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ABSTRACT 

Python is a general-purpose, object-oriented programming (OOP) language, consistently rated among the 
most popular and widely utilized languages, owing to powerful processing, user-friendly syntax, and an 
unparalleled, abundant open-source community of developers. The Pandas library, a freely downloadable 
resource, extends Python functionality, and has become the predominant Python analytic toolkit. The 
Pandas DataFrame is the primary Pandas data structure, akin to the SAS® data set in the SAS ecosystem. 
Just as SAS built-in procedures, functions, subroutines, and statements manipulate and interact with SAS 
data sets to transform data and to deliver business value, so too do Python and Pandas methods, functions, 
and statements deliver similar functionality. And what’s more, Python does it for free!!! This text 
demonstrates basic data manipulation and analysis performed on US Census and Centers for Disease 
Control and Prevention (CDC) data, providing functionally equivalent SAS (9.4M7) and Python (3.10.5) 
syntax, with the goal of introducing SAS practitioners to open-source alternatives. Discover the fattest 
counties and states in the US, and do so while learning Python Pandas! 

SETUP 

A primary folder should be established, in which SAS and Python programs will reside, and in which 
subfolders can be created—these examples use the following: 

c:\shedder\ 

Create subordinate folders for Census and CDC: 

c:\shedder\Census\ 

c:\shedder\CDC\ 

c:\shedder\tables\ 

This location can be initialized to a SAS macro variable: 

%let path_base=c:\shedder\; 

%let path_census=&path_base.census\; 

%let path_cdc=&path_base.cdc\; 

Within Python, two libraries are imported—os, which contains operating system information and 

functionality, and pandas, which defines the Pandas library. By convention, Pandas is imported using the 

alias pd: 

import os 

import pandas as pd 

import csv 

At this point, save your python program to the primary folder; the filename does not matter, but it must be 
saved so that the cwd method can evaluate the “current working directory” (i.e., where the file is saved): 

c:\shedder\my_little_python.py 

Global variables are initialized to the following folder locations, and are equivalent to SAS global macro 
variables: 

path_base=os.getcwd() 

path_census=os.path.join(path_base,'census') 

path_cdc=os.path.join(path_base,'CDC') 



2 

The first thing to note is that Python is a case-sensitive language, unlike Base SAS, so CWD is not the 
same as cwd. Also note that Python statements are not terminated with those pesky semicolons. Finally, 
comments in Python are prefaced by octothorps rather than asterisks (i.e., # not *). 

The following files should be downloaded: 

• From the US Census (https://www2.census.gov/programs-surveys/popest/datasets/2020-
2021/counties/totals/), download the CSV file (co-est2021-alldata.csv) to the Census folder. 

• From the US Census (https://www2.census.gov/programs-surveys/popest/datasets/2020-
2021/state/totals/), download CSV file (NST-EST2021-alldata.csv) to the Census folder. 

• From the US Census (https://www2.census.gov/programs-surveys/popest/geographies/2017/all-
geocodes-v2017.xlsx), download the XLSX workbook to the Census folder; subsequently save this 
workbook as a CSV file: all-geocodes-v2017.csv. 

• CDC obesity data are downloaded in a subsequent section. 

INGESTING NATIONAL, STATE, AND COUNTY POPULATION DATA 

National- and state-level population estimates for 2021 are maintained within NST-EST2021-alldata.csv, 
as demonstrated in Table 1. 

 

Table 1. National- and State-Level Population Estimates for 2021 

Similarly, county-level population estimates for 2021 are maintained within co-est2021-alldata.csv, as 
demonstrated in Table 2. 

 

Table 2. County-Level Population Estimates for 2021 

Three data sets will be created, representing national-, state-, and county-level population data: 

• df_pop_us 

• df_pop_states 

• df_pop_counties 

Note that regional-level data are not utilized in these analyses, so these observations will be deleted. 

INGESTING POPULATION USING SAS 

PROC IMPORT fails to ingest the data because it incorrectly interprets FIPS values (many of which contain 
leading zeros) as numeric data, so DATA steps must be created that explicitly specify FIPS codes are 
character data type. This is not uncommon, and is similarly required when importing FIPS into Python. 

DF_pop_us_temp is a temporary data set that is used as an intermediate step to create both DF_pop_us 
and DF_pop_states: 

https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/counties/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/counties/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/state/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/state/totals/
https://www2.census.gov/programs-surveys/popest/geographies/2017/all-geocodes-v2017.xlsx
https://www2.census.gov/programs-surveys/popest/geographies/2017/all-geocodes-v2017.xlsx
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data df_pop_us_temp (rename=(state=FIPS_state popestimate2021=population)); 

   infile "&path_census.NST-EST2021-alldata.csv" delimiter=',' dsd firstobs=2; 

   length sumlev $2 region $1 division $1 state $2 name $50 estimatebase2020 8 

      popestimate2020 8 popestimate2021 8; 

   input sumlev $ region $ division $ state $ name $ estimatebase2020  

      popestimate2020 popestimate2021; 

run; 

Thereafter, three successive DATA steps create DF_pop_us, DF_pop_states, and DF_pop_counties: 

data df_pop_us (keep=FIPS_state population pop_mil); 

   set df_pop_us_temp; 

   where name='United States'; 

   length pop_mil 8; 

   pop_mil = pop / 1000000; 

run; 

 

data df_pop_states (keep=FIPS_state population pop_mil); 

   set df_pop_us_temp; 

   where FIPS_state^='00'; 

   length pop_mil 8; 

   pop_mil = population / 1000000; 

run; 

 

data df_pop_counties (rename=(state=FIPS_state county=FIPS_county 

      popestimate2021=population) keep=state county popestimate2021 pop_mil); 

   infile "&path_census.co-est2021-alldata.csv" delimiter=',' dsd firstobs=2; 

   length sumlev $2 region $1 division $1 state $2 county $5 stname $50 ctyname $50 

      estimatebase2020 8 popestimate2020 8 popestimate2021 8; 

   input sumlev $ region $ division $ state $ county $ stname $ ctyname $ 

      estimatebase2020 popestimate2020 popestimate2021; 

   if county^='000'; 

   length pop_mil 8; 

   pop_mil = popestimate2021 / 1000000;   

   county=state || county; 

run; 

Presto! The data sets have been created. 

INGESTING POPULATION USING PYTHON 

The equivalent Python steps follow, in which the create_df_pop_us, create_df_pop_states, and 
create_df_pop_counties functions instantiate three DataFrames: 

# create dataframe with national population 

def create_df_pop_us(fil): 

    global df_pop_us 

    df_pop_us = pd.read_csv( 

        os.path.join(path_census, fil), header = 0, sep = ',', quotechar = '"', 

        index_col = False, dtype = {'STATE': str, 'POPESTIMATE2021': float, 'NAME': 

str}, 

        usecols = ['STATE','POPESTIMATE2021', 'NAME']) 

    df_pop_us.rename(columns = {'STATE': 'fips_state', 'POPESTIMATE2021': 

'population'}, inplace=True) 

    df_pop_us['pop_mil'] = df_pop_us['population']/1000000 

    df_pop_us = df_pop_us.loc[df_pop_us['NAME'] == 'United States'] 

    # remove FIPS 00 which is the entire US 

    df_pop_us.drop(columns=['NAME'], inplace=True) 

     

# create dataframe with state populations 

def create_df_pop_states(fil): 

    global df_pop_states 

    df_pop_states = pd.read_csv( 

        os.path.join(path_census, fil), header = 0, sep = ',', quotechar = '"', 
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        index_col = False, dtype = {'STATE': str, 'POPESTIMATE2021': float}, 

        usecols = ['STATE','POPESTIMATE2021']) 

    df_pop_states.rename(columns = {'STATE': 'fips_state', 'POPESTIMATE2021': 

'population'}, inplace=True) 

    df_pop_states['pop_mil'] = df_pop_states['population']/1000000 

    # remove FIPS 00 which is the entire US 

    df_pop_states = df_pop_states.loc[df_pop_states['fips_state'] != '00'] 

 

# create dataframe with county populations 

def create_df_pop_counties(fil): 

    global df_pop_counties 

    df_pop_counties = pd.read_csv( 

        os.path.join(path_census, fil), header = 0, sep = ',', quotechar = '"',  

        encoding = 'utf-8', encoding_errors = 'ignore', 

        index_col = False, dtype = {'STATE': str, 'COUNTY': str, 'POPESTIMATE2021': 

float}, 

        usecols = ['STATE', 'COUNTY', 'POPESTIMATE2021']) 

    df_pop_counties.rename(columns = {'STATE': 'fips_state', 'COUNTY': 

'fips_county_temp',  

                                      'POPESTIMATE2021': 'population'}, 

inplace=True) 

    df_pop_counties['pop_mil'] = df_pop_counties['population']/1000000 

    df_pop_counties['fips_county'] = df_pop_counties['fips_state'] + 

df_pop_counties['fips_county_temp'] 

    # remove FIPS 000 which is the entire state 

    df_pop_counties = df_pop_counties.loc[df_pop_counties['fips_county_temp'] != 

'000'] 

    df_pop_counties.drop(columns=['fips_county_temp'], inplace=True) 

     

create_df_pop_us(r'NST-EST2021-alldata.csv') 

 

create_df_pop_states(r'NST-EST2021-alldata.csv') 

 

create_df_pop_counties(r'co-est2021-alldata.csv') 

Looking more closely at the create_df_pop_counties function, the def statement declares the function, in 

which a single parameter (fil) is declared: 

def create_df_pop_counties(fil): 

The global statement declares the df_pop_counties variable as having global scope, indicating that the 

variable will be available after function execution: 

global df_pop_counties 

The pd.read_csv method instantiates df_pop_counties as a DataFrame, with multiple arguments 

specifying the manner in which the CSV file should be ingested. For example, the dtype argument specifies 

the data type for each variable, similar to the LENGTH statement in SAS: 

dtype = {'STATE': str, 'COUNTY': str, 'POPESTIMATE2021': float} 

And the usecols argument specifies the variables to retain from the CSV file, similar to the KEEP option in 

SAS: 

usecols = ['STATE', 'COUNTY', 'POPESTIMATE2021'] 

The rename method renames CSV variables, and inplace=True designates that the changes should be 

made in place (i.e., in the df_pop_counties DataFrame) as opposed to on a copy of the DataFrame: 

df_pop_counties.rename(columns = {'STATE': 'fips_state', 'COUNTY': 

'fips_county_temp', 'POPESTIMATE2021': 'population'}, inplace=True) 

A new column (fips_county) in the DataFrame is created by overloading the + operator; that is, two columns 
within the DataFrame (holding string data) are concatenated to each other: 
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df_pop_counties['fips_county'] = df_pop_counties['fips_state'] + 

df_pop_counties['fips_county_temp'] 

Because a county FIPS value of 000 represents the state-level FIPS, all rows for which the 
fips_county_temp is 000 are removed. The loc function “slices” the DataFrame to remove the 000 rows: 

df_pop_counties = df_pop_counties.loc[df_pop_counties['fips_county_temp'] != '000'] 

Finally, the drop method drops the fips_county_temp column, the original three-character county FIPS 

code, now that the fips_county column has been created that denotes not only the county FIPS but also 
the state FIPS codes: 

df_pop_counties.drop(columns=['fips_county_temp'], inplace=True) 

Three function calls execute the respective functions, and the three DataFrames are created: 

create_df_pop_us(r'NST-EST2021-alldata.csv') 

create_df_pop_states(r'NST-EST2021-alldata.csv') 

create_df_pop_counties(r'co-est2021-alldata.csv') 

The three DataFrames that are created have identical content to the three SAS data sets created in the 
prior subsection. 

INGESTING STATE AND COUNTY FIPS CODES 

State FIPS codes are two-digit numbers that uniquely identify states (and US territories), and by convention, 
leading zeros are always retained; thus, California corresponds to 06 but not 6. County FIPS codes are 
three-digit numbers that uniquely identify a county (within a state), but because county codes are repeated 
across states, identifying counties at the national level requires concatenating the state FIPS and county 
FIPS codes to yield a five-digit FIPS code. 

FIPS codes maintained in all-geocodes-v2017.csv are demonstrated in Table 3; note the multiple header 
rows that must be handled when importing these data. 

 

Table 3. FIPS Codes 

FIPS codes are powerful because they overcome the occasional spelling variations or errors that can occur 
in state or county names—even within federal databases—as demonstrated subsequently. FIPS reliability 
also means that tables can be more reliably joined by FIPS codes than, for example, state names or county 
names. 

INGESTING FIPS CODES USING SAS 

The following SAS code ingests the FIPS CSV file and creates the DF_fips data set: 

%let fil=all-geocodes-v2017.csv; 

 

data df_fips (drop=summary_level FIPS_state_temp FIPS_county_temp subdiv_code  
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      place_code city_code name); 

   length FIPS_state $2 state $50 county $50 FIPS_county $5; 

   infile "&path_census&fil" dsd delimiter=',' firstobs=6 end=eof; 

   length summary_level $3 FIPS_state_temp $2 FIPS_county_temp $5 subdiv_code $5  

      place_code $5 city_code $5 name $50; 

   input summary_level $ FIPS_state_temp $ FIPS_county_temp $ subdiv_code $  

      place_code $ city_code $ name $; 

   retain FIPS_state state; 

   /* 040 is the FIPS summary code for state-level region */ 

   if summary_level='040' then do; 

      FIPS_state=FIPS_state_temp; 

      state=name; 

      end; 

   /* 010 is the FIPS summary code for the entire US */ 

   else if summary_level^='010' and subdiv_code='00000' and place_code ='00000'  

         and city_code='00000' and FIPS_state^= '72' then do; 

      FIPS_county=FIPS_state || FIPS_county_temp; 

      county=name; 

      output; 

      end; 

run;  

A user-defined SAS format is both a straightforward and efficient method to map values, and the following 
code creates the COUNTY_FIPS_DICT format that maps five-digit FIPS county codes to their associated 
county names: 

data county_fips_dict_temp; 

   set df_fips (rename=(FIPS_county=start county=label)); 

   length fmtname $20 type $1; 

   retain fmtname 'county_fips_dict' type 'c'; 

run; 

 

proc format cntlin=county_fips_dict_temp; 

run; 

Similarly, the following code creates the STATE_FIPS_DICT user-defined format that maps the two-digit 
FIPS state codes to their associated state (or territory) names: 

proc sort data=df_fips (keep=fips_state state) out=df_fips_temp nodupkey; 

   by fips_state; 

run; 

 

data state_fips_dict_temp; 

   set df_fips_temp (rename=(FIPS_state=start state=label)); 

   length fmtname $20 type $1; 

   retain fmtname 'state_fips_dict' type 'c'; 

run; 

 

proc format cntlin=state_fips_dict_temp; 

run; 

User-defined formats reside in memory, facilitate faster data transformations, and eliminate the need to join 
the DF_fips data set to other data sets via DATA step MERGE statements or SQL procedure JOIN 
statements. 

INGESTING FIPS CODES USING PYTHON 

Python similarly leverages FIPS data to create equivalent dictionary objects that map FIPS codes to both 
county and state names—but first, a refined CSV file is created, from which the dictionaries can be built: 

path_tables=os.path.join(path_base,'tables') 

 

def create_fips_table(fil): 

    global df_fips 
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    df = pd.read_csv( 

        os.path.join(path_census, fil),  

        header=4, sep=',', quotechar='"', index_col=False, encoding='latin1', 

        dtype = {'Summary Level': str, 'State Code (FIPS)': str, 'County Code 

(FIPS)': str,  

                 'County Subdivision Code (FIPS)': str, 

                 'Place Code (FIPS)': str, 'Consolidtated City Code (FIPS)': str, 

                 'Area Name (including legal/statistical area description)': str}, 

        usecols = ['Summary Level', 'State Code (FIPS)', 'County Code (FIPS)', 

'County Subdivision Code (FIPS)', 

                   'Place Code (FIPS)', 'Consolidtated City Code (FIPS)', 

                   'Area Name (including legal/statistical area description)']) 

    df.rename(columns={'State Code (FIPS)': 'fips_state', 'County Code (FIPS)': 

'county_code', 

                       'County Subdivision Code (FIPS)': 'subdiv', 'Place Code 

(FIPS)': 'place', 

                       'Consolidtated City Code (FIPS)': 'consolidated', 

                       'Area Name (including legal/statistical area description)': 

'name'}, inplace=True) 

    df_states = df.loc[df['Summary Level'] == '040'] 

    df_states = df_states.rename(columns={'name': 'state'}) 

    df_states.drop(columns=['Summary Level','county_code','subdiv','place'], 

inplace=True) 

    df_counties = df.loc[(df['county_code'] != '000') & (df['subdiv'] == '00000') &  

                         (df['place'] == '00000') & (df['consolidated'] == 

'00000'), ['fips_state','county_code','name']] 

    df_counties.rename(columns={'name': 'county'}, inplace=True) 

    df_fips = pd.merge(df_states, df_counties, on='fips_state', how='left') 

    df_fips['fips_county'] = df_fips['fips_state'] + df_fips['county_code'] 

    df_fips.drop(columns=['county_code', 'consolidated'], inplace=True) 

    # remove Puerto Rico counties 

    df_fips = df_fips.loc[df_fips['fips_state'] != '72'] 

    df_fips.to_csv(os.path.join(path_tables,'FIPS_table.csv'), index=False) 

 

create_fips_table(r'all-geocodes-v2017.csv') 

Examining the function more closely, the global statement declares the df_fips variable, which is 

instantiated as a DataFrame by the subsequent read_csv method: 

def create_fips_table(fil): 

    global df_fips 

    df = pd.read_csv( 

The dtype and usecols parameters declare the column data types and columns to keep, respectively: 

dtype = {'Summary Level': str, 'State Code (FIPS)': str, 'County Code (FIPS)': str,  

                 'County Subdivision Code (FIPS)': str, 

                 'Place Code (FIPS)': str, 'Consolidtated City Code (FIPS)': str, 

                 'Area Name (including legal/statistical area description)': str}, 

        usecols = ['Summary Level', 'State Code (FIPS)', 'County Code (FIPS)', 

'County Subdivision Code (FIPS)', 

                   'Place Code (FIPS)', 'Consolidtated City Code (FIPS)', 

                   'Area Name (including legal/statistical area description)'] 

The rename method renames columns; although Pandas supports column names with spaces, they are 

removed here to facilitate readability, as well as to enable “dot notation” (discussed later): 

df.rename(columns={'State Code (FIPS)': 'fips_state', 'County Code (FIPS)': 

'county_code', 'County Subdivision Code (FIPS)': 'subdiv', 'Place Code (FIPS)': 

'place', 'Consolidtated City Code (FIPS)': 'consolidated',                     

'Area Name (including legal/statistical area description)': 'name'}, inplace=True) 

A temporary DataFrame df_states is created, which includes only state-level data: 
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df_states = df.loc[df['Summary Level'] == '040'] 

df_states = df_states.rename(columns={'name': 'state'}) 

df_states.drop(columns=['Summary Level','county_code','subdiv','place'], 

inplace=True) 

Similarly, a DataFrame df_counties is created, which includes only county-level data: 

df_counties = df.loc[(df['county_code'] != '000') & (df['subdiv'] == '00000') &  

                         (df['place'] == '00000') & (df['consolidated'] == 

'00000'), ['fips_state','county_code','name']] 

df_counties.rename(columns={'name': 'county'}, inplace=True) 

The merge method performs a left join between df_states and df_counties; this effectively creates the df_fips 

DataFrame by appending the state-level columns (including state abbreviation and name) to df_counties: 

df_fips = pd.merge(df_states, df_counties, on='fips_state', how='left') 

The fips_county column is created in the df_fips DataFrame, and unnecessary columns are dropped using 
the drop method: 

df_fips['fips_county'] = df_fips['fips_state'] + df_fips['county_code'] 

df_fips.drop(columns=['county_code', 'consolidated'], inplace=True) 

Finally, Puerto Rico values are removed, and the df_fips DataFrame is saved to FIPS_table.csv using to 
to_csv method: 

df_fips = df_fips.loc[df_fips['fips_state'] != '72'] 

df_fips.to_csv(os.path.join(path_tables,'FIPS_table.csv'), index=False) 

At this point, FIPS_table.csv has been created, and this can be used for subsequent data transformations. 
For example, two dictionaries are created by reading the CSV file into memory: 

# table columns are 0) FIPS_state, 1) state name, 2) county, 3) FIPS_county 

with open(os.path.join(path_tables,'FIPS_table.csv'), mode='r') as infile: 

    reader = csv.reader(infile) 

    next(reader, None) 

    county_fips_dict = {rows[3]:[rows[2], rows[0], rows[1]] for rows in reader} 

with open(os.path.join(path_tables,'FIPS_table.csv'), mode='r') as infile: 

    reader = csv.reader(infile) 

    next(reader, None) 

    state_fips_dict = {rows[0]:[rows[1]] for rows in reader} 

The county_fips_dict dictionary maps the five-digit county FIPS codes to the associated county name, state 
FIPS code , and state name. 

Similarly, state_fips_dict maps the two-digit state FIPS codes to the associate state name. Python 
dictionaries, by definition, cannot maintain non-unique keys, so only the first row for each star te is read 
into this second dictionary, which yields a total of 51 key-value pairs—the 50 states and the District of 
Columbia. 

INGESTING CDC OBESITY DATA 

The United States Diabetes Surveillance System (USDSS) is managed by the Centers for Disease Control 
and Prevention (CDC), and collects and longitudinally monitors diabetes incidence across the nation, 
including diabetes-related contributors such as obesity and physical inactivity. Their interactive “Social 
Determinants of Health” dashboard (https://gis.cdc.gov/grasp/diabetes/diabetesatlas-sdoh.html) 
demonstrates county-level diabetes incidence, shown for 2018 in Figure 1, with darker regions denoting 
higher incidence.  

https://gis.cdc.gov/grasp/diabetes/diabetesatlas-sdoh.html
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Figure 1. County-Level Diabetes Incidence for 2018 (USDSS) 

Obesity data are obtained from the CDC Behavioral Risk Factor Surveillance System (BRFSS), a monthly 
telephonic survey, with CDC providing the following description of its methodology: (CDC, 2022) 

• To have diagnosed diabetes if they responded "yes" to the question, "Has a doctor ever told you 
that you have diabetes?" Women who indicated that they only had diabetes during pregnancy were 
not considered to have diagnosed diabetes. People who reported having diagnosed diabetes were 
then asked at what age they were diagnosed. 

• To have been diagnosed with diabetes in the last year if they reported having diagnosed diabetes 
and the difference between their age at the time of the survey and the age they provided to the 
question, "How old were you when you were told you have diabetes?" was less than one. If the 
difference was between one year and two years, the person was weighted as half a newly 
diagnosed case. 

• To be obese if their body mass index was 30 or greater. Body mass index (weight [kg]/height [m]2) 
was derived from self-report of height and weight. 

• To be physically inactive if they answered "no" to the question, "During the past month, other than 
your regular job, did you participate in any physical activities or exercises such as running, 
calisthenics, golf, gardening, or walking for exercise?" 

Obesity data are demonstrated in Figure 2, and can be downloaded to a CSV file. 

 

Figure 2. CDC 2018 County-Level Obesity Data 
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Download this table to the following location: 

c:\shedder\cdc\DiabetesAtlasData.csv 

Table 4 demonstrates the obesity CSV file; note the headers that will need to be removed programmatically: 

 

Table 4. CDC 2018 County-Level Obesity Data (betesAtlasData.csv) 

With obesity data downloaded, the next two subsections demonstrate how to ingest this CSV file using SAS 
and Python, respectively. 

INGESTING OBESITY DATA USING SAS 

The following DATA step ingests the CDC obesity data: 

%let fil=DiabetesAtlasData.csv; 

 

data df_fat (drop=year svi); 

   length year $4 fips_county $5 county $40 state $20 fat_pct 8 svi 8; 

   infile "&path_cdc&fil" dsd delimiter=',' firstobs=4 end=eof; 

   input year $ fips_county $ county $ state $ fat_pct svi; 

run; 

Note the LOST CARD comment in the log, which results from the final line of the file, which lists reference 
information for the data, and which thus does not conform to columnar input: 

US Diabetes Surveillance System; www.cdc.gov/diabetes/data; Division of Diabetes 

Translation - Centers for Disease Control and 

The df_fat data set is created, as demonstrated in Table 5. 

 

Table 5. DF_fat Data Set Containing CDC County-Level Obesity Data 

Note that the SVI variable, not the focus of this text, has been removed from the data. 

INGESTING OBESITY DATA USING PYTHON 

The following Python function reads the CDC CSV file, and creates the df_fat DataFrame: 

def create_df_fat(fil): 

    global df_fat 

    df_fat = pd.read_csv( 

        os.path.join(path_cdc, fil), header = None, sep = ',', quotechar = '"', 

        skiprows = 3, usecols = [1,2,3,4],  

        names=['fips_county','county','state','fat_pct'], 
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        dtype={'fips_county': str, 'county': str, 'state': str, 'fat_pct': 

'float64'}) 

    df_fat.dropna(inplace=True) 

 

create_df_fat(r'DiabetesAtlasData.csv') 

The create_df_fat function again relies on the read_csv method to ingest the CSV file, with the names and 

dtype arguments specifying variables to retain and their data types, respectively. The dropna method 

removes any rows in the df_fat DataFrame that are missing at least one column, and this statement is 
required to remove the final row in the CSV file containing reference information: 

df_fat.dropna(inplace=True) 

With obesity data uploaded into both SAS and Python, the next step is to inspect these data, and because 
they represent county-level statistics, to compare the data with respect to county-level US Census FIPS 
codes (i.e., master data). 

INSPECTING CDC OBESITY DATA 

At this point, the savvy analyst may have noticed that the df_fips data set (and DataFrame) contains 3,142 
observations (rows), whereas the df_fat data set (and DataFrame) contains only 3,141 observations (rows). 
Thus, without even inspecting individual values, one is aware that some discrepancy exists between these 
two federal data sources. 

INSPECTING OBESITY DATA USING SAS 

The following SAS code identifies discrepancies between the FIPS county codes listed in the two data sets: 

proc sort data=df_fat out=df_fat_sorted; 

   by fips_county; 

run; 

 

proc sort data=df_fips out=df_fips_sorted; 

   by fips_county; 

run; 

 

data df_fat_merged; 

   merge df_fat_sorted (in=a keep=fips_county) df_fips_sorted (in=b); 

   by fips_county; 

   if a and ^b then put 'Extra FIPS in CDC' fips_county; 

   else if b and ^a then put 'Missing FIPS in CDC   ' fips_county; 

run; 

The log demonstrates that 35039 (i.e., Rio Arriba, New Mexico) is missing from the CDC data: 

Missing FIPS in CDC   35039 

NOTE: There were 3141 observations read from the data set WORK.DF_FAT_SORTED. 

NOTE: There were 3142 observations read from the data set WORK.DF_FIPS_SORTED. 

NOTE: The data set WORK.DF_FAT_MERGED has 3142 observations and 4 variables. 

A second point to interrogate is whether state and county names are spelled identically between US Census 
and CDC data—and were the federal government exercising master data management (MDM), you would 
expect this would be the case. The following DATA step now applies the STATE_FIPS_DICT and 
COUNTY_FIPS_DICT user-defined formats, created previously, to compare CDC state and county names 
to US Census equivalents: 

data df_fat_check_state_county; 

   set df_fat; 

   length state_census $30 county_census $40; 

   state_census=put(substr(fips_county,1,2), $state_fips_dict.); 

   county_census=put(fips_county, $county_fips_dict.); 

   if state^=state_census then put @1 fips_county @7 state @40 state_census; 

   if county^=county_census then put @1 fips_county @7 county @40 county_census; 
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run; 

Only the first five exceptions are shown, and they demonstrate a variety of issues—with some variation 
occurring from capitalization, other variation occurring from word discrepancy, and with some values 
truncated in the CDC data: 

01049 Dekalb County                    DeKalb County 

02195 Petersburg Census Area           Petersburg Borough 

02198 Prince of Wales-Hyder Censu      Prince of Wales-Hyder Census Area 

11001 District Of Columbia             District of Columbia 

12027 Desoto County                    DeSoto County 

To remove the capitalization issue, the DATA step can be updated to include UPCASE: 

data df_fat_check_state_county; 

   set df_fat; 

   length state_census $30 county_census $40; 

   state_census=put(substr(fips_county,1,2), $state_fips_dict.); 

   county_census=put(fips_county, $county_fips_dict.); 

   if upcase(state)^=upcase(state_census) then put @1 fips_county @7 state  

      @40 state_census; 

   if upcase(county)^=upcase(county_census) then put @1 fips_county @7 county  

      @40 county_census; 

run; 

The following seven county names are different (i.e., wrong) in the CDC data: 

02195 Petersburg Census Area           Petersburg Borough 

02198 Prince of Wales-Hyder Censu      Prince of Wales-Hyder Census Area 

19141 O&#39;brien County               O'Brien County 

24033 Prince George&#39;s County       Prince George's County 

24035 Queen Anne&#39;s County          Queen Anne's County 

24037 St. Mary&#39;s County            St. Mary's County 

35013 DoÃ±a Ana County                 Do¤a Ana County 

Opening the raw CDC CSV file in a text editor reveals that values truly are being truncated by CDC: 

2018,02198,Prince of Wales-Hyder Censu,Alaska,19.9,0.7662 

Similarly, the text file reveals that escape characters (like #39; representing a single quote) really are 
maintained within the raw CDC data: 

2018,19141,O&#39;brien County,Iowa,25.4,0.2322 

With this confirmation that some CDC counties are incorrectly named, it is best to overwrite the CDC county 
names and to instead rely on the US Census master data for county names. 

data df_fat_county_corrected; 

   set df_fat (drop=county); 

   length county $40; 

   county=put(fips_county, $county_fips_dict.); 

run; 

At this point, one county remains missing from the CDC data, but state names have been validated, and 
county names have been corrected. 

INSPECTING OBESITY DATA USING PYTHON 

The differences in FIPS county codes can be assessed in Python with a single line of code: 

print(set(df_fips.fips_county) - set(df_fat.fips_county)) 

The set function creates a unique series of data, which removes any non-unique values that may exist. 

Thus, by setting the fips_county column in these two DataFrames, the difference is demonstrated, and 
matches the missing county revealed by equivalent SAS code: 
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{'35039'} 

The following code identifies the seven CDC county names that do not match US Census names, as well 
as the missing county: 

df_merge = pd.merge(left=df_fips[['fips_county','county']],  

                    right=df_fat[['fips_county','county']], how='left', 

on='fips_county') 

df_merge_2 = df_merge[df_merge.county_x.str.upper() != 

df_merge.county_y.str.upper()] 

print(df_merge_2) 

Note that the merge method by default creates new columns whenever identically named columns occur in 

DataFrames being joined; thus, because the county column appears in both df_fips and df_fat, an _x and 

_y, respectively, are appended to create county_x (representing the master FIPS data) and county_y (that 

includes erroneous CDC county names). 

The print function writes rows containing non-matching county names to the log: 

     fips_county                           county_x                     county_y 

87         02195                 Petersburg Borough       Petersburg Census Area 

88         02198  Prince of Wales-Hyder Census Area  Prince of Wales-Hyder Censu 

859        19141                     O'Brien County           O&#39;brien County 

1208       24033             Prince George's County   Prince George&#39;s County 

1209       24035                Queen Anne's County      Queen Anne&#39;s County 

1210       24037                  St. Mary's County        St. Mary&#39;s County 

1802       35013                    Do¤a Ana County              Doña Ana County 

1816       35039                  Rio Arriba County                          NaN 

Instead of applying the merge method, the county_fips_dict dictionary instead could be applied to the county 

FIPS code to transform it, and to initialize the new column county_census: 

df_fat_check_state_county = df_fat.copy(deep=True) 

df_fat_check_state_county['county_census'] = 

df_fat_check_state_county.fips_county.map(county_fips_dict).str[0] 

df_fat_check_state_county = 

df_fat_check_state_county.loc[df_fat_check_state_county.county.str.upper() != 

df_fat_check_state_county.county_census.str.upper()] 

print(df_fat_check_state_county[['fips_county','county','county_census']]) 

The copy method first creates a copy of the df_fat DataFrame, thus ensuring that changes made to the 

copy will not modify the original df_fat DataFrame: 

df_fat_check_state_county = df_fat.copy(deep=True) 

The county_census column is created by applying the map method to the five-digit FIPS county code; the 

county_fips_dict dictionary is mapped, and because the dictionary was defined as having a list of three 
elements (county name, state FIPS code, and state name), the string method selects the first element 
(county name), as designated by the [0] index: 

df_fat_check_state_county.fips_county.map(county_fips_dict).str[0] 

The loc function creates a slice of the DataFrame that includes only rows in which the county column and 

county_census column values do not match: 

df_fat_check_state_county =  

   df_fat_check_state_county.loc[df_fat_check_state_county.county.str.upper() !=  

   df_fat_check_state_county.county_census.str.upper()] 

When the DataFrame is examined, its results mirror the exceptions that were noted in the previous merge 

method, with the exception that the single missing county is not listed: 

     fips_county                       county                      county_census 

87         02195       Petersburg Census Area                 Petersburg Borough 
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88         02198  Prince of Wales-Hyder Censu  Prince of Wales-Hyder Census Area 

859        19141           O&#39;brien County                     O'Brien County 

1209       24033   Prince George&#39;s County             Prince George's County 

1210       24035      Queen Anne&#39;s County                Queen Anne's County 

1212       24037        St. Mary&#39;s County                  St. Mary's County 

1802       35013              Doña Ana County                   DoÂ¤a Ana County 

Finally, with the Python evaluation demonstrating that the CDC county names cannot be trusted, the merge 

method is utilized again to overwrite the errant county names with trusted US Census names: 

df_fat_county_corrected = pd.merge(left=df_fat[['fips_county','fat_pct']],  

                                   right=df_fips, how='left', on='fips_county') 

Application of dictionaries with the map method most closely mirrors the application of SAS formats 

(including user-defined formats) to variables, whereas the merge method most closely mirrors DATA step 

MERGE statements or SQL JOIN statements. Thus, in both languages, multiple methods exist for 
performing data lookup operations that cull, standardize, or clean data based on master data values. 

ANALYZING CDC OBESITY DATA 

With county names now cleaned, some basic data analysis can be performed to answer obesity questions: 

• What are the ten fattest counties in the nation? 

• What are the ten skinniest counties in the nation? 

• What are the ten fattest states? Note that as only county-level obesity data have been downloaded, 
this will require computing a weighted average (by county population size) to estimate state-level 
obesity rates. 

Note again, in answering these questions, the obesity criteria supplied by CDC that state these metrics are 
gathered over the telephone, and computed only by measuring reported weight and reported height; thus, 
numerous biases do exist, none of which are explored in this text. 

WHAT ARE THE TEN FATTEST COUNTIES IN THE US? 

This can be computed in SAS by first sorting the data by fat percentage, and subsequently selecting the 
top ten observations in a DATA step: 

proc sort data=df_fat_county_corrected; 

   by descending fat_pct; 

run; 

data df_fattest; 

   set df_fat_county_corrected (obs=10); 

   length county_st $50; 

   format fat_pct 8.1; 

   county_st=catx(', ',county,state); 

   put @1 county_st @40 fat_pct; 

run; 

The log demonstrates the ten fattest counties: 

Thurston County, Nebraska              43.8 

Cass County, Nebraska                  43.1 

Williamsburg County, South Carolina    43.0 

Rolette County, North Dakota           41.6 

Sunflower County, Mississippi          41.5 

Ziebach County, South Dakota           41.5 

Lawrence County, Kentucky              41.4 

Hidalgo County, Texas                  41.4 

Marengo County, Alabama                41.3 

Jefferson County, Texas                40.8 

A single line of Python code leverages the nlargest method to select the ten fattest counties: 
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df_fat_county_corrected.nlargest(10, 'fat_pct')[['county','state','fat_pct']] 

The columnar output is demonstrated: 

                   county           state  fat_pct 

1740      Thurston County        Nebraska     43.8 

1666          Cass County        Nebraska     43.1 

2359  Williamsburg County  South Carolina     43.0 

2028       Rolette County    North Dakota     41.6 

1467     Sunflower County     Mississippi     41.5 

2426       Ziebach County    South Dakota     41.5 

1056      Lawrence County        Kentucky     41.4 

2629       Hidalgo County           Texas     41.4 

45         Marengo County         Alabama     41.3 

2644     Jefferson County           Texas     40.8 

WHAT ARE THE TEN SKINNIEST COUNTIES IN THE US? 

Similarly, the SAS data set can be sorted in ascending order by fat percentage, after which the DATA step 
selects the ten skinniest counties: 

proc sort data=df_fat_county_corrected; 

   by fat_pct; 

run; 

data df_skinniest; 

   set df_fat_county_corrected (obs=10); 

   length county_st $50; 

   county_st=catx(', ',county,state); 

   put @1 county_st @40 fat_pct; 

run; 

The log demonstrates the top ten skinniest counties: 

Teton County, Wyoming                  10.5 

Boulder County, Colorado               13.6 

Routt County, Colorado                 13.7 

Gunnison County, Colorado              13.8 

Pitkin County, Colorado                14.2 

Summit County, Utah                    14.2 

Chaffee County, Colorado               14.4 

Taos County, New Mexico                14.6 

Summit County, Colorado                15.2 

San Francisco County, California       15.4 

A single line of Python code leverages the nsmallest method to select the ten skinniest counties: 

df_fat_county_corrected.nsmallest(10, 'fat_pct') [['county','state','fat_pct']] 

The columnar output is demonstrated: 

                    county       state  fat_pct 

3137          Teton County     Wyoming     10.5 

250         Boulder County    Colorado     13.6 

298           Routt County    Colorado     13.7 

270        Gunnison County    Colorado     13.8 

293          Pitkin County    Colorado     14.2 

2797         Summit County        Utah     14.2 

252         Chaffee County    Colorado     14.4 

1823           Taos County  New Mexico     14.6 

303          Summit County    Colorado     15.2 

223   San Francisco County  California     15.4 
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WHAT ARE THE TEN FATTEST STATES IN THE US? 

Because these CDC obesity statistics are calculated at the county level, a simple mean cannot be utilized 
to aggregate county-level percentages to calculate state-level obesity; rather, weighted averages (by 
county population) must be utilized to approximate state-level obesity. This is not to imply that state-level 
obesity data are unpublished, but rather to demonstrate how to calculate weighted averages. 

The SAS SQL procedure first joins county population to the obesity data, after which the MEANS procedure 
computes the weighted averages utilizing the WEIGHT statement to weight by county population: 

proc sql; 

   create table df_fat_pop as 

      select a.*, b.population from df_fat_county_corrected as a 

         left join df_pop_counties as b on a.fips_county = b.fips_county; 

quit; 

 

proc means data=df_fat_pop sum sumwgt mean; 

   class state; 

   weight population; 

   var fat_pct; 

   output out=df_fat_weighted_avg mean=fat_avg; 

run; 

The output, shown in Table 6, demonstrates that Alabama is the fattest state in the US. 

 

Table 6. Fattest Ten States in the US, Calculated by Weighted Means of County-Level CDC Data 

As in SAS, multiple methods also exist to calculate weighted means in Python. For example, the following 
code creates the df_grouped DataFrame, which orders the states by mean obesity percentage: 

df_fat_pop = pd.merge(left=df_fat, 

right=df_pop_counties[['fips_county','population']],  

                      how='inner', on='fips_county') 

df_fat_pop['fat_pct_x_pop'] = df_fat_pop.fat_pct * df_fat_pop.population 

df_grouped = df_fat_pop.groupby('state').sum() 

df_grouped['fat_pct_state'] = df_grouped.fat_pct_x_pop / df_grouped.population 

print(df_grouped) 

The ten fattest states within the df_grouped DataFrame follow, and mirror the SAS results: 
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                      fat_pct  population  fat_pct_x_pop  fat_pct_state 

state                                                                   

Alabama                2071.4   5039877.0    164758811.4      32.691038 

Alaska                  720.5    723102.0     21223043.4      29.350000 

Arizona                 448.0   7276316.0    205462794.1      28.237201 

Arkansas               2124.8   3025891.0     93653940.9      30.950864 

California             1398.6  39237836.0    974923451.7      24.846514 

Colorado               1352.9   5812069.0    129719736.9      22.319029 

Connecticut             215.5   3605597.0     94799282.4      26.292257 

Delaware                102.8   1003384.0     32854487.2      32.743683 

District of Columbia     24.6    670050.0     16483230.0      24.600000 

Florida                2052.3  21781128.0    602427823.8      27.658247 

In addition to demonstrating that some counties are in dire need of some gym time, these simple analytic 
examples have only scratched the surface of SAS and Python capabilities, by demonstrating that 
functionally equivalent solutions can be designed in either language. 

CONCLUSION 

SAS and Python are widely popular industry leaders that occupy two discrete corners of the analytics 
arena—proprietary and open-source systems. Although programming language selection is often made at 
the organization, team, customer, or product owner level, many developers and analysts do have the ability 
to select their langue de choix, so long as they can demonstrate that a language can deliver a functional 
solution. And in these flexible environments, open-source, freely available programming languages, such 
as Python, should be considered and explored as viable alternatives to pricey, proprietary software. The 
Pandas library and its DataFrame data structure are especially well-equipped for data analysis, and this 
text has demonstrated only a handful of its ever-expanding array of tools. 
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