strip(drawstring),randompi
ck,',');
drop value weight;
output; end;
run;

This carries out the randomization with RANUNI(0).
Each time you run the statements, you will get a
different data set because the seed values were set
based on the time of day. If you want to create the
same data set each time, then do not use 0 and
control the seeds used with RANUNI. There are a
number of different ways to do this.

5

Code Description
proc sort data=process; by iteration;

proc transpose data=process out=transposed
(drop=_name_);
by iteration;
id varname;
var randomvalue;
run;

We can use PROC TRANSPOSE to get the following
data set. In this data set, LEVEL is a character
variable.

data ConvertToNumString;
length string $2000.;
retain string '' ;
set attributes (where=(vartype='N'))
end=eof;
string=cat(strip(string),
"num",strip(varname),"=input(",
strip(varname),",8.); rename num",
strip(varname),"=",strip(varname),
"; drop ,strip(varname),";");
if eof then do; output; call
symputx("convertToNumString",string);end;
run;

data process3; set process2;
&convertToNumString; run;

Macro variable convertToNumString contains the
following value, which are statements to convert the
value to numeric.

This string is used to make the conversion in the
process3 DATA step.

Variable level is numeric in the final data set (process3) as confirmed by PROC CONTENTS.

6

EXAMPLE 3: MULTIVARIATE VALUES

We can use the univariate technique illustrated above to control the distribution of values in a multivariate
situation. Here is an example of how we would write the specifications data set in the following GENDER and
RESPONSE bivariate example. We list the combinations of the two variables. The combinations will be randomly
selected.

Variable Name Value Probability
Value
Occurs
(Total is 1)

Weight Description Gender Response

GENDER*RESPONSE M+Y .41 41 Male with Y
response

M Y

GENDER*RESPONSE F+Y .32 32 Female with
Y response

F Y

GENDER*RESPONSE M+N .17 17 Male with N
response

M N

GENDER*RESPONSE F+N .10 10 Female with
N response

F N

In the specifications data set, we extended the variable name to include the two variables GENDER and
RESPONSE delimited by *. The value column contains the values for the two variables delimited by +. Once we
reworked the specs this way, we can use these specs with the same code we used in the univariate situation.

CONCLUSION
The SAS programming language offers different tools to help us with our work. We can develop
solutions that help us achieve the desired result faster.

CONTACT INFORMATION
Imelda C. Go
I GO, LLC
igoforwork@gmail.com

Abbas S. Tavakoli
University of South Carolina
abbas.tavakoli@sc.edu

TRADEMARK NOTICE
SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

