
1

SESUG 2022 Paper 149

PROC IMPORT: Controlling SAS® Data Types
and Character Variable Lengths When Reading CSV Files

Imelda C. Go, PhD, Cognia, Inc. and
Abbas S. Tavakoli, DrPH, MPH, ME, University of South Carolina

ABSTRACT
The task at hand is we have a SAS data set and the client needs a CSV file containing all the
data in that SAS data set. Validate the CSV file to make sure that it contains exactly what is
in the SAS data set. Using PROC IMPORT to read CSV files is convenient. However, relying
solely on PROC IMPORT features does not always produce data sets with the desired
properties, which can make combining two or more data sets difficult. This paper goes
through an example of how you can control or adjust variable types in a data set generated
by PROC IMPORT by using GUESSINGROWS=NO, reading as the first record a character
string that defines the length of variables, and then reading the CSV file. The technique can
be useful when we do not have the source SAS data sets and are given CSV files, which we
have to read and then combine into a single SAS data set.

INTRODUCTION
Since we have the data set from which the CSV originated from, we have the information
required to build a custom DATA STEP to read the contents of a CSV file. We can also look
at the log and see the PROC IMPORT code that SAS uses to read the data. We can reuse
and modify this data to suit our needs. Still another option is the example presented in this
paper.

There are good reasons to want to control the variable attributes of PROC IMPORT
outcomes.

1. To combine two or more SAS data sets with a SET statement in a DATA Step, SAS
requires that variables from different SAS data sets have the same name and type.

2. For character variables, we also need to worry about truncation if the same character
variables from different SAS data sets have different lengths.

3. Only numeric variable types can be used with procedures that require numeric
variables. If a numeric variable only has blank values, that will be defined as
character.

For a CSV file, we can use a GUESSINGROWS value to help SAS determine the variable
type. However, its current maximum value is 32,767, which may or may not be sufficient
for your needs.

1. If SAS reads data as a character, all the data will be stored as a character value.
2. If SAS sees only blank data, the data will be read as a character type, which may or

may not be what we want.
3. If SAS sees only numbers, the variable will be numeric. However, we may still want

the variable to be character instead of numeric.
4. We may experience data loss when SAS decides to read data as numeric when there

are character values. Character values will appear as missing values.
5. We may experience truncation. Once the length has been defined, longer character

values will be truncated up to the defined length.

2

PROGRAMMING STEPS FOR EXAMPLE
1. The SAS data set is called DataSource.
2. Export its contents into a CSV file using PROC EXPORT.
3. Create a comma-delimited string consisting of C’s or N’s that is based on the length

and type of each DataSource variable and save it as a file to be used as input later.
This will be called &file1 and will be used to set the lengths of the character
variables.

4. Export DataSource contents into a CSV file using PROC EXPORT. This will be called
&file2.

5. Define a composite FILENAME statement with two parts:

FILENAME DATAFILE (&file1, &file2);

6. Use PROC IMPORT to read the composite DATAFILE CSV file with GETNAMES=NO
statement. This will force variable names to be var1, var2, …. Because the first
record has only letters for values, the variable types of all variables will be character.
From the data set produced by PROC IMPORT, we can discard the 1st record, which
has already served its purpose to set the character lengths. We can isolate the
observed header (2nd record) and the observed data (all records following the 2nd
record).

7. To validate the header, we change the var1, var2, var3, … names to original names
by using the values provided in the PROC CONTENTS of DataSource. We transpose
the header data so that it can be compared with the PROC CONTENTS data set from
DataSource. We can use PROC COMPARE to compare the headers.

8. To validate the data, we convert all the character variables into numeric ones based
on attributes of DataSource variables as specified in PROC CONTENTS data set. We
also need to rename the variables to the original names in DataSource. We can use
PROC COMPARE to compare the data.

3

proc import file="
C:\Users\imelda.go\Desktop\filelayout.xlsx"
out=EXPCSVHeader
 (keep="variable name"n "data element number"n
 where=("data element number"n ne .)
 rename=("variable name"n=COL1)) dbms=xlsx replace;

Get the data with the expected layout
labels. These are the values that
should appear in the header row for
the CSV file.

proc contents data=DataSource noprint
 out=EXPDataLabels (keep=name type length
varnum) varnum ; run;

proc sort data=EXPDataLabels; by varnum;

proc sql noprint;
select count(*) into :n
from EXPDataLabels;
quit;

%let numvar=%cmpres(&n);

Get the data with the expected data
labels from the SAS data source.

Put the number of records for
expected data labels into macro
variable numvar.

data lengthstrings;
length var1-var&numvar. $10000;
retain var1-var&numvar. ;
set EXPDataLabels end=eof;
array varlist (*) $ var1-var&numvar.;
if type=2
 then varlist{varnum}=repeat('C',length);
else if type=1
 then varlist{varnum}=repeat('N',8);
if eof then output;
keep var:;
drop varnum;
run;

proc export data=lengthstrings dbms=csv
file="&sandbox.\lengthstrings.txt" replace;
putnames=no;

Create a single string that controls the
length of the character variables for
the CSV file.

Using the PROC CONTENTS data, we
know what is the maximum length for
each character variable in the SAS
data source. We will create a string of
C’s, which repeat till the length of
each character variable. For numbers,
there will just be an N. This data is
written out with no header
(PUTNAMES=NO). (To keep this
example simple, we will assume the
numbers just need a length of 8.)

data renamestring;
length renamestring $32767;
retain renamestring '';
 set EXPDataLabels end=eof;
renamestring=strip(renamestring)||"
"""||strip(name)||"""n=var"||strip(varnum);
if eof then call
symput("renamestring",renamestring);
 run;

This step read the expected data
labels and creates a string that will be
used to rename the sequence of
variables.

data NumericVars;
set EXPDataLabels (where=(type= 1));
run;

data convertstring;
length convertstring $30000;
retain convertstring '';
 set NumericVars end=eof;
convertstring=strip(convertstring)||"%nrstr(%convert
)"||"(var"||strip(put(varnum,8.))||");";
if eof then call
symput("convertstring",convertstring);
 run;

***count # of conversions;
proc sql noprint;
select count(*) into: nconvert from convertstring;
quit;
%put &nconvert;

Determine which variables from
source data set are numeric.

Using these data, create a string that
will be used to convert the numeric
variables into strings.

Put the number of numeric variables
in marco variable nconvert.

4

filename datafile
("&sandbox.\CSVdata._lengthstrings.txt","&filename")
;

Use a filename, to be used with PROC
IMPORT, that consists of two parts.
The first part is the string that
controls the length of the character
variable. The second part is the CSV
data file itself.

proc import out=CSVdata file=datafile dbms=csv
replace;
getnames=no;
run;

Read the data specified in this 2-part
filename but DO NOT get the variable
names from the header
(GETNAMES=NO). This will result in a
data file that has var1, var2, var3, …
as variable names.

Because the 1st row only contains
letters, automatically all variables will
be a character type. The first row was
created such that the character
variables will not be truncated.

proc contents data=CSVdata noprint
 out=OBSCSVdataContents (keep=name type
length varnum) varnum ; run;

Create a SAS data set with the
observed CSV data contents.

%macro convert(var);
if strip(&var)=:'' then &var.num=.;
 else &var.num=input(&var,8.);
drop &var;
rename &var.num=&var;
%mend convert;

This macro generates code that
converts the character values from the
CSV data into numeric ones.

data EXPCSVdata;
set datasource (drop=&dropvarlist);
rename &renamestring ;
run;

Rename the variables in the CSVdata
so that it will have the same expected
variable names. Use the
&renamestring.

data OBSCSVHeader OBSCSVdata;
 set CSVdata;
 if _n_=1 then do; delete; end;
 else if _n_=2 then output OBSCSVHeader;
 else output OBSCSVdata; run;

Because of the 2-part file name we
used, we know that the 1st record was
to control the length of the character
variables. The 2nd record is the header
and records after that contain the
data.

proc transpose data=OBSCSVheader out=OBSCSVheader ;
var var:; run;

proc compare data=EXPCSVHeader compare=OBSCSVheader
listall outall out=diffheader;
title COLOR=RED "DataSource HEADER ROW"; run;

Transpose the CSV header so that it
goes from 1 record to several. The
observed CSV header can now be
compared with the Expected values
specified by the file layout.

options errors=5;
%if &nconvert=0 %then
%do;

 data ObservedData; set OBSCSVdata;
 run;
%end;
%else
%do;
 data ObservedData; set OBSCSVdata;
 &convertstring;
 run;
%end;

It is possible that the source data set
has no numeric variables and that
there are no variables in the observed
CSV data that needs to be converted.
Use the convertstring to the necessary
character variables into numeric ones.

5

proc datasets lib=work memtype=data
noExpectedDatant;
 modify ExpectedData ;
 attrib _all_ label='';
 attrib _all_ format=;
 attrib _all_ informat=;

 modify ObservedData ;
 attrib _all_ format=;
 attrib _all_ informat=;
run;

proc sort data=ExpectedData;
proc sort data=ObservedData;
run;

proc compare data=ExpectedData compare=ObservedData;
run;

%MEND CSVValidation;

Data sets often attributes which could
be flagged as a difference when using
PROC COMPARE. To minimize these
differences, we can remove the labels,
formats, and informats that might
trigger differences even when we are
only interested in the data values.

We run a final PROC COMPARE to
make sure that the contents of the
data source are the same as the CSV
data.

CONCLUSION
The SAS programming language offers different tools to help us with our work. By
understanding how procedures work, we can more easily design automated solutions that
help us achieve the desired result.

CONTACT INFORMATION
Imelda C. Go
Cognia, Inc.
imelda.go@cognia.org

Abbas S. Tavakoli
University of South Carolina
abbas.tavakoli@sc.edu

TRADEMARK NOTICE
SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration. Other brand and product names are trademarks of their respective companies.

mailto:imelda.go@cognia.org
mailto:abbas.tavakoli@sc.edu

	Abstract
	Introduction
	PROGRAMMING steps FOR EXAMPLE
	Conclusion
	Contact Information
	TRADEMARK NOTICE

