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ABSTRACT  
A major criticism of estimating traditional latent variable measurement models is the 
unrealistic assumption of fixed zero cross-loadings with non-primary factors. Latent variable 
modeling has evolved from these traditional zero cross-loadings to allowing estimation of non-
zero cross-loadings while validating latent constructs of interest. Even though these non-zero 
cross-loadings are restricted to minimal cross-loadings, they enable researchers to achieve 
better model fit while allowing a more realistic relationship between items and factors. Both 
Exploratory Structural Equation Modeling (ESEM) and Bayesian Structural Equation Modeling 
(BSEM) estimation methods go beyond the traditional model approaches and allow for 
relaxing restrictive cross-loading assumptions in measurement models. However, different 
software packages have been slow in adopting these recent developments in latent variable 
analysis. An extensive literature review of ESEM and BSEM has found estimation availability 
of both methods only in Mplus and R, with SAS adoption of ESEM, and not BSEM, to date 
(Muthén & Muthén, 2017; R Core Team, 2022; SAS Institute Inc., 2018). A previous study, 
which compared the traditional independent cluster model of confirmatory factor analysis 
(ICM-CFA) approach to ESEM and BSEM, emphasized the improved model estimation with the 
new flexible ESEM and BSEM approaches in Mplus (Gucciardi & Zyphur, 2016). Using 
previously collected mental ability test scores data (Holzinger & Swineford, 1939), this study 
compares the available CFA and ESEM estimation algorithms in SAS to the CFA, ESEM and 
BSEM estimations algorithms in other software. Results will provide researchers with 
appropriate application of these methods while evaluating consistency of parameter estimates 
and model global fit across software packages. Conclusions from this methodological study 
will highlight how software choice may lead practitioners to making inconsistent decisions 
about latent variable measurement models. The authors highlight potential areas of growth 
for SAS PROC CALIS to adopt more recent latent variable modeling options and become more 
competitive with other software. This could greatly benefit applied researchers and 
practitioners who use SAS and are interested in adopting more flexible estimation techniques 
within latent variable modeling and its applications in different fields, especially social science. 

INTRODUCTION  
Structural equation modeling (SEM) involves the estimation of latent variables, rather than 
only measured variables, in a model that includes latent constructs. While estimating latent 
variables is imperfect by nature, methodological advances in SEM have helped to improve 
model fit in models that would otherwise have been unidentifiable or poorly fitted with 
traditional estimation techniques. Confirmatory factor analysis (CFA) was first improved by 
the development of exploratory structural equation modeling (ESEM), which allowed for cross-
loading values to be included in the models, rather than being fixed to zero as is done in 
traditional CFA (Asparouhov & Muthén, 2009). ESEM allows statistically significant primary 
cross-loadings to be estimated, while non-primary cross-loadings can still be estimated rather 
than being fixed to zero. More recently, Bayesian structural equation modeling (BSEM) has 
sought to further improve model fit by allowing small, non-zero, values for minor cross-
loadings to be estimated, rather than fixing them to zero, using prior information (Muthén & 
Asparouhov, 2012). In other words, researchers can investigate non-primary factor-loadings 
without facing model identification issues seen in traditional CFA methods (Muthén & 
Asparouhov, 2012). ESEM and BSEM both offer significant advantages over traditional CFA by 
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allowing more realistic model hypotheses, and providing better model fit (Koizumi & In’nami, 
2020; Muthén & Asparouhov, 2012). While there are many available software options for 
conducting traditional ICM-CFA, few have been equipped to include both ESEM and BSEM. 
Even among software packages that have adopted ESEM and BSEM, there is much left to be 
investigated to ensure the accuracy of estimates provided by individual software algorithms. 
The purpose of this study is to explore available SAS CFA model estimation methods and 
compare them to other software capable of estimating both ESEM and BSEM models. Accuracy 
and precision of these software packages is studied, while providing practitioners with a 
discussion of the benefits and drawbacks to using SAS for flexible cross-loading estimation 
methods.  

STRUCTURAL EQUATION MODELING  
The emerging field of SEM is valuable because it allows researchers to distinguish between 
observed and latent variables while directly estimating latent variables and validating latent 
constructs (Guo et al., 2019). Structural equation models are commonly used in different 
fields, such as the social sciences, to measure abstract concepts, and therefore typically 
require some prior domain knowledge to create successful models of latent concepts (Brown, 
2015; Guo et al., 2019). In conventional SEM, non-primary factor loadings are fixed to zero 
and only hypothesized primary factor loadings are freely estimated with non-zero values 
(Brown, 2015; Muthén & Asparouhov, 2012). ESEM and BSEM techniques have been 
developed to overcome this unrealistic model specification. 
 
Over the past two decades, ESEM and BSEM techniques have improved model fit and model 
specification flexibility by allowing non-zero factor loadings, especially non-primary cross-
loadings, between items and factors. More recently, BSEM allowed all factors to have non-
zero factor loading values, with prior information specification of near zero non-primary factor 
loadings. BSEM models also specify informative prior distributions (Asparouhov & Muthén, 
2021; Muthén & Asparouhov, 2012). Since, it is unlikely that two variables have no association 
at all, especially when measuring abstract concepts in the social sciences, BSEM may create 
models which better fit the data (Koizumi & In’nami, 2020). ESEM uses a 2-part approach to 
estimate models by not fixing non-primary cross-loadings to zero (Asparouhov & Muthén, 
2009; Marsh et al., 2009). Part 1 utilizes exploratory factor analysis (EFA) to estimate factor 
loadings for all primary and non-primary factor loadings of all factors, with a prior 
hypothesized model for primary factor association to be used as a target population model. 
The use of a priori hypothesized model allows non-primary cross-loadings to not to be fixed 
to zero, but rather expected to be close to zero, while primary factor loadings are freely 
estimated. To summarize, part 1 uses the hypothesized target model specifying primary and 
non-primary factor association for each item to estimate a model using EFA. For part 2, a CFA 
model is estimated using the parameter estimates from part 1 as starting values for all items, 
including non-primary minor cross-loadings (Asparouhov & Muthén, 2009; Marsh et al., 
2009). ESEM differs from BSEM in two primary ways: first, while BSEM allows researchers to 
specify small variance prior information for all model estimates, ESEM does not allow this; 
second, the optimal loading structure in ESEM is based on the unrotated target exploratory 
model from part 1, whereas the optimal loading structure in BSEM is determined by all 
components in the model that are estimated simultaneously (Guo et al., 2019; Muthén & 
Asparouhov, 2012). 
 
There have been studies, using both simulated and real-world data, that have demonstrated 
the ability of BSEM and ESEM methods to improve SEM/CFA (Gucciardi & Zyphur, 2016; Guo 
et al., 2019; Liang et al., 2020; Xiao et al., 2019). Most commonly, BSEM is compared to 
ICM-CFA and ESEM. Previous research comparing Bayesian and conventional SEM indicated 
that a Bayesian model with correctly specified informative priors outperformed frequentist 
models as well as naïve and non-informative Bayesian models (Smid et al., 2019). Although 
it is not surprising that the use of more accurate prior information outperforms less 
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informative priors, the accessibility of known prior information in latent variable modeling is 
quite common. “Prior dependence” is a known issue in parameter estimate bias that 
practitioners need to consider when defining Bayesian priors (Asparouhov & Muthén, 2012; 
Muthén & Asparouhov, 2012). Bayesian models have performed better in estimating more 
complex models because they could incorporate model uncertainty more successfully than 
traditional SEM methods that involve no prior information (Smid et al., 2019). BSEM models 
generally have better model fit compared to traditional CFA models, partly due to the Bayesian 
models being able to determine which covariates should vary and which covariates should 
remain fixed (Guo et al., 2019). Correctly specifying prior information is crucial to maximize 
the potential of BSEM models in providing more realistic estimates (Liang, 2020; Smid et al., 
2019). It is known that correctly specifying target values is just as crucial to maximizing the 
potential of ESEM models but BSEM still provides additional model specifications over ESEM 
(Guo et al., 2019).  
 
There is a growing number of studies that support the notion that ESEM and Bayesian methods 
applied to SEM improve model fit by allowing for more flexible models. However, this is 
contingent on the prior information being correctly specified for factor loadings. The primary 
reason for improvement in model fit is allowing for major and minor, non-zero cross-loadings, 
rather than only allowing for major non-zero cross-loadings and forcing non-primary cross-
loadings to be equal to zero, as is done in traditional SEM (Asparouhov & Muthén, 2009; 
Marsh et al., 2009; Muthén & Asparouhov, 2012). However, with increased model complexity 
and model fit may come increased estimation error. There is some concern that the more 
complex BSEM models, especially those with poor prior specification or non-informative prior 
distributions, learn sample-specific aspects of the data, and as a result become noisier and 
less generalizable. Some studies have found that BSEM models have better model fit, but also 
have higher estimation bias than ESEM models (Guo et al., 2019).  
 
Applied studies using real-world data have similarly found that BSEM and ESEM models have 
improved model fit over traditional CFA models. Yet comparisons of analyses in Mplus 
provided varying degrees of model improvement for BSEM over ESEM (Koizumi & In’nami, 
2020; Reis, 2017). Improved model fit of BSEM is often attributed to the strength of the 
known prior information available to researchers. Through all of this research, general 
software selection by researchers has been relegated to Mplus. There is a need to compare 
analysis results from Mplus to those from other software packages for traditional, ESEM, and 
BSEM latent construct estimation/validation methods.  
 
Additionally, there is some documentation of model convergence issues and lengthy 
computation time when building Bayesian models using the blavaan package in R (Merkle & 
Jorgensen, 2022). The blavaan package developers were made aware of a potential issue in 
early 2022. While any individual can develop an R package, inherent issues are commonly 
recorded and must be updated by package authors/developers. Authors often become aware 
of issues through user reported issues and attempt to fix them. 
 
Since the adoption of both BSEM and ESEM methods in different software packages, numerous 
applied and simulation studies have compared ESEM and BSEM performance, yet they have 
only utilized Mplus for the analysis (Gucciardi & Zyphur, 2016; Guo et al., 2019; Liang et al., 
2020; Xiao et al., 2019). Previous studies have compared parameter estimates for various 
types of analysis methods across software, but not within SEM framework, resulting in mixed 
conclusions regarding parameter estimate consistency. While some studies found consistent 
parameter estimates across software packages for non-SEM analyses, others found 
unexplainable differences in parameter estimates between different software for non-SEM 
analysis (Chang et al., 2020; Harper et al., 2011). While consistent parameter estimates 
across different software is expected, the only way to validate this is to estimate and evaluate 
models with multiple software. As the literature shows, the previous studies that compared 
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BSEM and ESEM model parameter estimates used only Mplus for model validation and 
parameter estimation. None of the studies compared the results of model estimation in Mplus 
to estimates obtained using R or SAS. An investigation of the available literature performed 
in August 2022 on blavaan R package, package available in R to estimate BSEM, and 
exploratory factor analysis/ESEM returned only four publications that considered both analysis 
methods using Mplus and R, and none comparing with SAS. To the best of our knowledge, no 
comparisons have been done across the aforementioned software, methods, or packages.  

SOFTWARE SELECTION 
Documentation for the adoption for ESEM methods in SAS is limited. SAS appears to have 
adopted the procrustean target rotation in proc factor around 1999 (Raykov & Little, 1999; 
SAS Institute Inc., 1999) It appears that SAS adopted ESEM during the development of the 
procedure TCALIS between 2008 and 2011, which aligns with the development of the 
methodology (Asparouhov & Muthén, 2009; Gu & Wu, 2011; Marsh et al., 2009; Osborne & 
Banjanovic, 2016; SAS institute Inc., 2008). After an exhaustive search in the literature, to 
the best of our knowledge, SAS has not adopted BSEM methodology, or does not provide a 
user-friendly application method for practitioners. The most recent documentation for both 
PROC CALIS and PROC MCMC do not provide documentation on executing BSEM models in 
SAS with only path modeling options with no full structural latent variables (Chen et al., 2016; 
Miočević et al., 2018; SAS Institute Inc., 2018).  
 
The only statistical analysis software that appear to have incorporated both ESEM and BSEM 
are R and Mplus. BSEM methodology was introduced to Mplus around 2012; R adopted it 
through the blavaan package around 2015 (Merkle & Rosseel, 2015; Muthén & Asparouhov, 
2012). ESEM with minor cross-loadings methodology was introduced to Mplus around 2010 
and R adopted ESEM within multiple packages including pysch, lavaan, and sem between 
2009 and 2013 (Asparouhov & Muthén, 2009; De Beer & Van Zyl, 2019; Guàrdia-Olmos et 
al., 2013; Muthén & Asparouhov, 2012; Revelle, 2015).  
 
A few studies have compared the parameter estimates of the traditional SEM measurement 
modeling across different software. No study to our knowledge has compared parameter 
estimates of BSEM and ESEM models across different software. With the recent introduction 
of ESEM and BSEM methods into statistical software packages, more research is needed to 
test the consistency of parameter estimates across different software. As explained before, 
the primary purpose of this study is to explore parameter estimates and global fit indices 
across different software that allow for estimation of SEM models with minimal cross-loadings. 
As mentioned above, to date, only Mplus and R include both ESEM and BSEM methods, while 
SAS allows for estimation of ESEM models. We ideally hope to find similar parameter 
estimates across software, as well as similar improvements in model fit in ESEM and BSEM 
models with minimal cross-loadings, regardless of software choice. We hope this study 
provides continued support for alternatives to traditional measurement models and the 
practice of fixing non-primary cross-loadings to zero, while emphasizing the need to include 
a well documented Bayesian latent variable estimation method into SAS PROC CALIS or PROC 
MCMC. The results of this study will provide practitioners with knowledge on consistency, or 
lack of consistency, of parameter estimates when using ESEM and BSEM methodology across 
software, as well as information on SAS, R, and Mplus software specifications for these 
modeling techniques. 

METHODS 

Analyses were completed in SAS version 9.4 (SAS Institute Inc., 2018), Mplus version 8.6 
(Muthén & Muthén, 2017), and R version 4.1.0 (R Core Team, 2022). Within R, the model 
estimations were completed using the lavaan package version 0.6.12 and the blavaan 
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package version 0.4.3, along with each package’s various dependencies (Merkle et al., 2021; 
Rosseel, 2012). As there are various Markov chain Monte Carlo (MCMC) algorithms in 
Bayesian estimation, all BSEM estimations in blavaan were completed using the package 
default MCMC algorithm, stan, through RSTAN version 2.21.5 (Stan Development Team, 
2022). Recent advances in ESEM literature have provided tools to assist practitioners in 
specifying ESEM models in both R and Mplus. For ease of specifying models with target values 
in R, the esemComp package version 0.2 was used (Silverstrin & De Beer, 2022). For ease of 
specifying models with target values in Mplus, researchers developed the ESEM Mplus code 
generator (De Beer & Van Zyl, 2019). These are tools researchers could benefit from to reduce 
the coding burden required to estimate ESEM models. This is a gap that SAS could fill to 
provide ease in estimating ESEM models. 

DATASET 

The data used for this methodological comparison was obtained from the 1939 Holzinger and 
Swineford study measuring mental abilities in middle school aged children in 7th and 8th 
grades at 2 schools (Holzinger & Swineford, 1939). Their dataset has been used throughout 
the development of modern measurement techniques. 26 different tests were conducted to 
measure various mental abilities. Each variable was measured on a continuous scale based 
on the outcome of the various tests conducted by Holzinger and Swineford and were originally 
hypothesized to measure a general factor and 5 primary factors (Holzinger & Swineford, 
1939). Over time, the general factor indicators and two additional indicators have been 
dropped due to poor fit, leaving 19 of the original indicators to be used in the measurement 
models (Gustafsson, 2001; Harman, 1976). The same 19 out of the original 26 items were 
used for analysis in our study replicating original development of BSEM techniques (Muthén 
& Asparouhov, 2012). Unlike the original analysis by Muthén and Asparouhov, the school 
group that a participant belonged to was not of interest in this study and excluded in the 
analysis. Due to the known small sample size convergence issues and possible parameter 
estimate bias in SEM, all sample participants (n=301) were analyzed in this study rather than 
separately (Gittner, 2021; Ma, 2020).  

ANALYSIS 
A new analysis was completed of the classic Holzinger-Swineford mental abilities dataset 
(1939), where a simple structure does not fit well (Muthén & Asparouhov, 2012). The original 
measurement model was modified and proposed to compose four primary factors measuring 
spatial ability, verbal ability, speed, and memory, which were composed of the 19 items as 
shown in Figure 1 (Gustafsson, 2001; Harman, 1976; Muthén & Asparouhov, 2012). All non-
primary factor loadings were restricted and fixed to zero. Previous studies have found this 
model to provide unacceptable model fit (Muthén & Asparouhov, 2012). The traditional 
measurement model with non-primary cross-loadings fixed to zero is provided in Figure 1 and 
was used as a baseline comparison in this study. Attempts to visualize the flexible approaches 
of ESEM and BSEM with parameter estimates for item loadings for each factor was not visually 
appealing and therefore not included. 
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Figure 1. Hypothesized model: Traditional measurement model where all non-
primary cross-loadings are fixed to zero. 

STUDY MODELS 
Three different measurement models were estimated and compared using SAS, R, and Mplus.  

Model 1, maximum likelihood (ML), estimated the traditional measurement model with fixed 
non-primary loadings of zero and a maximum likelihood estimator. Model 1 utilized the 
previous simple structure model visualized in Figure 1 with no modifications. This model 
estimated only the X values in Table 1, while fixing all non-primary (NP) loadings to zero. This 
model was estimated in all 3 software. 

Model 2, exploratory structural equation model with non-primary cross-loadings being 
estimated (ESEM), is comprised of the two-part estimation ESEM-within-CFA approach 
(Asparouhov & Muthén, 2009; Marsh et al., 2009). Part one utilized the traditional 
measurement model from model 1 as the target model for primary factors versus non-primary 
factors that were expected to have small factor loadings close to zero. A target rotation, within 
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exploratory factor analysis (EFA) was used to estimate factor loadings for items across all 
factors (Table 1). Part 2 of this model consisted of using the EFA estimates for all primary and 
non-primary loadings as starting values to estimate the CFA model (Asparouhov & Muthén, 
2009; Marsh et al., 2009).  

Model 3, Bayesian structural equation modeling with non-primary cross-loadings being 
estimated (BSEM-CL), adapted the traditional measurement model outlined in Table 1 by 
eliminating the restriction of fixing the minimal cross-loadings to zero. Instead, informative 
priors for non-primary factor loadings were defined as N(0, 0.1). This means the prior 
distribution is assumed to be a normal distribution with mean of zero and standard deviation 
of 0.1. This model is a more realistic approach compared to model 1 and 2 because it provides 
an expectation of a minimal relationship between non-primary factors through model 
specification with a 95% credibility interval of (-.2, .2). All other prior information was 
specified by the software default settings for BSEM-CL model 3. This model could only be 
estimated in Mplus and R due to lack of SAS documentation for implementing BSEM. 

Models 2 and 3 estimations of all parameters outlined in Table 1, including estimates for all 
non-primary (NP) loadings that are fixed to zero in model 1’s traditional measurement model.  

  

  Spatial  Verbal  Speed  Memory 
visual  X  NP NP NP 
cubes  X  NP NP NP 
paper  X  NP NP NP 
flags X  NP NP NP 
general  NP X NP NP 
paragrap  NP X NP NP 
sentence  NP X NP NP 
wordc  NP X NP NP 
wordm  NP X NP NP 
addition  NP NP X NP 
code NP NP X NP 
counting NP NP X NP 
straight NP NP X NP 
wordr NP NP NP X 
numberr NP NP NP X 
figurer NP NP NP X 
object NP NP NP X 
numberf NP NP NP X 
figurew NP NP NP X 
Table 1. Target rotation for ESEM: X’s are primary loadings for items associated with 
specific factors bolded at the top, NP’s are non-primary factor loadings that were 
only estimated in model 2 and 3. Item names are rows on the left side of the table. 

ESTIMATION NOTE 
All three models were estimated with a standardized latent variable by fixing the latent 
variable variance to 1.0 (Brown, 2015). Because all indicators were measured on different 
scales, all observations were standardized before model estimation (Brown, 2015). All models 
were estimated using a local hard drive on a computer with an Intel i7-9850H processor and 
16 GB of RAM. 
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Model 1 Traditional ML Estimation 
Model 1 in SAS was estimated using PROC CALIS. Model 1 in R was estimated using the lavaan 
package for CFA with the maximum likelihood estimator, and all other package arguments 
set to the default settings. Model 1 in Mplus used the maximum likelihood estimation with all 
other software arguments set to the default settings. 

Four various modeling languages are available to specify models in PROC CALIS. There are 
seven various modeling languages available to write SEM models in SAS PROC CALIS. 
Examples of modeling languages for the FACTOR and LINEQS models in SAS are outlined for 
both traditional ICM-CFA and ESEM. Both languages will provide the same results. Estimating 
models using multiple languages ensures that models are defined correctly.  

Model 1 ML FACTOR Language 
The FACTOR option in PROC CALIS specifies the relationship between factors and items. The 
PVAR option specifies the factor variances being standardized by fixing each latent variable 
variance to 1. The COV option specifies the covariance between factors. If using the FACTOR 
modeling language, model 1 would have been specified as: 

/*Tradtional CFA approach using FACTOR modeling language*/ 
proc calis data=import method=ml all outmodel=mlmodel plots=pathdiagram;  
   factor  
      spatial ---> visual cubes paper flags,  
      verbal ---> general paragrap sentence wordc wordm, 
   speed ---> addition code counting straight, 
      memory ---> wordr numberr figurer object numberf figurew; 
   pvar 
      spatial = 1, 
      verbal = 1, 
   speed =1, 
      memory = 1; 
 cov spatial verbal speed memory; 
run; 

Model 1 ML LINEQS Language 
The LINEQS option specifies the intercept and coefficient for each item and its related factor 
using the EQS modeling language. The VARIANCE option specifies the factor variances being 
standardized by fixing each latent variable variance to 1. The COV option specifies all factors 
that covary. The VAR option outlines all items to be included in the model. If using the LINEQS 
modeling language, model 1 would have been specified as: 

/*Tradtional CFA approach using LINEQS modeling language*/ 
proc calis modification data=zimport method=ml all outmodel=mlmodelEQS 

plots=pathdiagram; 
  lineqs 
 visual = v1 fspatial + e1, 
 cubes = v2 fspatial + e2, 
 paper = v3 fspatial + e3, 
 flags = v4 fspatial + e4, 
 
 general = p1 fverbal + e5, 
 paragrap = p2 fverbal + e6, 
 sentence = p3 fverbal + e7, 
 wordc = p4 fverbal + e8, 
 wordm = p5 fverbal + e9, 
 
 addition = q1 fspeed + e10, 
 code = q2 fspeed + e11, 
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 counting = q3 fspeed + e12, 
 straight = q4 fspeed + e13, 
 
 wordr = w1 fmemory + e14, 
 numberr = w2 fmemory + e15, 
 figurer = w3 fmemory + e16, 
 object = w4 fmemory + e17, 
 numberf = w5 fmemory + e18, 
 figurew = w6 fmemory + e19; 
 
  variance 
 fspatial = 1.0, 
 fverbal = 1.0, 
 fspeed = 1.0, 
 fmemory = 1.0, 
 e1-e19 = e_var1-e_var19; 
 
  COV 
 fspatial fverbal = cspatialverbal, 
 fspatial fspeed = cspatialspeed, 
 fspatial fmemory = cspatialmemory, 
 fverbal fspeed = cverbalspeed, 
 fverbal fmemory = cverbalmemory, 
 fspeed fmemory = cspeedmemory; 
 
  var visual cubes paper flags general paragrap sentence wordc wordm 

addition code counting straight wordr numberr figurer object numberf      
figurew; 

run; 
 
Both model languages estimate the same model; they only use different model specification. 
PROC CALIS SAS documentation can be reviewed for more details regarding different options. 

Model 2 ESEM Estimation 
SAS code to execute model 2 requires a two-part EFA within CFA approach utilizing PROC 
FACTOR for part 1 and PROC CALIS for part 2. For part 1, the target rotation matrix must first 
be defined. Then PROC FACTOR will estimate all primary loadings and non-primary factor 
loadings that are expected to be close to zero, but not fixed to zero with a PROCRUSTES 
specified target rotation method defined by user. The VAR options outlines all variables to be 
included in the model. 

Model 2 ESEM Part 1 
/*part 1 EFA target rotation with maximum likelihood estimation*/ 
*Define target matrix for rotation in part 1; 
data mytarget; 
input _name_ $ visual cubes paper flags general paragrap sentence wordc 
wordm addition code counting straight wordr numberr figurer object 
numberf figurew; 

 datalines; 
 SPATIAL 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 VERBAL  0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
 SPEED   0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
 MEMORY  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
; 
 
*ESTIMATE MODEL part 1; 
proc factor data=import method=ml NFact=4 rotate=procrustes target=mytarget  
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   priors=smc score se plot=pathdiagram; 
 var visual cubes paper flags general paragrap sentence wordc wordm 

addition code counting straight wordr numberr figurer object numberf 
figurew; 

 run; 

Model 2 ESEM Part 2 FACTOR Language 
For part 2, the standardized ML parameter estimates from part 1 were used as starting values 
in estimating the CFA parameters. Some starting values for non-primary items are not 
contained within parentheses which means the values is fixed; this is necessary to ensure 
that the model is identifiable. The same item non-primary factor loadings were fixed to the 
estimates from part 1 across SAS, R, and Mplus to ensure consistency of models. Using this 
ESEM within CFA approach requires users to specify all standardized coefficients in the 
FACTOR modeling language. PROC CALIS with FACTOR modeling language for part 2 of ESEM 
is shown below. 

/*ESTIMATE part 2 within CFA*/ 
proc calis data=zimport method=ml all 
 outmodel=ESEMmodelP2_1;                     
  factor  

spatial ---> visual cubes paper flags general paragrap sentence wordc 
wordm addition code counting straight wordr numberr figurer object 
numberf figurew = 
(0.604180294)(0.51466294)(0.463838763)(0.615434152)(-0.017677604)  
(-0.002871533) -0.056916918 (0.068074647) (0.060206344) -0.252715388  
(-0.004310213) (0.091172728) (0.335307811) -0.09429023 (0.041334541) 
(0.278184447) (-0.198021858) (0.05304794) (0.054381722),  
 
verbal ---> visual cubes paper flags general paragrap sentence wordc 
wordm addition code counting straight wordr numberr figurer object 
numberf figurew =  
(0.11222453) (0.019214669) (0.069609094) -0.139905386 (0.847500244) 
(0.80187633) (0.914298476) (0.690898475) (0.816789116) -0.002946553 
(0.149480738) (-0.069318832) (-0.035547041) 0.07565068 (-0.136605129) 
(0.019259368) (-0.047851096) (-0.007801389) (0.16441266), 
 
speed ---> visual cubes paper flags general paragrap sentence wordc 
wordm addition code counting straight wordr numberr figurer object 
numberf figurew =  
(0.082812425) (-0.057394568) (0.069235628) 0.074969951 (0.057163241) 
(-0.016231669) -0.001521726 (0.026018463) (-0.030763977) (0.7525504) 
(0.532470144) (0.720272162) (0.555910341) -0.148792119 (-
0.099551618) (-0.030492079) (0.238004067) (0.134974098) (0.018630109), 
 
memory ---> visual cubes paper flags general paragrap sentence wordc 
wordm addition code counting straight wordr numberr figurer object 
numberf figurew =  
(0.066394606) (-0.013717339) (-0.071229942) 0.130528342 (-0.080556407) 
(0.086601124) -0.052985295 (0.052096828) (0.041199379) 0.053021061 
(0.170078121) (-0.090945782) (-0.038455025) (0.709347033) (0.636190076) 
(0.492339507) (0.573712653) (0.433723732) (0.332903558); 

Pvar 
spatial = 1, verbal = 1, speed =1, memory = 1; 

  cov spatial verbal speed memory; 
VAR visual cubes paper flags general paragrap sentence wordc wordm 
addition code counting straight wordr numberr figurer object numberf 
figurew; 

run; 
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Model 2 ESEM Part 2 LINEQS Language 
Using this ESEM within CFA approach requires users to specify all regression coefficients in 
the LINEQS modeling language. PROC CALIS with LINEQS modeling language for part 2 of 
ESEM is shown below. 

/*ESTIMATE part 2 within CFA*/ 
proc calis modification data=zimport method=ml all outmodel=mlmodelEQS 

plots=pathdiagram; 
LINEQS   
visual = (.60418) fspatial + (0.11222) fverbal + (0.08281) fspeed + 
  (0.06639) fmemory+ e1,     
cubes =   (0.51466) fspatial + (0.01921) fverbal +(-0.05739) fspeed + 
  (-0.01372) fmemory+ e2, 
paper =   (0.46384) fspatial + (0.06961) fverbal +(0.06924) fspeed + 
  (-0.07123)  fmemory+ e3, 
/*flags non primary loadings fixed to ensure model identification in ESEM 
approach*/   
flags =   (0.61543) fspatial - 0.13991 fverbal + 0.07497 fspeed + 0.13053 
    fmemory+ e4, 
general =  (-0.01768) fspatial + (0.84750) fverbal + (0.05716) fspeed +  

(-0.08056)  fmemory+ e5,  
paragrap =  (-0.00287)fspatial + (0.80188) fverbal + (-0.01623) fspeed +

 (0.08660)  fmemory+ e6, 
/*sentence non primary loadings fixed to ensure model identification in 
ESEM approach*/    
sentence =  -0.05692 fspatial + (0.91430) fverbal - 0.00152 fspeed -  
  0.05299  fmemory+ e7, 
wordc =   (0.06807) fspatial + (0.69090) fverbal + (0.02602) fspeed
 + (0.05210)  fmemory+ e8, 
wordm =   (0.06021) fspatial + (0.81679) fverbal + (-0.03076) fspeed
 + (0.04120)  fmemory+ e9, 
/*addition non primary loadings fixed to ensure model identification in 
ESEM approach*/   
addition =  -0.25272 fspatial - 0.00295 fverbal + (0.75255) fspeed +  
  0.05302  fmemory+ e10,   
code =   (-0.00431) fspatial + (0.14948) fverbal + (0.53247) fspeed + 
  (0.17008)  fmemory+ e11, 
counting =  (0.09117) fspatial + (-0.06932) fverbal + (0.72027) fspeed +

 (-0.09095) fmemory+ e12, 
straight =  (0.33531) fspatial + (-0.03555) fverbal + (0.55591) fspeed +

 (-0.03846) fmemory+ e13, 
/*wordr non primary loadings fixed to ensure model identification in ESEM 
approach*/   
wordr =   -0.09429 fspatial + 0.07565 fverbal - 0.14879 fspeed +  
  (0.70935)  fmemory+ e14, 
numberr =  (0.04133) fspatial + (-0.13661) fverbal + (-0.09955) fspeed + 

(0.63619) fmemory+ e15, 
figurer =  (0.27818) fspatial + (0.01926) fverbal + (-0.03049) fspeed + 

(0.49234)  fmemory+ e16,   
object =  (-0.19802) fspatial + (-0.04785) fverbal + (0.23800) fspeed +

 (0.57371) fmemory+ e17,   
numberf =  (0.05305) fspatial + (-0.00780) fverbal + (0.13497) fspeed +

 (0.43372) fmemory+ e18, 
figurew =  (0.05438) fspatial + (0.16441) fverbal + (0.01863) fspeed + 
  (0.33290)  fmemory+ e19; 
 
variance 
 fspatial = 1.0, 
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 fverbal = 1.0, 
 fspeed = 1.0, 
 fmemory = 1.0, 
 e1-e19 = e_var1-e_var19; 
 
COV 
 fspatial fverbal = cspatialverbal, 
 fspatial fspeed = cspatialspeed, 
 fspatial fmemory = cspatialmemory, 
 fverbal fspeed = cverbalspeed, 
 fverbal fmemory = cverbalmemory, 
 fspeed fmemory = cspeedmemory; 
 
var visual cubes paper flags general paragrap sentence wordc wordm 
 addition code counting straight wordr numberr figurer object numberf 
    figurew; 
run; 

Specification of measurement models using FACTOR and LINEQS language is slightly different. 
LINEQS language is a system of equations with all factors and associated started values being 
outlined for each item based on EQS programming language. FACTOR language specifies the 
associated starting value for each item as it’s related to the factor but not as a system of 
equations, as seen above. 

Model 3 BSEM Estimation 

Estimation of models using BSEM was only available in R and Mplus. R used the blavaan 
package using the bcfa() function with the STAN MCMC sampling method, while Mplus utilized 
the Bayes estimator with Mplus’ default MCMC sampling method. The number of MCMC 
iterations was set to 10,000 for both software for the BSEM estimations. The first half of the 
iterations (n=5,000) were designated as burn-in iterations and the last half of the samples 
(n=5,000) were used for estimation. Two MCMC chains were used for the BSEM models. While 
a more appropriate technique may have used the potential scale reduction (PSR) value to 
provide evidence of convergence towards equilibrium of Bayesian chains. Using this method 
may result in different iterations being completed across software. Instead, the PSR values of 
each Bayesian model were inspected after the 10,000 burn-in and sample iterations for PSR 
values below 0.05, suggesting that all chains converged. Using R STAN’s default starting 
values for the BSEM estimates presented an issue with model convergence in R. Therefore, 
the starting values were specified to match the Mplus starting values. The initial starting 
values in blavaan’s STAN and in Mplus were chosen as if the maximum likelihood approach 
was being used to set starting values.  

All primary factor loadings were estimated using software default’s non-informative prior 
information and non-primary cross-loadings were estimated using informative priors specified 
with a mean/variance relationship of N(0,0.1). All other software options were set to the 
default settings and default non-informative priors for both R and Mplus. R required an 
additional null model to be estimated, which was used in calculating additional global fit 
statistics. 

RESULTS 

The results of this study are presented as a comparison of the standardized factor loading 
estimates between the SAS, R, and Mplus, for each of the three models in Tables 2 through 
6. Global fit indices then were estimated and compared between SAS, R, and Mplus, for each 
of the three models in Table 7. Additional global fit indices available for BSEM estimation in R 
were reported in Table 8. SAS ESEM global fit indices are reported in Table 9 Finally, the 
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estimation times were reported in Table 10 for all three models in SAS, R, and Mplus. 
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STANDARDIZED FACTOR LOADINGS MODEL 1 
 

 
Table 2. Comparing standardized factor loading estimates for model 1 ML traditional CFA in SAS with Mplus: 
Standardized factor loadings and (standard errors) for all parameter estimates are reported here.

Spatial Verbal Speed Memory Spatial Verbal Speed Memory
visual 0.749 (0.045) 0 0 0 0.750 (0.046) 0 0 0
cubes 0.434 (0.057) 0 0 0 0.434 (0.058) 0 0 0
paper 0.491 (0.055) 0 0 0 0.491 (0.055) 0 0 0
flags 0.605 (0.050) 0 0 0 0.605 (0.051) 0 0 0
general 0 0.836 (0.021) 0 0 0 0.836 (0.021) 0 0
paragrap 0 0.821 (0.022) 0 0 0 0.821 (0.022) 0 0
sentence 0 0.867 (0.018) 0 0 0 0.867 (0.018) 0 0
wordc 0 0.741 (0.029) 0 0 0 0.741 (0.029) 0 0
wordm 0 0.847 (0.020) 0 0 0 0.847 (0.020) 0 0
addition 0 0 0.585 (0.048) 0 0 0 0.585 (0.049) 0
code 0 0 0.718 (0.040) 0 0 0 0.718 (0.042) 0
counting 0 0 0.626 (0.045) 0 0 0 0.626 (0.047) 0
straight 0 0 0.678 (0.042) 0 0 0 0.678 (0.044) 0
wordr 0 0 0 0.578 (0.050) 0 0 0 0.578 (0.051)
numberr 0 0 0 0.517 (0.053) 0 0 0 0.517 (0.054)
figurer 0 0 0 0.604 (0.048) 0 0 0 0.604 (0.050)
object 0 0 0 0.556 (0.051) 0 0 0 0.556 (0.052)
numberf 0 0 0 0.548 (0.051) 0 0 0 0.548 (0.053)
figurew 0 0 0 0.454 (0.056) 0 0 0 0.454 (0.057)

Mplus ML estimationSAS ML estimation
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Table 3. Comparing standardized factor loading estimates for model 1 ML traditional CFA in SAS with R: Standardized 
factor loadings and (standard errors) for all parameter estimates are reported here. 

Spatial Verbal Speed Memory Spatial Verbal Speed Memory
visual 0.749 (0.045) 0 0 0 0.749 (0.045) 0 0 0
cubes 0.434 (0.057) 0 0 0 0.434 (0.057) 0 0 0
paper 0.491 (0.055) 0 0 0 0.491 (0.055) 0 0 0
flags 0.605 (0.050) 0 0 0 0.605 (0.050) 0 0 0
general 0 0.836 (0.021) 0 0 0 0.836 (0.021) 0 0
paragrap 0 0.821 (0.022) 0 0 0 0.821 (0.022) 0 0
sentence 0 0.867 (0.018) 0 0 0 0.867 (0.018) 0 0
wordc 0 0.741 (0.029) 0 0 0 0.741 (0.029) 0 0
wordm 0 0.847 (0.020) 0 0 0 0.847 (0.020) 0 0
addition 0 0 0.585 (0.048) 0 0 0 0.585 (0.047) 0
code 0 0 0.718 (0.040) 0 0 0 0.718 (0.040) 0
counting 0 0 0.626 (0.045) 0 0 0 0.626 (0.045) 0
straight 0 0 0.678 (0.042) 0 0 0 0.678 (0.042) 0
wordr 0 0 0 0.578 (0.050) 0 0 0 0.578 (0.050)
numberr 0 0 0 0.517 (0.053) 0 0 0 0.517 (0.053)
figurer 0 0 0 0.604 (0.048) 0 0 0 0.604 (0.048)
object 0 0 0 0.556 (0.051) 0 0 0 0.556 (0.051)
numberf 0 0 0 0.548 (0.051) 0 0 0 0.548 (0.051)
figurew 0 0 0 0.454 (0.056) 0 0 0 0.454 (0.056)

R ML estimation (lavaan)SAS ML estimation
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STANDARDIZED FACTOR LOADINGS MODEL 2 
 

 
Table 4. Comparing standardized factor loading estimates for model 2 ESEM in SAS with Mplus: Standardized factor 
loadings and (standard errors) for all parameter estimates are reported here.  

  

Spatial Verbal Speed Memory Spatial Verbal Speed Memory
visual 0.604 (0.065) 0.112 (0.073) 0.083 (0.081) 0.066 (0.085) 0.587 (0.063) 0.147 (0.071) 0.089 (0.080) 0.082 (0.084)
cubes 0.515 (0.071) 0.019 (0.074) -0.057 (0.084) -0.014 (0.086) 0.499 (0.068) 0.046 (0.071) -0.052 (0.082) 0.000 (0.084)
paper 0.464 (0.072) 0.070 (0.073) 0.069 (0.082) -0.071 (0.086) 0.449 (0.069) 0.096 (0.071) 0.073 (0.081) -0.058 (0.085)
flags 0.615 (0.050) 0.140 (0.006) 0.075 (0.003) 0.131 (0.005) 0.599 (0.051) -0.105 (0.004) 0.081 (0.003) 0.147 (0.006)
general -0.018 (0.057) 0.847 (0.033) 0.057 (0.055) -0.081 (0.058) -0.017 (0.057) 0.847 (0.033) 0.058 (0.056) -0.083 (0.059)
paragrap -0.003 (0.058) 0.802 (0.035) -0.016 (0.056) 0.087 (0.058) -0.001 (0.056) 0.801 (0.033) -0.013 (0.056) 0.084 (0.057)
sentence 0.057 (0.002) 0.914 (0.018) 0.002 (0.000) 0.053 (0.002) -0.055 (0.002) 0.911 (0.019) 0.000 (0.000) -0.057 (0.002)
wordc 0.068 (0.062) 0.691 (0.042) 0.026 (0.061) 0.052 (0.063) 0.067 (0.059) 0.695 (0.040) 0.029 (0.060) 0.052 (0.062)
wordm 0.060 (0.056) 0.817 (0.033) -0.031 (0.055) 0.041 (0.057) 0.059 (0.056) 0.819 (0.032) -0.028 (0.056) 0.040 (0.058)
addition 0.253 (0.010) 0.003 (0.000) 0.753 (0.049) 0.053 (0.002) -0.241 (0.010) -0.004 (0.000) 0.746 (0.051) 0.046 (0.002)
code -0.004 (0.075) 0.149 (0.063) 0.532 (0.061) 0.170 (0.072) 0.000 (0.073) 0.158 (0.062) 0.530 (0.061) 0.169 (0.073)
counting 0.091 (0.081) -0.069 (0.071) 0.720 (0.064) -0.091 (0.085) 0.091 (0.079) -0.052 (0.069) 0.716 (0.063) -0.087 (0.084)
straight 0.335 (0.076) -0.036 (0.073) 0.556 (0.069) -0.038 (0.086) 0.327 (0.077) -0.008 (0.072) 0.555 (0.072) -0.029 (0.089)
wordr 0.094 (0.004) 0.076 (0.003) 0.149 (0.006) 0.709 (0.050) -0.084 (0.003) 0.069 (0.003) -0.144 (0.006) 0.702 (0.050)
numberr 0.041 (0.085) -0.137 (0.073) -0.100 (0.084) 0.636 (0.071) 0.047 (0.082) -0.135 (0.071) -0.095 (0.083) 0.634 (0.070)
figurer 0.278 (0.076) 0.019 (0.069) -0.030 (0.078) 0.492 (0.070) 0.275 (0.073) 0.035 (0.067) -0.024 (0.077) 0.497 (0.069)
object -0.198 (0.084) -0.048 (0.071) 0.238 (0.080) 0.574 (0.071) -0.184 (0.083) -0.054 (0.069) 0.238 (0.080) 0.565 (0.072)
numberf 0.053 (0.080) -0.008 (0.069) 0.135 (0.076) 0.434 (0.071) 0.057 (0.080) -0.002 (0.068) 0.137 (0.078) 0.432 (0.074)
figurew 0.054 (0.078) 0.164 (0.067) 0.019 (0.076) 0.333 (0.074) 0.057 (0.077) 0.168 (0.065) 0.022 (0.076) 0.332 (0.074)

SAS ESEM Mplus ESEM
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Table 5. Comparing standardized factor loading estimates for model 2 ESEM in SAS with R: Standardized factor loadings 
and (standard errors) for all parameter estimates are reported here.  

Spatial Verbal Speed Memory Spatial Verbal Speed Memory
visual 0.604 (0.065) 0.112 (0.073) 0.083 (0.081) 0.066 (0.085) 0.587 (0.062) 0.146 (0.071) 0.089 (0.080) 0.082 (0.084)
cubes 0.515 (0.071) 0.019 (0.074) -0.057 (0.084) -0.014 (0.086) 0.499 (0.068) 0.046 (0.072) -0.052 (0.083) 0.001 (0.084)
paper 0.464 (0.072) 0.070 (0.073) 0.069 (0.082) -0.071 (0.086) 0.449 (0.069) 0.096 (0.071) 0.073 (0.081) -0.058 (0.085)
flags 0.615 (0.050) 0.140 (0.006) 0.075 (0.003) 0.131 (0.005) 0.598 (0.051) -0.105 (0.004) 0.081 (0.003) 0.147 (0.006)
general -0.018 (0.057) 0.847 (0.033) 0.057 (0.055) -0.081 (0.058) -0.017 (0.055) 0.847 (0.032) 0.059 (0.054) -0.083 (0.057)
paragrap -0.003 (0.058) 0.802 (0.035) -0.016 (0.056) 0.087 (0.058) -0.001 (0.056) 0.801 (0.033) -0.013 (0.056) 0.083 (0.057)
sentence 0.057 (0.002) 0.914 (0.018) 0.002 (0.000) 0.053 (0.002) -0.055 (0.002) 0.911 (0.018) 0.000 (0.000) -0.057 (0.002)
wordc 0.068 (0.062) 0.691 (0.042) 0.026 (0.061) 0.052 (0.063) 0.067 (0.059) 0.695 (0.040) 0.029 (0.060) 0.052 (0.062)
wordm 0.060 (0.056) 0.817 (0.033) -0.031 (0.055) 0.041 (0.057) 0.059 (0.054) 0.819 (0.031) -0.027 (0.055) 0.040 (0.056)
addition 0.253 (0.010) 0.003 (0.000) 0.753 (0.049) 0.053 (0.002) -0.241 (0.010) -0.004 (0.000) 0.746 (0.049) 0.046 (0.002)
code -0.004 (0.075) 0.149 (0.063) 0.532 (0.061) 0.170 (0.072) 0.000 (0.072) 0.158 (0.062) 0.530 (0.060) 0.169 (0.071)
counting 0.091 (0.081) -0.069 (0.071) 0.720 (0.064) -0.091 (0.085) 0.090 (0.078) -0.053 (0.069) 0.716 (0.063) -0.087 (0.083)
straight 0.335 (0.076) -0.036 (0.073) 0.556 (0.069) -0.038 (0.086) 0.327 (0.073) -0.008 (0.071) 0.555 (0.067) -0.028 (0.085)
wordr 0.094 (0.004) 0.076 (0.003) 0.149 (0.006) 0.709 (0.050) -0.084 (0.003) 0.069 (0.003) -0.144 (0.006) 0.702 (0.050)
numberr 0.041 (0.085) -0.137 (0.073) -0.100 (0.084) 0.636 (0.071) 0.047 (0.082) -0.135 (0.071) -0.095 (0.083) 0.634 (0.070)
figurer 0.278 (0.076) 0.019 (0.069) -0.030 (0.078) 0.492 (0.070) 0.275 (0.073) 0.035 (0.067) -0.024 (0.077) 0.497 (0.069)
object -0.198 (0.084) -0.048 (0.071) 0.238 (0.080) 0.574 (0.071) -0.185 (0.081) -0.054 (0.069) 0.238 (0.079) 0.565 (0.070)
numberf 0.053 (0.080) -0.008 (0.069) 0.135 (0.076) 0.434 (0.071) 0.057 (0.077) -0.002 (0.067) 0.137 (0.075) 0.433 (0.070)
figurew 0.054 (0.078) 0.164 (0.067) 0.019 (0.076) 0.333 (0.074) 0.057 (0.075) 0.168 (0.065) 0.022 (0.075) 0.332 (0.072)

SAS ESEM R ESEM
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STANDARDIZED FACTOR LOADINGS MODEL 3 
 

 
Table 6. Comparing standardized factor loading estimates for model 3 BSEM in R vs Mplus: Standardized factor loadings 
and (posterior standard deviation) for all parameter estimates are reported here.  

Spatial Verbal Speed Memory Spatial Verbal Speed Memory
visual 0.637 (0.074) 0.089 (0.066) 0.050 (0.070) 0.038 (0.071) 0.631 (0.070) 0.097 (0.066) 0.055 (0.069) 0.045 (0.070)
cubes 0.510 (0.076) 0.011 (0.063) -0.052 (0.066) -0.023 (0.068) 0.505 (0.073) 0.017 (0.063) -0.049 (0.067) -0.021 (0.068)
paper 0.483 (0.074) 0.049 (0.063) 0.025 (0.066) -0.055 (0.067) 0.480 (0.073) 0.054 (0.062) 0.029 (0.066) -0.050 (0.068)
flags 0.639 (0.073) -0.109 (0.066) 0.036 (0.069) 0.077 (0.072) 0.635 (0.070) -0.103 (0.067) 0.041 (0.070) 0.084 (0.070)
general -0.030 (0.060) 0.860 (0.041) 0.040 (0.058) -0.074 (0.061) -0.026 (0.060) 0.858 (0.040) 0.039 (0.058) -0.073 (0.058)
paragrap  0.001 (0.059) 0.809 (0.041) -0.014 (0.058) 0.057 (0.059) 0.005 (0.058) 0.808 (0.040) -0.016 (0.058) 0.058 (0.059)
sentence -0.068 (0.061) 0.925 (0.042) -0.006 (0.060) -0.056 (0.062) -0.063 (0.060) 0.922 (0.038) -0.007 (0.059) -0.055 (0.060)
wordc 0.041 (0.059) 0.708 (0.045) 0.021 (0.058) 0.041 (0.059) 0.044 (0.058) 0.707 (0.044) 0.018 (0.058) 0.045 (0.058)
wordm 0.046 (0.059) 0.831 (0.040) -0.036 (0.057) 0.029 (0.058) 0.048 (0.058) 0.830 (0.039) -0.038 (0.057) 0.031 (0.058)
addition -0.192 (0.073) -0.020 (0.071)  0.756 (0.071) 0.014 (0.075) -0.190 (0.072) -0.023 (0.070) 0.755 (0.069) 0.011 (0.073)
code -0.005 (0.065) 0.114 (0.063) 0.585 (0.067) 0.113 (0.067) -0.003 (0.064) 0.115 (0.061) 0.584 (0.065) 0.113 (0.067)
counting 0.041 (0.071) -0.052 (0.066) 0.716 (0.068) -0.072 (0.070) 0.044 (0.071) -0.055 (0.067) 0.720 (0.067) -0.075 (0.071)
straight 0.226 (0.066) -0.013 (0.063)  0.581 (0.073) -0.027 (0.069) 0.228 (0.067) -0.012 (0.063) 0.585 (0.071) -0.029 (0.068)
wordr -0.082 (0.072)  0.040 (0.067) -0.105 (0.071) 0.697 (0.074) -0.078 (0.070) 0.038 (0.067) -0.109 (0.069) 0.698 (0.072)
numberr 0.015 (0.070) -0.110 (0.064) -0.081 (0.070) 0.628 (0.073) 0.015 (0.070) -0.111 (0.065) -0.085 (0.068) 0.634 (0.071)
figurer 0.186 (0.067) 0.026 (0.059) -0.018 (0.066)  0.519 (0.072) 0.188 (0.065) 0.027 (0.060) -0.019 (0.065) 0.522 (0.071)
object -0.138 (0.068)  -0.049 (0.065) 0.160 (0.069) 0.588 (0.077) -0.136 (0.067) -0.050 (0.063) 0.158 (0.068) 0.589 (0.072)
numberf 0.036 (0.066) -0.002 (0.060) 0.078 (0.066) 0.472 (0.075) 0.036 (0.065) -0.003 (0.060) 0.078 (0.066) 0.475 (0.074)
figurew 0.030 (0.065) 0.118 (0.058) 0.018 (0.065) 0.367 (0.077) 0.032 (0.064) 0.120 (0.058) 0.017 (0.064) 0.369 (0.076)

Mplus BSEM estimation R BSEM estimation



19 

GLOBAL FIT INDICES 
 

 
Table 7. Comparing global fit indices across software for all 3 models: Available fit statistics are different across 
software. Model 3 fit statistics RMSEA, CFI, and TLI are Bayesian adjusted fit indices available in R and Mplus. PSR is 
Gelman Rubin point scale reduction factor. PPP is posterior predictive p-value.  

 

 
Table 8. Additional Bayesian adjusted global fit indices only available in R.  

Number of freely 
estimated 
parameters

Chi-square(d.f) (p-
value) RMSEA CFI TLI SRMR Highest PSR PPP

SAS ML 44 313(146) (<0.0001) 0.062 0.915 0.901 0.067
Mplus ML 
estimation 63 314(171) (<0.0001) 0.062 0.915 0.900 0.064
R ML estimation 
(lavaan) 44 314(146) (<0.0001) 0.062 0.915 0.9 0.067
SAS ESEM 89 130(101) (0.0267) 0.031 0.985 0.975 0.024
Mplus ESEM 101 130(101) (0.0251) 0.031 0.985 0.975 0.023
R ESEM 101 130(101) (0.0251) 0.031 0.985 0.975 0.024
Mplus BSEM 
estimation 120 0.033 0.982 0.972 1.012 0.093
R BSEM 
estimation 0 0.032 0.982 0.972 1.001 0.118

Model 1

Model 2

Model 3

Global fit indices

BNFI BMc

B 
Gamma 

Hat
Adjusted B 
Gamma Hat

R BSEM 0.933 0.943 0.988 0.976

Additional global fit indices
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Table 9. ESEM default global fit indices available in SAS: SAS calculates an extensive 
list of global fit indices, in addition to providing considerable details regarding 
estimated models through default options.  

  

Number of Observations 301
Number of Variables 19
Number of Moments 190

Number of Parameters 89
Number of Active Constraints 0
Baseline Model Function Value 7.136

Baseline Model Chi-Square 2140.786
Baseline Model Chi-Square DF 171

Pr > Baseline Model Chi-Square <.0001
Fit Function 0.4341
Chi-Square 130.2347

Chi-Square DF 101
Pr > Chi-Square 0.0267

Elliptic Corrected Chi-Square 126.4255
Pr > Elliptic Corr. Chi-Square 0.0442
Z-Test of Wilson & Hilferty 1.9322

Hoelter Critical N 289
Root Mean Square Residual (RMR) 0.0244

Standardized RMR (SRMR) 0.0244
Goodness of Fit Index (GFI) 0.9569

Adjusted GFI (AGFI) 0.919
Parsimonious GFI 0.5652
RMSEA Estimate 0.0311

RMSEA Lower 90% Confidence Limit 0.0113
RMSEA Upper 90% Confidence Limit 0.0455

Probability of Close Fit 0.9869
ECVI Estimate 1.0698

ECVI Lower 90% Confidence Limit 0.9964
ECVI Upper 90% Confidence Limit 1.1837

Akaike Information Criterion 308.2347
Bozdogan CAIC 727.1675

Schwarz Bayesian Criterion 638.1675
McDonald Centrality 0.9526

Bentler Comparative Fit Index 0.9852
Bentler-Bonett NFI 0.9392

Bentler-Bonett Non-normed Index 0.9749
Bollen Normed Index Rho1 0.897

Bollen Non-normed Index Delta2 0.9857
James et al. Parsimonious NFI 0.5547

Fit Summary

Incremental Index

Parsimony Index

Absolute Index

Modeling Info
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Table 10. Comparing model estimation times across software: Time estimates 
using Intel i7-9850H processor with 16 GB of RAM.  

  

Model & Software
Estimation of 

primary analysis
Estimating null model for 

additional fit indices
SAS ML 1 second
Mplus ML 1 second
R ML estimation (lavaan) 1.9 second
SAS ESEM 1 second
R ESEM 5 seconds
Mplus ESEM 7 seconds
Mplus BSEM-CL estimation 9 seconds
R BSEM-CL estimation (STAN) 14.5 minutes 6.5 minutes

Estimation time

Model 1

Model 2

Model 3
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DISCUSSION 
A discussion of standardized factor loadings, global fit indices, and software estimation time 
is outlined below. 

STANDARDIZED FACTOR LOADINGS 
For model 1, only trivial rounding differences are seen across software. Standardized factor 
loadings and standard errors were similar within 0.002 across software for all items. Given 
the stability of traditional CFA in software, this is not surprising. 

For model 2, SAS provided considerably different standardized factor loading estimates, 
compared to R and Mplus. SAS provided estimates that were as large as 0.02 standardized 
factor loading estimates different from the estimates both R and Mplus provided. When 
comparing R and Mplus, the largest discrepancy they provided was smaller at 0.005. Although 
SAS did provide larger discrepancies in parameter estimates compared to R and Mplus, the 
differences were not large enough to lead researchers to different conclusions. Upon further 
inspection, it was noticed that the EFA standardized parameter estimates in part 1 of the EFA 
within CFA ESEM approach was the cause of the difference in estimates. This is surprising 
given the length of time that EFA has been adopted into all software. Degrees of freedom we 
compared across all software was equal to 101 for each analysis, so there is likely some 
default setting in SAS that is impacting EFA standardized loading estimates. Further research 
might consider exploring this issue. 

For model 3, R and Mplus provided similar standardized loading estimates across software, 
with the largest discrepancy for loadings being as small as 0.008. This would not impact 
conceptual interpretation and is attributed to the difference in non-informative priors in each 
software as well as the different seed utilized to start each MCMC. The internal seed value is 
set by each software, so while setting them as the same, it does not guarantee control that 
the same seed was used. 

GLOBAL FIT INDICES 
Evaluation of the global fit indices included comparisons between all three software and 
estimation models, which are included in Tables 7 through 9. SAS, Mplus, and R provided 
consistent estimates of chi-squared tests, root mean square error of approximation (RMSEA), 
the comparative fit index (CFI), the Tucker-Lewis index (TLI), and the standardized root mean 
squared residual (SRMR) values across ML and ESEM. This analysis confirmed that software 
estimate degrees of freedom differently, which could be one of the reasons for slightly 
different measures. 

SAS provides an extensive list of global fit indices for SEM modeling, which is well beyond 
options available in Mplus and R for ML and ESEM approaches. Mplus and R have adopted 
several Bayesian adjusted fit indices along with the posterior predictive p-value (PPP). The 
blavaan package in R provides additional Bayesian adjusted global fit indices. Currently, the 
only way to estimate these additional Bayesian adjusted global fit indices is to employ R. 
Additionally, the information criteria and log-likelihood tests were computed by each software 
for each of the various models, but were not reported in this study. Given SAS’s extensive list 
of global fit indices, adoption of BSEM methods and Bayesian adjusted fit indices would likely 
provide a competitive advantage for SAS with their vast global fit options. 

MODEL ESTIMATION TIMES 
For all maximum likelihood approaches and ESEM, software choice did not result in substantial 
differences in time to execute analyses. Loading results into SAS’s html browser took longer 
than the actual analyses. The same was true for ML and ESEM methods in R and Mplus. There 
was a noticeable difference in estimation times for BSEM in R. Given the free cost of using R, 
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this could be the only downside to using R for this analysis. SAS could potentially use this as 
a competitive marketing advantage if BSEM methodology were adopted. 

CONCEPTUAL MODEL INTERPRETATION 
SAS, R, and Mplus all provided evidence for not supporting the traditional CFA measurement 
model. Even with the slight differences in standardized factor loadings, SAS, R, and Mplus all 
provided consistent evidence of improved model fit using ESEM when estimating non-primary 
cross-loadings. R and Mplus provided consistent evidence of improved model fit by using 
informative minor cross-loadings. The authors had previously estimated BSEM models with 
no cross-loading and found similar conclusions to poor model fit as was found in Model 1 
(Gittner et al., 2022). The use of minor cross-loadings has improved the fit of the model while 
providing a more realistic relationship among items and factors. 

CONCLUSION 
This study highlights the continued support for developing latent variable methodology in 
software. To gain widespread acceptance of methodology that allows more flexible approaches 
to the use of model estimation with minor cross-loadings, statistical software needs to be 
proactive in adopting newer methodology. The improved model fit of ESEM and BSEM 
methodology are highlighted in this study. Yet the control that BSEM methodology gives to 
researchers to utilize previous information and specify models is much stronger than ESEM 
methodology. In practice ESEM could still be considered as an exploratory approach, whereas 
BSEM is a confirmatory method.  

Given the known estimation issues with using Bayesian methods in R and cost of a single 
Mplus license, SAS stands to uniquely position itself with a competitive advantage by adopting 
BSEM methodology. The authors hope to see SAS adopting BSEM methodology into the PROC 
CALIS command or document SEM modeling ability in PROC MCMC command in near future. 
For now, our suggestion to applied researchers and practitioners is to feel free to use any 
software package if they are choosing to estimate a model with fixed minor cross-loadings of 
zero. In the event of a poor model fit, instead of making post hoc modifications, the 
researchers might consider exploring more flexible approaches that allow more realistic non-
zero minor cross-loading estimates to improve model fit. This can be accomplished through 
ESEM and BSEM techniques. Estimation of ESEM models may be executed in any software, 
but EFA part 1 results might want to be confirmed for consistency in another software 
package. To utilize a true confirmatory approach with the BSEM methods, researchers should 
explore the more user-friendly options in Mplus, over the less user-friendly options in R. 
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