
SESUG Paper 168-2023

What’s black and white and sheds all over? The Python Pandas DataFrame,
the Open-Source Data Structure Supplanting the SAS® Data Set

Troy Martin Hughes

ABSTRACT

Python is a general-purpose, object-oriented programming (OOP) language, consistently rated among the
most popular and widely utilized languages, owing to powerful processing, user-friendly syntax, and an
unparalleled, abundant open-source community of developers. The Pandas library, a freely downloadable
resource, extends Python functionality, and has become the predominant Python analytic toolkit. The
Pandas DataFrame is the primary Pandas data structure, akin to the SAS® data set in the SAS ecosystem.
Just as SAS built-in procedures, functions, subroutines, and statements manipulate and interact with SAS
data sets to transform data and to deliver business value, so too do Python and Pandas methods, functions,
and statements deliver similar functionality. And what’s more, Python does it for free!!! This text
demonstrates basic data manipulation and analysis performed on US Census and Centers for Disease
Control and Prevention (CDC) data, providing functionally equivalent SAS (9.4M7) and Python (3.10.5)
syntax, with the goal of introducing SAS practitioners to open-source alternatives. Discover the fattest
counties and states in the US, and do so while learning Python Pandas!

SETUP

A primary folder should be established, in which SAS and Python programs will reside, and in which
subfolders can be created—these examples use the following:

c:\shedder\

Create subordinate folders for Census and CDC:

c:\shedder\Census\

c:\shedder\CDC\

c:\shedder\tables\

This location can be initialized to a SAS macro variable:

%let path_base=c:\shedder\;

%let path_census=&path_base.census\;

%let path_cdc=&path_base.cdc\;

Within Python, two libraries are imported—os, which contains operating system information and

functionality, and pandas, which defines the Pandas library. By convention, Pandas is imported using the

alias pd:

import os

import pandas as pd

import csv

At this point, save your python program to the primary folder; the filename does not matter, but it must be
saved so that the cwd method can evaluate the “current working directory” (i.e., where the file is saved):

c:\shedder\my_little_python.py

Global variables are initialized to the following folder locations, and are equivalent to SAS global macro
variables:

path_base=os.getcwd()

path_census=os.path.join(path_base,'census')

path_cdc=os.path.join(path_base,'CDC')

2

The first thing to note is that Python is a case-sensitive language, unlike Base SAS, so CWD is not the
same as cwd. Also note that Python statements are not terminated with those pesky semicolons. Finally,
comments in Python are prefaced by octothorps rather than asterisks (i.e., # not *).

The following files should be downloaded:

• From the US Census (https://www2.census.gov/programs-surveys/popest/datasets/2020-
2021/counties/totals/), download the CSV file (co-est2021-alldata.csv) to the Census folder.

• From the US Census (https://www2.census.gov/programs-surveys/popest/datasets/2020-
2021/state/totals/), download CSV file (NST-EST2021-alldata.csv) to the Census folder.

• From the US Census (https://www2.census.gov/programs-surveys/popest/geographies/2017/all-
geocodes-v2017.xlsx), download the XLSX workbook to the Census folder; subsequently save this
workbook as a CSV file: all-geocodes-v2017.csv.

• CDC obesity data are downloaded in a subsequent section.

INGESTING NATIONAL, STATE, AND COUNTY POPULATION DATA

National- and state-level population estimates for 2021 are maintained within NST-EST2021-alldata.csv,
as demonstrated in Table 1.

Table 1. National- and State-Level Population Estimates for 2021

Similarly, county-level population estimates for 2021 are maintained within co-est2021-alldata.csv, as
demonstrated in Table 2.

Table 2. County-Level Population Estimates for 2021

Three data sets will be created, representing national-, state-, and county-level population data:

• df_pop_us

• df_pop_states

• df_pop_counties

Note that regional-level data are not utilized in these analyses, so these observations will be deleted.

INGESTING POPULATION USING SAS

PROC IMPORT fails to ingest the data because it incorrectly interprets FIPS values (many of which contain
leading zeros) as numeric data, so DATA steps must be created that explicitly specify FIPS codes are
character data type. This is not uncommon, and is similarly required when importing FIPS into Python.

DF_pop_us_temp is a temporary data set that is used as an intermediate step to create both DF_pop_us
and DF_pop_states:

https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/counties/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/counties/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/state/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/state/totals/
https://www2.census.gov/programs-surveys/popest/geographies/2017/all-geocodes-v2017.xlsx
https://www2.census.gov/programs-surveys/popest/geographies/2017/all-geocodes-v2017.xlsx

3

data df_pop_us_temp (rename=(state=FIPS_state popestimate2021=population));

 infile "&path_census.NST-EST2021-alldata.csv" delimiter=',' dsd firstobs=2;

 length sumlev $2 region $1 division $1 state $2 name $50 estimatebase2020 8

 popestimate2020 8 popestimate2021 8;

 input sumlev $ region $ division $ state $ name $ estimatebase2020

 popestimate2020 popestimate2021;

run;

Thereafter, three successive DATA steps create DF_pop_us, DF_pop_states, and DF_pop_counties:

data df_pop_us (keep=FIPS_state population pop_mil);

 set df_pop_us_temp;

 where name='United States';

 length pop_mil 8;

 pop_mil = pop / 1000000;

run;

data df_pop_states (keep=FIPS_state population pop_mil);

 set df_pop_us_temp;

 where FIPS_state^='00';

 length pop_mil 8;

 pop_mil = population / 1000000;

run;

data df_pop_counties (rename=(state=FIPS_state county=FIPS_county

 popestimate2021=population) keep=state county popestimate2021 pop_mil);

 infile "&path_census.co-est2021-alldata.csv" delimiter=',' dsd firstobs=2;

 length sumlev $2 region $1 division $1 state $2 county $5 stname $50 ctyname $50

 estimatebase2020 8 popestimate2020 8 popestimate2021 8;

 input sumlev $ region $ division $ state $ county $ stname $ ctyname $

 estimatebase2020 popestimate2020 popestimate2021;

 if county^='000';

 length pop_mil 8;

 pop_mil = popestimate2021 / 1000000;

 county=state || county;

run;

Presto! The data sets have been created.

INGESTING POPULATION USING PYTHON

The equivalent Python steps follow, in which the create_df_pop_us, create_df_pop_states, and
create_df_pop_counties functions instantiate three DataFrames:

create dataframe with national population

def create_df_pop_us(fil):

 global df_pop_us

 df_pop_us = pd.read_csv(

 os.path.join(path_census, fil), header = 0, sep = ',', quotechar = '"',

 index_col = False, dtype = {'STATE': str, 'POPESTIMATE2021': float, 'NAME':

str},

 usecols = ['STATE','POPESTIMATE2021', 'NAME'])

 df_pop_us.rename(columns = {'STATE': 'fips_state', 'POPESTIMATE2021':

'population'}, inplace=True)

 df_pop_us['pop_mil'] = df_pop_us['population']/1000000

 df_pop_us = df_pop_us.loc[df_pop_us['NAME'] == 'United States']

 # remove FIPS 00 which is the entire US

 df_pop_us.drop(columns=['NAME'], inplace=True)

create dataframe with state populations

def create_df_pop_states(fil):

 global df_pop_states

 df_pop_states = pd.read_csv(

 os.path.join(path_census, fil), header = 0, sep = ',', quotechar = '"',

4

 index_col = False, dtype = {'STATE': str, 'POPESTIMATE2021': float},

 usecols = ['STATE','POPESTIMATE2021'])

 df_pop_states.rename(columns = {'STATE': 'fips_state', 'POPESTIMATE2021':

'population'}, inplace=True)

 df_pop_states['pop_mil'] = df_pop_states['population']/1000000

 # remove FIPS 00 which is the entire US

 df_pop_states = df_pop_states.loc[df_pop_states['fips_state'] != '00']

create dataframe with county populations

def create_df_pop_counties(fil):

 global df_pop_counties

 df_pop_counties = pd.read_csv(

 os.path.join(path_census, fil), header = 0, sep = ',', quotechar = '"',

 encoding = 'utf-8', encoding_errors = 'ignore',

 index_col = False, dtype = {'STATE': str, 'COUNTY': str, 'POPESTIMATE2021':

float},

 usecols = ['STATE', 'COUNTY', 'POPESTIMATE2021'])

 df_pop_counties.rename(columns = {'STATE': 'fips_state', 'COUNTY':

'fips_county_temp',

 'POPESTIMATE2021': 'population'},

inplace=True)

 df_pop_counties['pop_mil'] = df_pop_counties['population']/1000000

 df_pop_counties['fips_county'] = df_pop_counties['fips_state'] +

df_pop_counties['fips_county_temp']

 # remove FIPS 000 which is the entire state

 df_pop_counties = df_pop_counties.loc[df_pop_counties['fips_county_temp'] !=

'000']

 df_pop_counties.drop(columns=['fips_county_temp'], inplace=True)

create_df_pop_us(r'NST-EST2021-alldata.csv')

create_df_pop_states(r'NST-EST2021-alldata.csv')

create_df_pop_counties(r'co-est2021-alldata.csv')

Looking more closely at the create_df_pop_counties function, the def statement declares the function, in

which a single parameter (fil) is declared:

def create_df_pop_counties(fil):

The global statement declares the df_pop_counties variable as having global scope, indicating that the

variable will be available after function execution:

global df_pop_counties

The pd.read_csv method instantiates df_pop_counties as a DataFrame, with multiple arguments

specifying the manner in which the CSV file should be ingested. For example, the dtype argument specifies

the data type for each variable, similar to the LENGTH statement in SAS:

dtype = {'STATE': str, 'COUNTY': str, 'POPESTIMATE2021': float}

And the usecols argument specifies the variables to retain from the CSV file, similar to the KEEP option in

SAS:

usecols = ['STATE', 'COUNTY', 'POPESTIMATE2021']

The rename method renames CSV variables, and inplace=True designates that the changes should be

made in place (i.e., in the df_pop_counties DataFrame) as opposed to on a copy of the DataFrame:

df_pop_counties.rename(columns = {'STATE': 'fips_state', 'COUNTY':

'fips_county_temp', 'POPESTIMATE2021': 'population'}, inplace=True)

A new column (fips_county) in the DataFrame is created by overloading the + operator; that is, two columns
within the DataFrame (holding string data) are concatenated to each other:

5

df_pop_counties['fips_county'] = df_pop_counties['fips_state'] +

df_pop_counties['fips_county_temp']

Because a county FIPS value of 000 represents the state-level FIPS, all rows for which the
fips_county_temp is 000 are removed. The loc function “slices” the DataFrame to remove the 000 rows:

df_pop_counties = df_pop_counties.loc[df_pop_counties['fips_county_temp'] != '000']

Finally, the drop method drops the fips_county_temp column, the original three-character county FIPS

code, now that the fips_county column has been created that denotes not only the county FIPS but also
the state FIPS codes:

df_pop_counties.drop(columns=['fips_county_temp'], inplace=True)

Three function calls execute the respective functions, and the three DataFrames are created:

create_df_pop_us(r'NST-EST2021-alldata.csv')

create_df_pop_states(r'NST-EST2021-alldata.csv')

create_df_pop_counties(r'co-est2021-alldata.csv')

The three DataFrames that are created have identical content to the three SAS data sets created in the
prior subsection.

INGESTING STATE AND COUNTY FIPS CODES

State FIPS codes are two-digit numbers that uniquely identify states (and US territories), and by convention,
leading zeros are always retained; thus, California corresponds to 06 but not 6. County FIPS codes are
three-digit numbers that uniquely identify a county (within a state), but because county codes are repeated
across states, identifying counties at the national level requires concatenating the state FIPS and county
FIPS codes to yield a five-digit FIPS code.

FIPS codes maintained in all-geocodes-v2017.csv are demonstrated in Table 3; note the multiple header
rows that must be handled when importing these data.

Table 3. FIPS Codes

FIPS codes are powerful because they overcome the occasional spelling variations or errors that can occur
in state or county names—even within federal databases—as demonstrated subsequently. FIPS reliability
also means that tables can be more reliably joined by FIPS codes than, for example, state names or county
names.

INGESTING FIPS CODES USING SAS

The following SAS code ingests the FIPS CSV file and creates the DF_fips data set:

%let fil=all-geocodes-v2017.csv;

data df_fips (drop=summary_level FIPS_state_temp FIPS_county_temp subdiv_code

6

 place_code city_code name);

 length FIPS_state $2 state $50 county $50 FIPS_county $5;

 infile "&path_census&fil" dsd delimiter=',' firstobs=6 end=eof;

 length summary_level $3 FIPS_state_temp $2 FIPS_county_temp $5 subdiv_code $5

 place_code $5 city_code $5 name $50;

 input summary_level $ FIPS_state_temp $ FIPS_county_temp $ subdiv_code $

 place_code $ city_code $ name $;

 retain FIPS_state state;

 /* 040 is the FIPS summary code for state-level region */

 if summary_level='040' then do;

 FIPS_state=FIPS_state_temp;

 state=name;

 end;

 /* 010 is the FIPS summary code for the entire US */

 else if summary_level^='010' and subdiv_code='00000' and place_code ='00000'

 and city_code='00000' and FIPS_state^= '72' then do;

 FIPS_county=FIPS_state || FIPS_county_temp;

 county=name;

 output;

 end;

run;

A user-defined SAS format is both a straightforward and efficient method to map values, and the following
code creates the COUNTY_FIPS_DICT format that maps five-digit FIPS county codes to their associated
county names:

data county_fips_dict_temp;

 set df_fips (rename=(FIPS_county=start county=label));

 length fmtname $20 type $1;

 retain fmtname 'county_fips_dict' type 'c';

run;

proc format cntlin=county_fips_dict_temp;

run;

Similarly, the following code creates the STATE_FIPS_DICT user-defined format that maps the two-digit
FIPS state codes to their associated state (or territory) names:

proc sort data=df_fips (keep=fips_state state) out=df_fips_temp nodupkey;

 by fips_state;

run;

data state_fips_dict_temp;

 set df_fips_temp (rename=(FIPS_state=start state=label));

 length fmtname $20 type $1;

 retain fmtname 'state_fips_dict' type 'c';

run;

proc format cntlin=state_fips_dict_temp;

run;

User-defined formats reside in memory, facilitate faster data transformations, and eliminate the need to join
the DF_fips data set to other data sets via DATA step MERGE statements or SQL procedure JOIN
statements.

INGESTING FIPS CODES USING PYTHON

Python similarly leverages FIPS data to create equivalent dictionary objects that map FIPS codes to both
county and state names—but first, a refined CSV file is created, from which the dictionaries can be built:

path_tables=os.path.join(path_base,'tables')

def create_fips_table(fil):

 global df_fips

7

 df = pd.read_csv(

 os.path.join(path_census, fil),

 header=4, sep=',', quotechar='"', index_col=False, encoding='latin1',

 dtype = {'Summary Level': str, 'State Code (FIPS)': str, 'County Code

(FIPS)': str,

 'County Subdivision Code (FIPS)': str,

 'Place Code (FIPS)': str, 'Consolidtated City Code (FIPS)': str,

 'Area Name (including legal/statistical area description)': str},

 usecols = ['Summary Level', 'State Code (FIPS)', 'County Code (FIPS)',

'County Subdivision Code (FIPS)',

 'Place Code (FIPS)', 'Consolidtated City Code (FIPS)',

 'Area Name (including legal/statistical area description)'])

 df.rename(columns={'State Code (FIPS)': 'fips_state', 'County Code (FIPS)':

'county_code',

 'County Subdivision Code (FIPS)': 'subdiv', 'Place Code

(FIPS)': 'place',

 'Consolidtated City Code (FIPS)': 'consolidated',

 'Area Name (including legal/statistical area description)':

'name'}, inplace=True)

 df_states = df.loc[df['Summary Level'] == '040']

 df_states = df_states.rename(columns={'name': 'state'})

 df_states.drop(columns=['Summary Level','county_code','subdiv','place'],

inplace=True)

 df_counties = df.loc[(df['county_code'] != '000') & (df['subdiv'] == '00000') &

 (df['place'] == '00000') & (df['consolidated'] ==

'00000'), ['fips_state','county_code','name']]

 df_counties.rename(columns={'name': 'county'}, inplace=True)

 df_fips = pd.merge(df_states, df_counties, on='fips_state', how='left')

 df_fips['fips_county'] = df_fips['fips_state'] + df_fips['county_code']

 df_fips.drop(columns=['county_code', 'consolidated'], inplace=True)

 # remove Puerto Rico counties

 df_fips = df_fips.loc[df_fips['fips_state'] != '72']

 df_fips.to_csv(os.path.join(path_tables,'FIPS_table.csv'), index=False)

create_fips_table(r'all-geocodes-v2017.csv')

Examining the function more closely, the global statement declares the df_fips variable, which is

instantiated as a DataFrame by the subsequent read_csv method:

def create_fips_table(fil):

 global df_fips

 df = pd.read_csv(

The dtype and usecols parameters declare the column data types and columns to keep, respectively:

dtype = {'Summary Level': str, 'State Code (FIPS)': str, 'County Code (FIPS)': str,

 'County Subdivision Code (FIPS)': str,

 'Place Code (FIPS)': str, 'Consolidtated City Code (FIPS)': str,

 'Area Name (including legal/statistical area description)': str},

 usecols = ['Summary Level', 'State Code (FIPS)', 'County Code (FIPS)',

'County Subdivision Code (FIPS)',

 'Place Code (FIPS)', 'Consolidtated City Code (FIPS)',

 'Area Name (including legal/statistical area description)']

The rename method renames columns; although Pandas supports column names with spaces, they are

removed here to facilitate readability, as well as to enable “dot notation” (discussed later):

df.rename(columns={'State Code (FIPS)': 'fips_state', 'County Code (FIPS)':

'county_code', 'County Subdivision Code (FIPS)': 'subdiv', 'Place Code (FIPS)':

'place', 'Consolidtated City Code (FIPS)': 'consolidated',

'Area Name (including legal/statistical area description)': 'name'}, inplace=True)

A temporary DataFrame df_states is created, which includes only state-level data:

8

df_states = df.loc[df['Summary Level'] == '040']

df_states = df_states.rename(columns={'name': 'state'})

df_states.drop(columns=['Summary Level','county_code','subdiv','place'],

inplace=True)

Similarly, a DataFrame df_counties is created, which includes only county-level data:

df_counties = df.loc[(df['county_code'] != '000') & (df['subdiv'] == '00000') &

 (df['place'] == '00000') & (df['consolidated'] ==

'00000'), ['fips_state','county_code','name']]

df_counties.rename(columns={'name': 'county'}, inplace=True)

The merge method performs a left join between df_states and df_counties; this effectively creates the df_fips

DataFrame by appending the state-level columns (including state abbreviation and name) to df_counties:

df_fips = pd.merge(df_states, df_counties, on='fips_state', how='left')

The fips_county column is created in the df_fips DataFrame, and unnecessary columns are dropped using
the drop method:

df_fips['fips_county'] = df_fips['fips_state'] + df_fips['county_code']

df_fips.drop(columns=['county_code', 'consolidated'], inplace=True)

Finally, Puerto Rico values are removed, and the df_fips DataFrame is saved to FIPS_table.csv using to
to_csv method:

df_fips = df_fips.loc[df_fips['fips_state'] != '72']

df_fips.to_csv(os.path.join(path_tables,'FIPS_table.csv'), index=False)

At this point, FIPS_table.csv has been created, and this can be used for subsequent data transformations.
For example, two dictionaries are created by reading the CSV file into memory:

table columns are 0) FIPS_state, 1) state name, 2) county, 3) FIPS_county

with open(os.path.join(path_tables,'FIPS_table.csv'), mode='r') as infile:

 reader = csv.reader(infile)

 next(reader, None)

 county_fips_dict = {rows[3]:[rows[2], rows[0], rows[1]] for rows in reader}

with open(os.path.join(path_tables,'FIPS_table.csv'), mode='r') as infile:

 reader = csv.reader(infile)

 next(reader, None)

 state_fips_dict = {rows[0]:[rows[1]] for rows in reader}

The county_fips_dict dictionary maps the five-digit county FIPS codes to the associated county name, state
FIPS code , and state name.

Similarly, state_fips_dict maps the two-digit state FIPS codes to the associate state name. Python
dictionaries, by definition, cannot maintain non-unique keys, so only the first row for each star te is read
into this second dictionary, which yields a total of 51 key-value pairs—the 50 states and the District of
Columbia.

INGESTING CDC OBESITY DATA

The United States Diabetes Surveillance System (USDSS) is managed by the Centers for Disease Control
and Prevention (CDC), and collects and longitudinally monitors diabetes incidence across the nation,
including diabetes-related contributors such as obesity and physical inactivity. Their interactive “Social
Determinants of Health” dashboard (https://gis.cdc.gov/grasp/diabetes/diabetesatlas-sdoh.html)
demonstrates county-level diabetes incidence, shown for 2018 in Figure 1, with darker regions denoting
higher incidence.

https://gis.cdc.gov/grasp/diabetes/diabetesatlas-sdoh.html

9

Figure 1. County-Level Diabetes Incidence for 2018 (USDSS)

Obesity data are obtained from the CDC Behavioral Risk Factor Surveillance System (BRFSS), a monthly
telephonic survey, with CDC providing the following description of its methodology: (CDC, 2022)

• To have diagnosed diabetes if they responded "yes" to the question, "Has a doctor ever told you
that you have diabetes?" Women who indicated that they only had diabetes during pregnancy were
not considered to have diagnosed diabetes. People who reported having diagnosed diabetes were
then asked at what age they were diagnosed.

• To have been diagnosed with diabetes in the last year if they reported having diagnosed diabetes
and the difference between their age at the time of the survey and the age they provided to the
question, "How old were you when you were told you have diabetes?" was less than one. If the
difference was between one year and two years, the person was weighted as half a newly
diagnosed case.

• To be obese if their body mass index was 30 or greater. Body mass index (weight [kg]/height [m]2)
was derived from self-report of height and weight.

• To be physically inactive if they answered "no" to the question, "During the past month, other than
your regular job, did you participate in any physical activities or exercises such as running,
calisthenics, golf, gardening, or walking for exercise?"

Obesity data are demonstrated in Figure 2, and can be downloaded to a CSV file.

Figure 2. CDC 2018 County-Level Obesity Data

10

Download this table to the following location:

c:\shedder\cdc\DiabetesAtlasData.csv

Table 4 demonstrates the obesity CSV file; note the headers that will need to be removed programmatically:

Table 4. CDC 2018 County-Level Obesity Data (betesAtlasData.csv)

With obesity data downloaded, the next two subsections demonstrate how to ingest this CSV file using SAS
and Python, respectively.

INGESTING OBESITY DATA USING SAS

The following DATA step ingests the CDC obesity data:

%let fil=DiabetesAtlasData.csv;

data df_fat (drop=year svi);

 length year $4 fips_county $5 county $40 state $20 fat_pct 8 svi 8;

 infile "&path_cdc&fil" dsd delimiter=',' firstobs=4 end=eof;

 input year $ fips_county $ county $ state $ fat_pct svi;

run;

Note the LOST CARD comment in the log, which results from the final line of the file, which lists reference
information for the data, and which thus does not conform to columnar input:

US Diabetes Surveillance System; www.cdc.gov/diabetes/data; Division of Diabetes

Translation - Centers for Disease Control and

The df_fat data set is created, as demonstrated in Table 5.

Table 5. DF_fat Data Set Containing CDC County-Level Obesity Data

Note that the SVI variable, not the focus of this text, has been removed from the data.

INGESTING OBESITY DATA USING PYTHON

The following Python function reads the CDC CSV file, and creates the df_fat DataFrame:

def create_df_fat(fil):

 global df_fat

 df_fat = pd.read_csv(

 os.path.join(path_cdc, fil), header = None, sep = ',', quotechar = '"',

 skiprows = 3, usecols = [1,2,3,4],

 names=['fips_county','county','state','fat_pct'],

11

 dtype={'fips_county': str, 'county': str, 'state': str, 'fat_pct':

'float64'})

 df_fat.dropna(inplace=True)

create_df_fat(r'DiabetesAtlasData.csv')

The create_df_fat function again relies on the read_csv method to ingest the CSV file, with the names and

dtype arguments specifying variables to retain and their data types, respectively. The dropna method

removes any rows in the df_fat DataFrame that are missing at least one column, and this statement is
required to remove the final row in the CSV file containing reference information:

df_fat.dropna(inplace=True)

With obesity data uploaded into both SAS and Python, the next step is to inspect these data, and because
they represent county-level statistics, to compare the data with respect to county-level US Census FIPS
codes (i.e., master data).

INSPECTING CDC OBESITY DATA

At this point, the savvy analyst may have noticed that the df_fips data set (and DataFrame) contains 3,142
observations (rows), whereas the df_fat data set (and DataFrame) contains only 3,141 observations (rows).
Thus, without even inspecting individual values, one is aware that some discrepancy exists between these
two federal data sources.

INSPECTING OBESITY DATA USING SAS

The following SAS code identifies discrepancies between the FIPS county codes listed in the two data sets:

proc sort data=df_fat out=df_fat_sorted;

 by fips_county;

run;

proc sort data=df_fips out=df_fips_sorted;

 by fips_county;

run;

data df_fat_merged;

 merge df_fat_sorted (in=a keep=fips_county) df_fips_sorted (in=b);

 by fips_county;

 if a and ^b then put 'Extra FIPS in CDC' fips_county;

 else if b and ^a then put 'Missing FIPS in CDC ' fips_county;

run;

The log demonstrates that 35039 (i.e., Rio Arriba, New Mexico) is missing from the CDC data:

Missing FIPS in CDC 35039

NOTE: There were 3141 observations read from the data set WORK.DF_FAT_SORTED.

NOTE: There were 3142 observations read from the data set WORK.DF_FIPS_SORTED.

NOTE: The data set WORK.DF_FAT_MERGED has 3142 observations and 4 variables.

A second point to interrogate is whether state and county names are spelled identically between US Census
and CDC data—and were the federal government exercising master data management (MDM), you would
expect this would be the case. The following DATA step now applies the STATE_FIPS_DICT and
COUNTY_FIPS_DICT user-defined formats, created previously, to compare CDC state and county names
to US Census equivalents:

data df_fat_check_state_county;

 set df_fat;

 length state_census $30 county_census $40;

 state_census=put(substr(fips_county,1,2), $state_fips_dict.);

 county_census=put(fips_county, $county_fips_dict.);

 if state^=state_census then put @1 fips_county @7 state @40 state_census;

 if county^=county_census then put @1 fips_county @7 county @40 county_census;

12

run;

Only the first five exceptions are shown, and they demonstrate a variety of issues—with some variation
occurring from capitalization, other variation occurring from word discrepancy, and with some values
truncated in the CDC data:

01049 Dekalb County DeKalb County

02195 Petersburg Census Area Petersburg Borough

02198 Prince of Wales-Hyder Censu Prince of Wales-Hyder Census Area

11001 District Of Columbia District of Columbia

12027 Desoto County DeSoto County

To remove the capitalization issue, the DATA step can be updated to include UPCASE:

data df_fat_check_state_county;

 set df_fat;

 length state_census $30 county_census $40;

 state_census=put(substr(fips_county,1,2), $state_fips_dict.);

 county_census=put(fips_county, $county_fips_dict.);

 if upcase(state)^=upcase(state_census) then put @1 fips_county @7 state

 @40 state_census;

 if upcase(county)^=upcase(county_census) then put @1 fips_county @7 county

 @40 county_census;

run;

The following seven county names are different (i.e., wrong) in the CDC data:

02195 Petersburg Census Area Petersburg Borough

02198 Prince of Wales-Hyder Censu Prince of Wales-Hyder Census Area

19141 O'brien County O'Brien County

24033 Prince George's County Prince George's County

24035 Queen Anne's County Queen Anne's County

24037 St. Mary's County St. Mary's County

35013 DoÃ±a Ana County Do¤a Ana County

Opening the raw CDC CSV file in a text editor reveals that values truly are being truncated by CDC:

2018,02198,Prince of Wales-Hyder Censu,Alaska,19.9,0.7662

Similarly, the text file reveals that escape characters (like #39; representing a single quote) really are
maintained within the raw CDC data:

2018,19141,O'brien County,Iowa,25.4,0.2322

With this confirmation that some CDC counties are incorrectly named, it is best to overwrite the CDC county
names and to instead rely on the US Census master data for county names.

data df_fat_county_corrected;

 set df_fat (drop=county);

 length county $40;

 county=put(fips_county, $county_fips_dict.);

run;

At this point, one county remains missing from the CDC data, but state names have been validated, and
county names have been corrected.

INSPECTING OBESITY DATA USING PYTHON

The differences in FIPS county codes can be assessed in Python with a single line of code:

print(set(df_fips.fips_county) - set(df_fat.fips_county))

The set function creates a unique series of data, which removes any non-unique values that may exist.

Thus, by setting the fips_county column in these two DataFrames, the difference is demonstrated, and
matches the missing county revealed by equivalent SAS code:

13

{'35039'}

The following code identifies the seven CDC county names that do not match US Census names, as well
as the missing county:

df_merge = pd.merge(left=df_fips[['fips_county','county']],

 right=df_fat[['fips_county','county']], how='left',

on='fips_county')

df_merge_2 = df_merge[df_merge.county_x.str.upper() !=

df_merge.county_y.str.upper()]

print(df_merge_2)

Note that the merge method by default creates new columns whenever identically named columns occur in

DataFrames being joined; thus, because the county column appears in both df_fips and df_fat, an _x and

_y, respectively, are appended to create county_x (representing the master FIPS data) and county_y (that

includes erroneous CDC county names).

The print function writes rows containing non-matching county names to the log:

 fips_county county_x county_y

87 02195 Petersburg Borough Petersburg Census Area

88 02198 Prince of Wales-Hyder Census Area Prince of Wales-Hyder Censu

859 19141 O'Brien County O'brien County

1208 24033 Prince George's County Prince George's County

1209 24035 Queen Anne's County Queen Anne's County

1210 24037 St. Mary's County St. Mary's County

1802 35013 Do¤a Ana County Doña Ana County

1816 35039 Rio Arriba County NaN

Instead of applying the merge method, the county_fips_dict dictionary instead could be applied to the county

FIPS code to transform it, and to initialize the new column county_census:

df_fat_check_state_county = df_fat.copy(deep=True)

df_fat_check_state_county['county_census'] =

df_fat_check_state_county.fips_county.map(county_fips_dict).str[0]

df_fat_check_state_county =

df_fat_check_state_county.loc[df_fat_check_state_county.county.str.upper() !=

df_fat_check_state_county.county_census.str.upper()]

print(df_fat_check_state_county[['fips_county','county','county_census']])

The copy method first creates a copy of the df_fat DataFrame, thus ensuring that changes made to the

copy will not modify the original df_fat DataFrame:

df_fat_check_state_county = df_fat.copy(deep=True)

The county_census column is created by applying the map method to the five-digit FIPS county code; the

county_fips_dict dictionary is mapped, and because the dictionary was defined as having a list of three
elements (county name, state FIPS code, and state name), the string method selects the first element
(county name), as designated by the [0] index:

df_fat_check_state_county.fips_county.map(county_fips_dict).str[0]

The loc function creates a slice of the DataFrame that includes only rows in which the county column and

county_census column values do not match:

df_fat_check_state_county =

 df_fat_check_state_county.loc[df_fat_check_state_county.county.str.upper() !=

 df_fat_check_state_county.county_census.str.upper()]

When the DataFrame is examined, its results mirror the exceptions that were noted in the previous merge

method, with the exception that the single missing county is not listed:

 fips_county county county_census

87 02195 Petersburg Census Area Petersburg Borough

14

88 02198 Prince of Wales-Hyder Censu Prince of Wales-Hyder Census Area

859 19141 O'brien County O'Brien County

1209 24033 Prince George's County Prince George's County

1210 24035 Queen Anne's County Queen Anne's County

1212 24037 St. Mary's County St. Mary's County

1802 35013 Doña Ana County DoÂ¤a Ana County

Finally, with the Python evaluation demonstrating that the CDC county names cannot be trusted, the merge

method is utilized again to overwrite the errant county names with trusted US Census names:

df_fat_county_corrected = pd.merge(left=df_fat[['fips_county','fat_pct']],

 right=df_fips, how='left', on='fips_county')

Application of dictionaries with the map method most closely mirrors the application of SAS formats

(including user-defined formats) to variables, whereas the merge method most closely mirrors DATA step

MERGE statements or SQL JOIN statements. Thus, in both languages, multiple methods exist for
performing data lookup operations that cull, standardize, or clean data based on master data values.

ANALYZING CDC OBESITY DATA

With county names now cleaned, some basic data analysis can be performed to answer obesity questions:

• What are the ten fattest counties in the nation?

• What are the ten skinniest counties in the nation?

• What are the ten fattest states? Note that as only county-level obesity data have been downloaded,
this will require computing a weighted average (by county population size) to estimate state-level
obesity rates.

Note again, in answering these questions, the obesity criteria supplied by CDC that state these metrics are
gathered over the telephone, and computed only by measuring reported weight and reported height; thus,
numerous biases do exist, none of which are explored in this text.

WHAT ARE THE TEN FATTEST COUNTIES IN THE US?

This can be computed in SAS by first sorting the data by fat percentage, and subsequently selecting the
top ten observations in a DATA step:

proc sort data=df_fat_county_corrected;

 by descending fat_pct;

run;

data df_fattest;

 set df_fat_county_corrected (obs=10);

 length county_st $50;

 format fat_pct 8.1;

 county_st=catx(', ',county,state);

 put @1 county_st @40 fat_pct;

run;

The log demonstrates the ten fattest counties:

Thurston County, Nebraska 43.8

Cass County, Nebraska 43.1

Williamsburg County, South Carolina 43.0

Rolette County, North Dakota 41.6

Sunflower County, Mississippi 41.5

Ziebach County, South Dakota 41.5

Lawrence County, Kentucky 41.4

Hidalgo County, Texas 41.4

Marengo County, Alabama 41.3

Jefferson County, Texas 40.8

A single line of Python code leverages the nlargest method to select the ten fattest counties:

15

df_fat_county_corrected.nlargest(10, 'fat_pct')[['county','state','fat_pct']]

The columnar output is demonstrated:

 county state fat_pct

1740 Thurston County Nebraska 43.8

1666 Cass County Nebraska 43.1

2359 Williamsburg County South Carolina 43.0

2028 Rolette County North Dakota 41.6

1467 Sunflower County Mississippi 41.5

2426 Ziebach County South Dakota 41.5

1056 Lawrence County Kentucky 41.4

2629 Hidalgo County Texas 41.4

45 Marengo County Alabama 41.3

2644 Jefferson County Texas 40.8

WHAT ARE THE TEN SKINNIEST COUNTIES IN THE US?

Similarly, the SAS data set can be sorted in ascending order by fat percentage, after which the DATA step
selects the ten skinniest counties:

proc sort data=df_fat_county_corrected;

 by fat_pct;

run;

data df_skinniest;

 set df_fat_county_corrected (obs=10);

 length county_st $50;

 county_st=catx(', ',county,state);

 put @1 county_st @40 fat_pct;

run;

The log demonstrates the top ten skinniest counties:

Teton County, Wyoming 10.5

Boulder County, Colorado 13.6

Routt County, Colorado 13.7

Gunnison County, Colorado 13.8

Pitkin County, Colorado 14.2

Summit County, Utah 14.2

Chaffee County, Colorado 14.4

Taos County, New Mexico 14.6

Summit County, Colorado 15.2

San Francisco County, California 15.4

A single line of Python code leverages the nsmallest method to select the ten skinniest counties:

df_fat_county_corrected.nsmallest(10, 'fat_pct') [['county','state','fat_pct']]

The columnar output is demonstrated:

 county state fat_pct

3137 Teton County Wyoming 10.5

250 Boulder County Colorado 13.6

298 Routt County Colorado 13.7

270 Gunnison County Colorado 13.8

293 Pitkin County Colorado 14.2

2797 Summit County Utah 14.2

252 Chaffee County Colorado 14.4

1823 Taos County New Mexico 14.6

303 Summit County Colorado 15.2

223 San Francisco County California 15.4

16

WHAT ARE THE TEN FATTEST STATES IN THE US?

Because these CDC obesity statistics are calculated at the county level, a simple mean cannot be utilized
to aggregate county-level percentages to calculate state-level obesity; rather, weighted averages (by
county population) must be utilized to approximate state-level obesity. This is not to imply that state-level
obesity data are unpublished, but rather to demonstrate how to calculate weighted averages.

The SAS SQL procedure first joins county population to the obesity data, after which the MEANS procedure
computes the weighted averages utilizing the WEIGHT statement to weight by county population:

proc sql;

 create table df_fat_pop as

 select a.*, b.population from df_fat_county_corrected as a

 left join df_pop_counties as b on a.fips_county = b.fips_county;

quit;

proc means data=df_fat_pop sum sumwgt mean;

 class state;

 weight population;

 var fat_pct;

 output out=df_fat_weighted_avg mean=fat_avg;

run;

The output, shown in Table 6, demonstrates that Alabama is the fattest state in the US.

Table 6. Fattest Ten States in the US, Calculated by Weighted Means of County-Level CDC Data

As in SAS, multiple methods also exist to calculate weighted means in Python. For example, the following
code creates the df_grouped DataFrame, which orders the states by mean obesity percentage:

df_fat_pop = pd.merge(left=df_fat,

right=df_pop_counties[['fips_county','population']],

 how='inner', on='fips_county')

df_fat_pop['fat_pct_x_pop'] = df_fat_pop.fat_pct * df_fat_pop.population

df_grouped = df_fat_pop.groupby('state').sum()

df_grouped['fat_pct_state'] = df_grouped.fat_pct_x_pop / df_grouped.population

print(df_grouped)

The ten fattest states within the df_grouped DataFrame follow, and mirror the SAS results:

17

 fat_pct population fat_pct_x_pop fat_pct_state

state

Alabama 2071.4 5039877.0 164758811.4 32.691038

Alaska 720.5 723102.0 21223043.4 29.350000

Arizona 448.0 7276316.0 205462794.1 28.237201

Arkansas 2124.8 3025891.0 93653940.9 30.950864

California 1398.6 39237836.0 974923451.7 24.846514

Colorado 1352.9 5812069.0 129719736.9 22.319029

Connecticut 215.5 3605597.0 94799282.4 26.292257

Delaware 102.8 1003384.0 32854487.2 32.743683

District of Columbia 24.6 670050.0 16483230.0 24.600000

Florida 2052.3 21781128.0 602427823.8 27.658247

In addition to demonstrating that some counties are in dire need of some gym time, these simple analytic
examples have only scratched the surface of SAS and Python capabilities, by demonstrating that
functionally equivalent solutions can be designed in either language.

CONCLUSION

SAS and Python are widely popular industry leaders that occupy two discrete corners of the analytics
arena—proprietary and open-source systems. Although programming language selection is often made at
the organization, team, customer, or product owner level, many developers and analysts do have the ability
to select their langue de choix, so long as they can demonstrate that a language can deliver a functional
solution. And in these flexible environments, open-source, freely available programming languages, such
as Python, should be considered and explored as viable alternatives to pricey, proprietary software. The
Pandas library and its DataFrame data structure are especially well-equipped for data analysis, and this
text has demonstrated only a handful of its ever-expanding array of tools.

REFERENCES

CDC. (2022). Behavioral Risk Factor Surveillance System (BFRSS). Retrieved from Centers for Disease
Control and Prevention (CDC): https://gis.cdc.gov/grasp/diabetes/diabetesatlas-sdoh.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	Abstract
	Setup
	Ingesting National, State, and County Population Data
	Ingesting Population Using SAS
	Ingesting Population Using Python

	Ingesting State and County FIPS Codes
	Ingesting FIPS Codes Using SAS
	Ingesting FIPS Codes Using Python

	Ingesting CDC Obesity Data
	Ingesting Obesity Data Using SAS
	Ingesting Obesity Data Using Python

	Inspecting CDC Obesity Data
	Inspecting Obesity Data Using SAS
	Inspecting Obesity Data Using Python

	Analyzing CDC Obesity Data
	What are the Ten fattest counties in the US?
	What are the Ten skinniest counties in the US?
	What are the Ten fattest states in the US?

	Conclusion
	References
	Contact Information

