

1

SESUG Paper 108-2023
How to Prepare Precise and Intact Software Program for Submission

Linping Li, Merck & Co., Inc., Upper Gwynedd, PA, USA
 Shunbing Zhao, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT
Software programs are one of the components in the analysis package for e-Submissions submitted to
regulatory agencies. Submission examples include Investigational New Drug Application (IND), New
Drug Application (NDA), Abbreviated New Drug Application (ANDA), and Biologics License Application
(BLA). The FDA Study Data Technical Conformance Guide states that “Sponsors should provide the
software programs used to create all ADaM datasets and generate tables and figures associated with
primary and secondary efficacy analyses”, and “The main purpose of requesting the submission of these
programs is to understand the process by which the variables for the respective analyses were created
and to confirm the analysis algorithms and results.”

In accordance with FDA’s Guidance, pharmaceutical companies need to submit software programs that
do not contain any macro languages to ensure the precision and integrity of the submission. To meet this
requirement, most pharmaceutical companies have a standard macro library that usually has the option to
display the SAS statements from macro execution and route them to a new external file, thus, to generate
the non-macro SAS program. However, if in a SAS program, some pre-processed SAS codes are added
before calling the standard macro, integrating these codes with the non-macro program and ensuring that
the combined program is both intact and accurate can be challenging. This paper will demonstrate how to
use additional programs to address these issues.

INTRODUCTION
In pharmaceutical companies and contract research organizations (CROs), it is very common to use
company standard macro programs to generate tables, listings, and graphs. In these macro programs,
SAS system functions MPRINT and MFILE, along with FILENAME statement, are used to display the
SAS statements of the resolved macro codes and to route the SAS statements to an external file with
.sas as the file extension. This way, the executable SAS program that does not contain any macro
language is generated. However, there may be instances where additional SAS codes are required to
pre-process the data before calling the standard macro program. As the pre-processed SAS code is not
part of the standard macro, it will not be included in the external .sas file after executing the SAS
program. Consequently, the resulting SAS program is incomplete and cannot be submitted to the
regulatory agencies. This paper will introduce a solution to address these issues and ensure that a
complete SAS program is generated and an accurate result is produced.

PROCESS
1. Prepare the pre-processed code

 Add system options MPRINT, MFILE, and FILENAME statement in the pre-processed code, and assign
a temporary folder as the file path.

 As those options and statement have been written in the standard macro already, two macro-free SAS
programs are generated and outputted to the specified location after running the whole program. One
contains the pre-processed codes, and another one contains the codes from executing the standard
macro.

 %let outloc = %str(C:\outlist); ** Specified folder **;
 %let outtmp = %str(C:\outlist\temp); ** Temporary folder **;

2

*** Write codes to pre-process data, add MPRINT/MFILE options, and
output/write the SAS codes to a temporary folder ***;

 %macro pre_tdemo;
 filename mprint "&outtmp\tdemo_pre.sas" lrecl=2048;
 options mprint mfile;

 data adsl;
 set adam.adsl;
 if country ne 'USA' then bygry = 'Non-USA';
 else if country eq 'USA' then bygrp = 'USA';
 run;

 options nomprint nomfile;
 %mend pre_tdemo;
 %pre_tdemo;

** Call the standard macro which creates the final statistical result and
the table, and output/write the SAS codes to the temporary folder **;

 %std_tdemo (indata=adsl,
 bygroup=bygrp,
 more macro parameters=,
 out_tab_name=tdemo,
 out_sas_file=&outtmp\tdemo_std.sas);

2. Create the macro-free SAS program

Firstly, we use INFILE and INPUT statements to read in the above two SAS programs separately from the
temporary folder and output them as two temporary SAS datasets. In each dataset, define a SAS variable
“sascode” as shown in codes below and assign the entire SAS program as its value.

 ** Read in the pre-processed SAS codes **;
 data tdemo_pre;
 length sascode $5767;
 infile "&outtmp/tdemo_pre.sas" lrecl=8192 end=eof;
 input ;
 sascode=_infile_;
 output tdemo_pre;
 run;

 ** Read in the SAS codes from execution of the standard macro **;
 data tdemo_std;
 length sascode $5767;
 infile "&outtmp/tdemo_std.sas" lrecl=8192 end=eof;
 input ;
 sascode=_infile_;
 output tdemo_std;
 run;

Then, we can combine the two temporary SAS datasets, and use FILE/PUT statements to route the
combined SAS dataset to the specified folder with the desired SAS program name. By doing this, a SAS
program containing both parts are created. Since the pre-processed code is set on top of the resolved
code of the standard macro, the codes are in the order as we wanted without any sorting.

 data _null_;
 file "&outloc/tdemo_sub.sas" lrecl=5767 nopad;

3

 set tdemo_pre(keep=sascode)
 tdemo_std(keep=sascode);
 put sascode;
 run;

3. Validate the result

The to-be submitted SAS program that contains the pre-processed codes and standard macro outputs
the final statistical results to a permanent dataset prior to generating the formal report. To validate the
results generated by the macro-free SAS program, we can copy it to a temporary folder and run the
program. Then we can compare the final statistical results generated from the two programs. If the
comparison result is equal, that means the macro-free program can duplicate the results and the program
is intact.

** Re-assign the libname, so the macro-free program can output the final
result to the temporary folder **;

 libname proddata "&outtmp";
 %include "&outtmp/tdemo_sub.sas";

 ** Compare the final result generated from both programs **;
 libname vald "&outtmp";
 libname prod "&outloc";

 proc compare base=prod.tdemo comp=vald.tdemo

 out=vald.chk_tdemo outnoequal noprint;
 run;

CONCLUSION
The overall approach involves incorporating MPRINT/MFILE options into the pre-processed code, utilizing
INFILE/INPUT statements to read each macro-free SAS program as input and generate a SAS dataset as
output, combining these datasets, and then using FILE/PUT statements to generate a complete SAS
program. Lastly, the results are compared to ensure accuracy.

Using this approach, the submission-ready programs can be generated concisely and precisely. This will
enable agencies to comprehend the process and trace the steps taken to create the variables for the
respective analyses. It will also help them confirm the analysis algorithms and results.

DISCUSSION
1. As we know that the resolved SAS codes from MPRINT have no blank lines and no indentation.

How to make this macro-free SAS program more “prettier” and more readable? There are
different ways to do this, one easy way is using SAS Enterprise Guide. You can open the
program in SAS Enterprise Guide, right-click in the Program Editor, select Format code from the
popup window. You can see that extra blank lines are added to the program, and the SAS codes
are indented automatically.

2. We all know that it is a good practice to insert the comments in the SAS program. While using the
codes above, we noticed that MPRINT option can’t display the comment lines starting with “/” or
“%” contained in the macro program. If you want to keep the comment lines in the macro-free
SAS program, start the comment line with ‘*’ in the macro program.

3. The programs have been further developed into two macro programs. One macro is used to
combine the pre-processed code with the standard macro. Another macro is used to compare the
final results. So all similar scenarios can be processed in the same way.

4

REFERENCES
Dalton, Maria. “Submission of Software Programs to Regulatory Agencies.” PhUSE US Connect 2019

https://www.lexjansen.com/phuse-us/2019/sa/SA04.pdf

https://www.fda.gov/media/143550/download

SAS Help Center: Programming Documentation for SAS 9.4 and SAS Viya 3.5

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Linping Li
Linping.li@merck.com

Shunbing Zhao
shunbing.zhao@merck.com

https://www.lexjansen.com/phuse-us/2019/sa/SA04.pdf
https://www.fda.gov/media/143550/download
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/pgmsashome/home.htm
mailto:Linping.li@merck.com
mailto:shunbing.zhao@merck.com

	Abstract
	Introduction
	PROCESS
	Conclusion
	DISCUSSION
	References
	Contact Information

