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ABSTRACT    

This paper presents a brief introduction to recent advances in regression methods. Techniques 

demonstrated include ridge regression, LASSO, local polynomial regression (LOESS), and generalized 

additive models (GAM). Each method is presented separately, with a description of the SAS procedure 

used to implement them and recommendations for apply the methods in practical situations. A quick 

introduction to each method followed by two worked examples, with discussion of use cases, and options 

for SAS procedures and producing graphical output.  

Ridge Regression 

In regression analysis, multicollinearity occurs where some predictor variables are partly correlated. 

These are situations where the correlation between predictor variables to too strong to dismiss those with 

a weaker correlation to the outcome to dismiss, and yet the predictors are not very highly correlated so 

that they are effectively equivalent in the prediction. Where multiple variables make distinct, important 

contributions to a model but still have substantial correlation, the parameter estimates provided by 

ordinary regression may be less accurate. Penalized regression methods address this problem by 

creating a constraint, called a “penalty” to reduce the residual sum of the squares. This process, called 

shrinkage, reduces the impact of sampling variation at the cost of introducing a small amount of bias. 

Different penalized regression methods deploy different means for reducing the impact of multicollinearity. 

Balancing the benefits of shrinkage with the amount of bias optimizes the model parameters to increase 

the accuracy of the prediction.  

In Ridge Regression, contributions from predictor variables are reduced by the square of the magnitude 

of the coefficients. This favors models with many strong contributors. In SAS, ridge regression is coded 

using PROC REG with the option RIDGE. The RIDGE option supports measurement and analysis of the 

amount of collinearity and parameterization of the ridge factor. The process is iterative, using a Ridge 

Factor that is specified using a starting value, ending value, and a step. The ridge regression process 

evaluates the model at each step from the starting value to the ending value.  

Example: predicting the percentage of K-12 students in each state who are (homeless hs_pct_22) using 

economic and demographic factors. These include a number of factors related to poverty, including Gini 

Index for income distribution, the year over year change in the Gini Index, the poverty rate, high school 

gradation rate, and other factors which show some degree of correlation. Notice that the rate of 

homelessness for the current year is predicted using current and recent socioeconomic data, As the 

federal reporting of homelessness is retrospective by two years, this model predicts a current value that 

will not be available util a future date – in this instance, not for two years. In Time Series Analysis, this is 

an example of “Now-Casting”.     

proc reg data=rm.homelessstudents ridge=0 to .04 by .005; 

   outvif outest=ridgests plots(only)=ridge(unpack VIFaxis=log); 
   model hs_pct_10 = GINI_10 GINI_pct_change Pov_Change_09_11 
                     aa_pct hisp_latino_pct indian_alaskan_pct 
                     high_school_grad_pct_10 mhi_09 mfi_acs_10;                 

run; 
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This implementation uses the REG Procedure with the RIDGE option, which specifies the 

parameterization of the Ridge Factor. The size of the ridge factor should always begin at 0 and seldom 

exceeds 0.4.  In this case, the size of the step between iterations is 0.005, so there are 9 steps from 0.0 

to 0.4.  

SAS procedure options that may be helpful include: 

REG Statement Options   

• ridge – ridge parameter limits and step size 

• outvif – output variance inflation factor => severity of multicollinearity 

• outseb – output standard errors and parameter estimates 

PLOT Statement Options  

• all – lots of plots but many are seldom used 

• ridge – shrinking by ridge parameter as the model converges 

 

Output for this example: 

 

 



3  

 

 

Ridge Regression – Another Example 

This example uses the option OUTSEB for model parameters. In this application, a final run with the 

strongest variables from earlier runs performs well. 

proc reg data=rm.homelessstudents ridge=0 to .04 by .005 outseb; 
   outvif outest=ridgests plots(only)=ridge(unpack VIFaxis=log); 

   model hs_pct_21 = GINI_pct_change african_american_pct  
                     high_school_grad_pct_21 mhi_20 mfi_acs_21;   
run; 
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LASSO Regression 

LASSO regression is also a penalized regression method. In LASSO, contributions from predictors are 

reduced by the sum of the absolute values of the magnitude of the coefficients, as opposed to the square 

of the magnitude used in Ridge Regression. This favors models with just a few correlated predictors. The 

acronym LASSO stands for Least Absolute Shrinkage and Selection Operator.  

In SAS, LASSO regression is implemented using the GLMSELECT Procedure with the LASSO option 

selected in the MODEL statement. It supports multiple cross validation, a variety of methods for choosing 

variables for the model with the CHOOSE statement, and Bayesian analysis. 

Example: LASSO regression is used to predict the salary of a professional athlete based on several 

performance characteristics which are correlated to salary to varying degrees. In this example, major 

League Baseball is used as the sport but any outcome with many multicollinear predictors will do. As the 

distribution of player salary is highly skewed by a small number of players making very large salaries, the 

predicted outcome is given here by the natural log of the salary. A hold-out sample of 30% of the records 

is randomly selected using the Fraction and Validate options.    

 proc glmselect data=rm.sas_baseball plots=all; 
   partition fraction(validate=.3);  

   model logSalary = nAtBat nHits nHome nRuns nRBI nBB 
                     yrMajor crAtBat crHits crHome crRuns  
                     crRbi crBB nOuts nAssts nError          

         / selection=lasso(stop=none choose=validate);  
run; 
 

SAS procedure options that may be helpful include: 

MODEL Statement Options  

• selection – note: this must be set to lasso to use this method  
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• stop – sets the criteria for when to stop variable selection, stop=none examines all variables in 

the MODEL statement 

• choose – sets criteria for choosing the model; default is AICC, sbc is Schwarz Bayesian 

information criterion 

 

PARTITION Statement Options   

• validate – states the fraction for the validation sample 

 

Output for this example: 

 

 

 

 

 

 

 

 

 

 

 

LASSO Regression – Another Example 

This example implements an Adaptive LASSO algorithm, which strengthens the ability to select just the 

strongest predictors. This example also uses Bayesian analysis, which is specified using choose=sbc on 

the SELECTION statement.  
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proc glmselect data=rm.sas_baseball plots=all; 
   partition fraction(validate=.3);  
   model logSalary = nAtBat nHits nHome nRuns nRBI nBB 
                     yrMajor crAtBat crHits crHome crRuns  

                     crRbi crBB nOuts nAssts nError                  

/ selection=lasso(adaptive stop=none choose=sbc);  
run; 
 

 

 

In the last plot, the relative contributions of different factors is tracked across the development of the 

output. Substantial contributions are made by just a few strong predictors, indicated this as a situation 

where LASSO should perform best. Where there is a larger number of strong predictors, Ridge 

Regression will usually work better. Best practice recommends starting with simple regression. Then, as 

strong interactions are observed, both Ridge and LASSO are tried and the results compared to identify 

the best solution.  

 

Local Regression Using LOESS 

Local Polynomial Regression are a group of non-parametric regression methods that combine multiple 

regression runs into a meta-model. While Local Regression was first developed by Savitsky and Golay in 

1964, the extreme amount of computation required to execute these algorithms are prevented 

widespread application until recently. Instead of developing a model fit using all the available data 

equally, the algorithms are locally estimated. This makes the result at each point more sensitive to the 

closest data.   

The SAS Procedure LOESS (Locally Estimated Scatterplot Smoothing) creates simple regress models 

from local data and combines them for an overall solution. It supports multiple dependent variables, 

multidimensional predictors and interpolation using kd trees.  

Example: LOESS is used to map a relationship between income levels and the pass/fail rate on a state 

standard 8th grade reading test for school district in the Detroit metropolitan area. The district-level scores 

have a natural cut-off at 100%, resulting is a complex shape: at lower median household incomes, 

performance on the test increases with increasing income. Test scores are bounded but income is not, 

resulting in a tipping point beyond which additional income came increase educational enrichment but 
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doesn’t result is a significant improvement in pass-fail rate. Local regression allows the identification of 

this tipping point, which is found at per capita income of $28,000 at the 2000 census ($48,000 in 2022 

dollars). This example includes code for implementing the ODS output for the data visualizations.  

ods graphics on; 

proc loess data=rm.sem_eduction; 
   ods output OutputStatistics=GasFit FitSummary=Summary; 

   model MEAP8_Read = PCI_2000;  
run; 

ods graphics off; 

 

SAS procedure options that may be helpful include: 

MODEL Statement Options  

• degree – degree of the local polynomials (either 1 or 2)  

• select= – specifies a smoothing method: AICC, AICC1, GCV, DF1, DF2, or DF3 

• direct – requires direct fitting at every point 

• std – outputs the standard of the mean predicted values 

 

SCORE Statement Options   

• clm – output confidence limits with the score 

Output for this example: 
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LOESS – Another Example 

In this example, Local Regression is used with a smoothing factor to model a complex form without 

overfitting. LOESS was originally developed for smoothing applications such as this.  

proc loess data=Melanoma;     
   model Incidences=Year/clm alpha=0.1  
run; 
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Generalized Additive Models (GAM) 

In statistics, additive models are a non-parametric method using a one-dimensional smoother. The 

models are more flexible than standard linear regression and less subject to the Curse of Dimensionality. 

Generalized Additive Models, first developed by Trevor Hastie and Robert Tibshirani in 1990, combine 

features of genal linear models and additive models. The result allows better fitting of complex patterns 

while can be subject to a lack of applicability to other dataset.  

 

In SAS, Generalized Additive Models are implemented using the GAM Procedure. The algorithm allows 

multiple independent non-parametric predictors, while the univariate smoothing provides finer details than 

is possible with the piece-wise LOESS procedure. The GAN Procedure supports non-parametric and 

semi-parametric models, and multidimensional predictor.  

Example: forecasting the end-of-season ranking of a sports team. In major league baseball in North 

America, as with some other sports, a mid-year trade deadline prevents most exchanges of players 

between teams until after the end of the playing season. This results in a need to predict the ranking of 

teams of each team to guide strategy before the deadline passes. In this example, the win / loss rate of 

each team in each of the first three months of the season (April, May, and June) is used to predict the 

team ranking at the end of the season. These fields are moderately correlated.  

 

proc gam data=rm.baseball plots(unpack)=all; 
   model term_2017 = spline(RateApril) spline(RateMay)  

                     spline(RateJune / method=gcv; 
   output out=PredGAM p=Gam_p_; 
run; 
 

 

SAS procedure options that may be helpful include: 

GAM Statement Options  
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• descending – reverses the sort order of the class variable  

• plot= – plotting options: all, unpack  

 

MODEL Statement Options   

• anodev – smoothing options: refit, norefit, none 

• maxiter – maximum number of estimation iterations 

• method=gcv – smoothing parameter uses the generalized cross validation method 

 

Output for this example: 
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GAM – Another Example 

In this example, an Generalized Additive Model used to fit a complex response surface without loss of 

detail to due piece-wise fitting in local regression. In this example, processing of cases through a 

bankruptcy court are considered to support planning required staffing levels. The number of cases at 

each of three successive stages are used: cases filed, pending, and terminated (completed).   

ods graphics on; 
proc gam data=rm.bankruptcy plots(unpack)=all; 
   model term_2017 = loess(file_2017) loess(pending_2017) /  

   method=gcv; 
   output out=PredGAM p=Gam_p_; 
run; 
ods graphics off;  

 
 

 
 

 

 

REFERENCES  

Cohen, R. (2009). “Applications of the GLMSELECT Procedure for Megamodel Selection.” In Proceedings 
of the SAS Global Forum 2009 Conference. Cary, NC: SAS Institute Inc. 
http://support.sas.com/resources/ papers/proceedings09/259-2009.pdf 

Gunes, F. (2015) “Penalized Regression Methods for Linear Models in SAS/STAT” In Proceedings of the 
SAS Global Forum 2015 Conference. Cary, NC: SAS Institute Inc. 

Hastie, T. J. and Tibshirani, R. J. (1990). “Generalized Additive Models”, Chapman & Hall/CRC. 

Kennedy, P., (2003), “A Guide to Econometrics” (Fifth ed.). Cambridge: The MIT Press. pp. 205–206. 
ISBN 0-262-61183-X. 

Schreiber-Gregory, D. N., Jackson ,H. M., 2018, “Multicollinearity: What Is It , Why Should We Care , and 
How Can It Be Controlled ?”, Model Assisted Statistics and Applications, vol. 13, no. 4, pp. 359-365  



12  

Savitzky, A.; Golay, M.J.E. (1964). "Smoothing and Differentiation of Data by Simplified Least Squares 
Procedures". Analytical Chemistry. 36 (8): 1627–39. 

Tibshirani, R., (1996). "Regression Shrinkage and Selection via the lasso". Journal of the Royal Statistical 
Society. Series B (methodological). Wiley. 58 (1): 267–88. JSTOR 2346178. 

 

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at:  

David J Corliss 

Peace-Work  

davidjcorliss@peace-work.org  

  

 

  


