
SESUG 2022 Paper 110

Essential Programming Techniques Every

SAS® User Should Learn

Kirk Paul Lafler, sasNerd

Abstract
SAS® software boasts countless functions, algorithms, procedures, options, methods, code constructs, and other features to

help users automate and deploy solutions for specific tasks and problems, as well as to access, transform, analyze, and manage

data. This paper identifies and shares essential programming techniques that a pragmatic user and programmer should learn.

Topics include determining the number of by-group levels that exist within classification variables; data manipulation with the

family of CAT functions; merging or joining multiple tables of data; performing table lookup operations with user-defined

formats; creating single-value and value-list macro variables with PROC SQL; examining and processing the contents of value-list

macro variables; determining the FIRST., LAST. and Between by-group rows; processing repetitive data with arrays; and using

metadata to better understand the contents of SAS datasets.

Introduction
Celebrating a milestone like a birthday, an anniversary, or a gratifying achievement can give us all an amazing feeling about

some precious memory that has occurred in, or during, our lives. Memories of significant milestones can also be experienced

and celebrated by companies too. You see, it wasn’t too long ago when a small startup, later called SAS Institute, began their

journey to change the lives of millions of users with a product called SAS software. What makes this such a special celebration is

that this small startup along with their software became a powerhouse in analytics where a world of data is transformed daily

into a world of intelligence. This not so minor achievement has positively affected many organizations and millions of SAS users

around the globe for more than a half-century now. Congratulations to SAS Institute, its employees, and its incredible user

community for this amazing accomplishment, because we all have had, in some way or another, the good fortune to be part of

this incredible journey.

As we march on into the 21st century, SAS users continue their quest for knowledge by learning techniques to not only enhance

their own skillsets to gain career advantage. Whether you’re a beginner who’s just started your journey learning the various

SAS techniques, an intermediate or an advanced user who has developed code, programs and/or applications using SAS

software, do everything possible to expand your skillset. The good news is that there is no shortage of ways to learn and

enhance your SAS skills including accessing the many SAS communities such as communities.sas.com, blogs.sas.com,

www.lexjansen.com, and countless others. Always remain curious about the various technologies by exploring all available

techniques and take the time to continue your professional growth through learning.

Essential Programming Techniques Every SAS User Should Learn
The most common response to the question, “What essential programming techniques should SAS users learn?” varies

depending on who you ask. The fact is if you were to ask ten different SAS users what essential programming techniques a SAS

user should learn you’d most likely receive a variety of responses. For some, essential programming techniques include arrays,

faster programming constructs and table lookups. For others, essential programming techniques include modernizing outdated,

statements, functions, options, coding constructs, algorithms and other techniques with newer, faster and more scalable

programming techniques. So, what essential SAS programming techniques should be learned? To shed some light on this very

important question, a few topics are shared, below.

Conditional Logic Scenarios
A powerful and necessary programming technique in the SAS® software is its ability to perform different actions depending on

whether a programmer-specified condition evaluates to true or false. The method for accomplishing this is to use one or more

conditional statements, expressions, and constructs to build a level of intelligence in a program or application. Conditional logic

scenarios in the DATA step are frequently implemented using IF-THEN / ELSE and SELECT statements. The SQL procedure also

supports logic scenarios and is implemented with a coding technique known as a CASE expression.

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

2

Conditional Logic with IF-THEN / ELSE
The IF-THEN / ELSE construct in the DATA step enables a sequence of conditions to be assigned that when executed proceeds

through the sequence of logic conditions until a match in an expression is found or until all conditions are exhausted. The

example shows a character variable Movie_Length being assigned a value of either “Shorter Length”, “Average Length”, or

“Longer Length” based on the mutually exclusive conditions specified in the IF-THEN and ELSE conditions. Although not

required, an ELSE condition serves as an effective technique for continuing processing to the next specified condition when a

match is not found. An ELSE condition can also be useful as a “catch-all” to prevent a missing value from being assigned.

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;

DATA IF_THEN_EXAMPLE ;

 ATTRIB Movie_Length LENGTH=$14 LABEL=’Movie Length’ ;

 SET MYDATA.MOVIES ;

 IF LENGTH < 120 THEN Movie_Length = ‘Shorter Length’ ;

 ELSE IF LENGTH > 160 THEN Movie_Length = ‘Longer Length’ ;

 ELSE Movie_Length = ‘Average Length’ ;

RUN ;

PROC PRINT DATA=IF_THEN_EXAMPLE NOOBS ;

 VAR TITLE LENGTH Movie_Length ;

RUN ;

Conditional Logic with SELECT-WHEN / OTHERWISE
Another form of conditional logic available to users is a SELECT statement. Its purpose is to enable a sequence of logic

conditions to be constructed in a DATA step by specifying one or more WHEN conditions and an optional OTHERWISE

condition. When executed, processing continues through each WHEN condition until a match is found that satisfies the

specified expression. Typically, one or more WHEN conditions are specified in descending frequency order representing a series

of conditions. The next example shows a value based on the mutually exclusive conditions specified in the sequence of logic

conditions of “Shorter Length”, “Average Length”, or “Longer Length” being assigned to the character variable Movie_Length.

IF-THEN / ELSE Code:

IF-THEN / ELSE Results:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

3

Although not required, the OTHERWISE condition can be useful in the assignment of a specific value or as a “catch-all” to

prevent a missing value from being assigned.

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;

DATA SELECT_EXAMPLE ;

 SET MYDATA.MOVIES ;

 SELECT ;

 WHEN (LENGTH < 120) Movie_Length = ‘Shorter Length’ ;

 WHEN (LENGTH > 160) Movie_Length = ‘Longer Length’ ;

 OTHERWISE Movie_Length = ‘Average Length’ ;

 END ;

RUN ;

PROC PRINT DATA=SELECT_EXAMPLE NOOBS ;

 VAR TITLE LENGTH Movie_Length ;

RUN ;

Conditional Logic with CASE Expressions
Another form of conditional logic available to users is a case expression. Its purpose is to provide a way of conditionally

selecting result values from each row in a table (or view). Like an IF-THEN/ELSE or SELECT construct in the DATA step, a case

expression can only be specified in the SQL procedure. It supports a WHEN-THEN clause to conditionally process some but not

all the rows in a table. An optional ELSE expression can be specified to handle an alternative action should none of the

expression(s) identified in the WHEN condition(s) not be satisfied. A case expression must be a valid SQL expression and

conform to syntax rules similar to DATA step SELECT-WHEN statements. Even though this topic is best explained by example, a

quick look at the syntax follows.

SELECT-WHEN / OTHERWISE Code:

SELECT-WHEN / OTHERWISE Results:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

4

CASE <column-name>

 WHEN when-condition THEN result-expression

 <WHEN when-condition THEN result-expression> …

 <ELSE result-expression>

END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made available to each

when-condition and is classified as a simple case expression. When it is not specified, the column-name must be coded in each

when-condition and is classified as a searched case expression. If a when-condition is satisfied by a row in a table (or view),

then it is considered “true” and the result-expression following the THEN keyword is processed. The remaining WHEN

conditions in the case expression are skipped. If a when-condition is “false”, the next when-condition is evaluated. SQL

evaluates each when-condition until a “true” condition is found or in the event all when-conditions are “false”, it then executes

the ELSE expression and assigns its value to the CASE expression’s result. A missing value is assigned to a case expression when

an ELSE expression is not specified and each when-condition is “false”.

In the next example, a searched case expression is illustrated. A searched case expression in the SQL procedure provides users

with the capability to perform more complex comparisons. Although the number of keystrokes can be more than with a simple

case expression, the searched case expression offers the greatest flexibility and is the primary form used by SQL’ers. The

noticeable absence of a column name as part of the case expression permits any number of columns to be specified from the

underlying table(s) in the WHEN-THEN/ELSE logic scenarios.

The next example shows a searched case expression being used to assign the character variable Movie_Length with the AS

keyword. A value of “Shorter Length” for movie lengths less than 120 minutes, “Longer Length” for movie lengths greater than

160 minutes, or “Average Length” for all other movie lengths is assigned to the newly created column. Although not required,

an ELSE condition can be useful in the assignment of a specific value or as a “catch-all” to prevent a missing value from being

assigned.

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;

PROC SQL;

 SELECT TITLE,

 LENGTH,

 CASE

 WHEN LENGTH < 120 THEN 'Shorter Length'

 WHEN LENGTH > 160 THEN 'Longer Length'

 ELSE 'Average Length'

 END AS Movie_Length

 FROM MYDATA.MOVIES ;

QUIT ;

Searched CASE Expression Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

5

As previously mentioned, searched case expressions provide users with the capability to perform more complex logic
comparisons. Combined with logical and comparison operators, searched case expressions along with their WHERE clause
counterparts, provide the capabilities to construct complex logic scenarios. In the next example a listing of “Action” and
“Comedy” movies are displayed. Using a searched case expression, a value of “Shorter Length” for movie lengths less than 120
minutes, “Longer Length” for movie lengths greater than 160 minutes, or “Average Length” for all other movie lengths is
assigned to the newly created column. A column heading of Movie_Type is assigned to the new column with the AS keyword.

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;

PROC SQL;

 SELECT TITLE, RATING, LENGTH, CATEGORY,

 CASE

 WHEN UPCASE(CATEGORY) CONTAINS 'ACTION' AND LENGTH < 120 THEN 'Action Short'

 WHEN UPCASE(CATEGORY) CONTAINS 'ACTION' AND LENGTH > 160 THEN 'Action Long'

 WHEN UPCASE(CATEGORY) CONTAINS 'ACTION' AND

 LENGTH BETWEEN 120 AND 160 THEN 'Action Medium’

 WHEN UPCASE(CATEGORY) CONTAINS 'COMEDY' AND LENGTH < 120 THEN 'Comedy Short'

 WHEN UPCASE(CATEGORY) CONTAINS 'COMEDY' AND LENGTH > 160 THEN 'Comedy Long'

 WHEN UPCASE(CATEGORY) CONTAINS 'COMEDY' AND

 LENGTH BETWEEN 120 AND 160 THEN 'Comedy Medium'

 ELSE 'Not Interested'

 END AS MOVIE_TYPE

 FROM MYDATA.MOVIES

 WHERE UPCASE(CATEGORY) CONTAINS 'ACTION' OR 'COMEDY';

 QUIT;

Searched CASE Expression Results:

Searched CASE Expression Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

6

Subsetting with WHERE Expressions in a PROCedure
Gupta (2006) describes using a subsetting-IF versus a WHERE-statement or WHERE= data set option to subset observations. To

avoid using a subsetting-IF statement in a DATA step, SAS users may be able to specify a WHERE= data set option for subsetting

purposes directly in a procedure. This approach prevents the creation of a data set and, as a result, is more likely to scale better

by reducing CPU and I/O resources. Gupta emphasizes an important detail that all SAS users should know when specifying a

WHERE condition in a procedure, “Multiple WHERE conditions within SAS procedures are not cumulative as they are in a DATA

step meaning the most recent WHERE condition replaces any, and all, previously specified WHERE condition(s).”

/* WHERE Statement to Subset Observations */

proc print data=sashelp.cars noobs ;

 where type=”SUV” or type=”Wagon” ;

run ;

< or >

/* WHERE= Data Set Option to Subset Observations */

proc print data=sashelp.cars(where=(type=”SUV” or type=”Wagon”)) noobs ;

run ;

Searched CASE Expression Results:

PROC PRINT with WHERE Expression Code:

http://www2.sas.com/proceedings/sugi31/238-31.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

7

Using the IN Operator for Comparisons
Legacy SAS applications and program code often use one, or more, OR comparison operators to handle logic scenarios.
Although syntactically correct, a series of individual comparisons separated by an OR comparison operator is generally less
efficient than using an IN operator. The reason is due to the way an IN operator operates. When an IN operator is specified, SAS
stops making comparisons as soon as it finds a match. This is not the case with an OR operator. In the next example, a number
of individual comparisons are specified using an OR operator.

PROC SQL ;

 SELECT Origin, Type, MSRP

 FROM SASHELP.Cars

 WHERE Type = "SUV"

 OR Type = "Truck"

 OR Type = "Wagon"

 ORDER BY MSRP ;

QUIT ;

In the next example, an IN operator is specified to help modernize the process of handling a number of individual comparisons.
The IN operator provides a convenient, and concise, way to specify scenarios with many OR comparisons. A similar example
using DS2 SQLSTMT package approach can be found here.

PROC SQL ;

 SELECT Origin, Type, MSRP

 FROM SASHELP.Cars

 WHERE Type IN ("SUV","Truck","Wagon")

 ORDER BY MSRP ;

QUIT ;

Concatenating Strings and Variables with CAT Functions
SAS functions serve an essential role in the Base SAS software. Representing a variety of built-in and callable routines, functions

serve as the “work horses” in the SAS software providing users with “ready-to-use” tools designed to ease the burden of writing

and testing often lengthy and complex code for a variety of programming tasks. The advantage of using SAS functions is evident

by their relative ease of use, and their ability to provide a more efficient, robust and scalable approach to simplifying a process

or programming task. In this example, we show how the TRIM and LEFT functions along with the concatenate operator to

concatenate strings and variables together can be replaced with the CAT functions.

data _null_ ;

 length NUM 3. A B C D E $ 8 BLANK $ 1 ;

 A = 'The' ;

 NUM = 5 ;

 B = ' Cats' ;

 C = 'in' ;

 D = ' the' ;

 E = 'Hat' ;

 BLANK = ' ' ;

OR Comparison Operator Code:

IN Operator Code:

CAT Function Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

8

 *Old concatenation approach with TRIM and LEFT functions and concatenation

 operator ;

 OLD=trim(left(A)) || BLANK || trim(left(NUM)) || BLANK || trim(left(B)) ||

 BLANK || trim(left(C)) || BLANK || trim(left(D)) || BLANK || trim(left(E)) ;

 * Using the CAT functions to concatenate character and numeric values together ;

 CAT = cat (A, NUM, B, C, D, E) ;

 CATQ = catq(BLANK, A, NUM, B, C, D, E) ;

 CATS = cats(A, NUM, B, C, D, E) ;

 CATT = catt(A, NUM, B, C, D, E) ;

 CATX = catx(BLANK, A, NUM, B, C, D, E) ;

 put OLD= / STRIP= / CAT= / CATQ= / CATS= / CATT= / CATX= / ;

run ;

OLD=The 5 Cats in the Hat

CAT=The 5 Cats in the Hat

CATQ="The " 5 " Cats " "in " " the " "Hat "

CATS=The5CatsintheHat

CATT=The5 Catsin theHat

CATX=The 5 Cats in the Hat

In the example, above, a single numeric variable, NUM, and six character variables: A, B, C, D, E, and BLANK are defined with

their respective values as: NUM=5, A=’The’, B=’ Cats’, C=’in’, D=’ the’, E=’Hat’ and BLANK=’ ‘. The oldest way of concatenating

two or more strings or variables together is then specified, using the TRIM and LEFT functions with the concatenation operator

“||” in an assignment statement. As an alternative, a newer and more robust concatenation approach is specified using the CAT

family of functions: CAT, CATQ, CATS, CATT, and CATX.

 CAT, the simplest of concatenation functions, joins two or more strings and/or variables together, end-to-end producing the

same results as with the concatenation (double bar) operator.

 CATQ is similar to the default features of the CATX function, but the CATQ function adds quotation marks to any

concatenated string or variable.

 CATS removes leading and trailing blanks and concatenates two or more strings and/or variables together.

 CATT removes trailing blanks and concatenates two or more strings and/or variables together.

 CATX, perhaps the most robust CAT function, removes leading and trailing blanks and concatenates two or more strings

and/or variables together with a user-specified delimiter between each.

Concatenating (or Appending) Data Sets
Concatenating data sets is the process of combining two, or more, data sets, one after the other, with the purpose of creating a

single data set. The number of observations in the new data set is the sum total of observations in all the original input data

sets. The order of observations in the concatenated data set is arranged sequentially with the observations from the first data

set, followed by the observations from the second data set, and so on. The concatenated data set contains the same variables

as the input data sets. Should an input data set contain different variables from the other input data sets, the concatenated

data set will have missing values assigned to the variables from the other input data sets.

CAT Function Results:

Analysis:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

9

Concatenating with the DATA-SET-RUN Construct
SAS provides users with a few ways to concatenate data sets. In the first example, below, an old-style DATA-SET construct is

specified to concatenate the two data sets, RUGs_2015 and RUGs_2016. Although syntactically correct, this approach does not

scale well because it forces SAS to incur heavy I/O (input/output) because the observations in each input data set must be read

and written to the concatenated data set.

data Concatenated_Results ;

 set RUGs_2015

 RUGs_2016 ;

run ;

Concatenating with a PROC SQL Outer Union CORR
A second approach uses PROC SQL to concatenate data sets. In this next example, an OUTER UNION CORR set operator is

specified, and SQL reads and processes the tables in each query producing a new concatenated table of results.

proc sql ;

 create table Concatenated_Results as

 select * from RUGs_2015

 outer union corr

 select * from RUGs_2016 ;

 select * from Concatenated_Results ;

quit ;

DATA–SET-RUN Code:

DATA–SET-RUN Results:

PROC SQL Code:

PROC SQL Results:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

10

Concatenating with PROC APPEND (or PROC DATASETS – APPEND Statement)
A third, and more efficient, concatenation approach is available to SAS users. Using PROC APPEND (or the APPEND statement in

PROC DATASETS), an input data set can be appended to another data set. The advantage of using this approach is reduced I/O,

since SAS does not have to read the observations in the base data set. Appending this way offers a way to scale an application.

As the number of observations in the base data set grows, the advantage of using this approach can become huge. In the next

example, two PROC APPENDs are specified to concatenate the observations in the RUGs_2015 and RUGs_2016 data sets.

proc append base=Concatenated_Results

 data=RUGs_2015 ;

run ;

proc append base=Concatenated_Results

 data=RUGs_2016 ;

run ;

Processing Multiple TABLE Statements with PROC FREQ
Benjamin (2012) describes a common problem programmers have when using PROC FREQ to produce multiple table results.

Programmers will often code two, or more, individual PROC FREQ and TABLE statements even for the same input data set.

Although the PROC FREQ code, illustrated below, is syntactically correct, invoking PROC FREQ multiple times in this way can

result in an increase in the amount of time for processing the request.

proc freq data=sashelp.cars ;

 table Origin / list out=work.Origin_Freq1 ;

run ;

proc freq data=sashelp.cars ;

 table Origin * Type / list out=work.Origin_Freq2 ;

run ;

proc freq data=sashelp.cars ;

 table Origin * Type * Cylinders / list out=work.Origin_Freq3 ;

run ;

To optimize the code, programmers can force a single pass over the input data set and as a result reduce the amount of

processing time needed to produce the resulting data sets, as follows.

PROC APPEND Code:

PROC APPEND Results:

PROC FREQ Code:

http://support.sas.com/resources/papers/proceedings12/257-2012.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

11

proc freq data=sashelp.cars ;

 table Origin / list out=work.Origin_Freq1 ;

 table Origin * Type / list out=work.Origin_Freq2 ;

 table Origin * Type * Cylinders / list out=work.Origin_Freq3 ;

run ;

List of Procedures Supporting a CLASS Statement
Procedures are classified as the “workhorses” in the SAS System. The CLASS statement specifies one, or more, character or

numeric variables used to group data into classification levels. A virtue of using a CLASS statement is that a SORT procedure is

not required to arrange and group the data, because the stats and other information is collected in memory and reported at

the end of the procedure. A partial list of SAS procedures, below, supports the use of a CLASS statement.

SAS Procedures Supporting a CLASS Statement

PROC ANOVA PROC MEANS PROC REPORT PROC TTEST

PROC DISCRIM PROC MIXED PROC SUMMARY PROC UNIVARIATE

PROC GENMOD PROC NESTED PROC SURVEYMEANS

PROC GLM PROC PHREG PROC TABULATE

PROC LOGISTIC PROC REG PROC TIMEPLOT

Producing Page Numbers with ODS RTF Pagination Functions
Page numbering is the process of applying a sequence of numbers, Roman numerals, or letters on reports, spreadsheets,

documents, books or other multi-page files. Legacy applications and program code frequently use counters or code routines to

generate and display page numbers. Simple page numbering routines may resemble something similar to the following code.

FILENAME REPORT DISK 'c:\DATA_NULL_Report.LST' ;

DATA _NULL_ ;

 SET SASHELP.CARS END=EOF ;

 FILE REPORT HEADER=H1 ; /* Execute Page_Header Routine */

 PUT @1 Origin $6.

 @10 Make $13.

 @25 MSRP DOLLAR12. ;

RETURN ;

H1: ; /* Page Header */

 Page_CTR + 1 ;

 PUT @15 DATA _NULL_ Detail Report

 // @22 'Page Number ' Page_CTR ;

RETURN ;

RUN ;

Optimized PROC FREQ Code:

DATA Step Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

12

Page numbers can be produced and displayed in RTF output by specifying an escape character with an ODS RTF statement, any

of the following functions, and an ODS RTF CLOSE ; statement:

✓ {thispage}

✓ {lastpage}

✓ {pageof}

Page Counters with ODS RTF Functions
Output Delivery System (ODS) provides powerful features that users can use when producing output. In the next example, an

escape character is specified with the ODS RTF destination, where the functions: {thispage}, {lastpage}, and {pageof} are

specified in the title and footnote statements to produce the page numbers and the total number of pages in the report.

ods escapechar='^' ;

ods RTF file='c:\Print-Report.rtf' ;

 proc print data=sashelp.cars noobs ;

 title 'Page ^{thispage} of ^{lastpage}' ;

 footnote '^{pageof}' ;

 run ;

ods RTF close ;

ODS RTF Code:

ODS RTF Results:

'Page ^{thispage} of ^{lastpage}'

'^{pageof}'

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

13

Automating the Process of Creating Multiple HTML Files
The Web offers incredible potential that impacts all corners of society. With its increasing popularity as a communications
medium, Web publishers have arguably established the Web as the greatest medium ever created. Businesses, government
agencies, professional associations, schools, libraries, research agencies, and a potpourri of society’s true believers have
endorsed the Web as an efficient means of conveying their messages to the world.

The SAS software provides users with the capability to create results and deploy selected pieces of output as HTML output files.
Using the Output Delivery System (ODS) HTML destination, output can be created that anyone can view using a web browser.
Syntactically correct HTML code is automatically produced and made ready for deployment using one of the Internet browser
software products (e.g., Internet Explorer, Google Chrome, Mozilla FireFox, Safari, etc.). As a result, the SAS System and the
HTML destination create a type of “streaming” or continuous output by adding elevator bars (horizontal and/or vertical) for
easy navigation.

In the following example, redundant code and hardcoding issues are avoided by using PROC SQL to determine the number of
unique (or distinct) values of the Origin column exist and once known are assigned to single-value and value-list macro
variables. With the unique values assigned to two macro variables, an iterative %DO statement is specified to control the
propagation of one, or more, HTML files containing one-way frequency results. The results of the three distinct HTML files that
were created are also displayed, below.

/* Output HTML Files Location */

filename odsout "E:\" ;

options symbolgen ;

%macro multfiles ;

 proc sql noprint ;

 select count(distinct origin)

 into :morigin_cnt /* derive number of origins */

 from sashelp.cars

 order by origin ;

 select distinct origin

 into :morigin_list separated by "~" /* derive unique origin values */

 from sashelp.cars

 order by origin ;

 quit ;

 %do i=1 %to &morigin_cnt ;

 ods html path=odsout (URL=NONE)

 file="%SCAN(&morigin_list,&i,~)_FrequencyReport (MultiHTMLFiles).html"

 style=styles.barrettsblue ;

 title "Cars with Origin in %SCAN(&morigin_list,&i,~)" ;

 proc freq data=sashelp.cars(where=(origin = "%SCAN(&morigin_list,&i,~)")) ;

 tables type ;

 format msrp dollar12.0 ;

 run ;

 quit ;

 title ;

 ods html close ;

 %end ;

 %put &morigin_list ;

%mend multfiles ;

%multfiles ;

ODS HTML Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

14

Automating the Process of Creating Multiple Excel Files
Statistics show that the world’s most used software application is Microsoft Excel®. Due to this dominance, SAS provides users
with several ways to send results, tables, statistics, images and other output directly to an Excel spreadsheet. In the next
example, redundant code and hardcoding issues are avoided by using PROC SQL to determine the number of unique (or
distinct) values of the Origin column and, once known, are assigned to single-value and value-list macro variables. With the
values assigned to the two macro variables, an iterative %DO statement is specified to control the propagation of Excel files
containing one-way frequency results. The results of the three distinct Excel files that were created are also displayed, below.

%macro multExcelfiles ;

 proc sql noprint ;

 select count(distinct origin)

 into :morigin_cnt /* derive number of origins */

 from sashelp.cars

 order by origin ;

 select distinct origin

 into :morigin_list separated by "~" /* derive unique origin values */

 from sashelp.cars

 order by origin ;

 quit ;

 %do i=1 %to &morigin_cnt ;

 ods Excel file="e:/%SCAN(&morigin_list,&i,~)_FreqReport (MultiExcelFiles).xlsx"

 style=styles.barrettsblue ;

 title "Cars with Origin in %SCAN(&morigin_list,&i,~)" ;

 proc freq data=sashelp.cars(where=(origin = "%SCAN(&morigin_list,&i,~)")) ;

 tables type ;

 format msrp dollar12.0 ;

 run ;

 quit ;

 title ;

 ods Excel close ;

 %end ;

 %put &morigin_list ;

%mend multExcelfiles ;

%multExcelfiles ;

ODS HTML Results:

ODS Excel Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

15

Discovering the Number of Occurrences of a Value in a Data Set
Discovering the number of occurrences of individual values in a data set is useful information, particularly when constructing

data-driven approaches. SAS provides several ways to count and determine the number of occurrences of a value in a data set.

Discovering the Number of Occurrences of a Value in a DATA Step
One approach for discovering the number of occurrences of a variable’s value(s) is to construct a DATA step counting routine. In

the next example, individual counters for the number of females and males are created, and after the last observation is read

and processed, the results for each counter is output to the Counts data set, and the results displayed with PROC PRINT.

data Counts(drop=Sex) ;

 set sashelp.Heart(keep=Sex) end=EOF ;

 if Sex = "Female" then Number_Females + 1 ;

 else if Sex = "Male" then Number_Males + 1 ;

 if EOF then do ;

 Total = Number_Females + Number_Males ;

 format Number_Females Number_Males Total comma7. ;

 output ;

 end ;

run ;

proc print data=Counts noobs ;

run ;

Discovering the Number of Occurrences of a Value with the PROC FREQ NLEVELS Option
Another approach for counting the number of occurrences of a variable’s value(s) is to specify the NLEVELS option in PROC

FREQ. In this example, the variable SEX is kept and the NLEVELS option is specified for the SASHELP.Heart data set. The results

show there are two levels for the variable, SEX, with 2,873 females and 2,336 males.

proc freq data=sashelp.Heart(keep=sex) NLEVELS ;

run ;

ODS Excel Results:

DATA Step Code:

DATA Step Results:

PROC FREQ Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

16

Discovering the Number of Occurrences of a Value with PROC SQL
Another approach for counting the number of occurrences of a variable’s value is to use the SUM function with an equality

expression in PROC SQL. PROC SQL’s data access and query capabilities offer SAS users with a powerful approach to summing

down rows and across columns. In this example, a SELECT query is specified with a SUM function for counting the number of

“Females”, “Males” and their combined totals that are found in the SASHELP.HEART data set. An optional FORMAT=COMMA7.

parameter is also specified to make the results easier to read.

proc sql ;

 select SUM(sex=“Female”) AS Number_Females format=comma7.,

 SUM(sex=“Male”) AS Number_Males format=comma7.,

 SUM(sex IN (“Female”,“Male”)) AS Total format=comma7.

 from sashelp.Heart ;

quit ;

Using Metadata to Determine the Number of Observations in a Data Set
Metadata is everywhere and is defined as information that describes data. Other definitions include information about data, or

information about the design and specification of objects and data structures. In its most basic form, metadata is found in the

cataloging systems of every academic library, public library, school library, and special library in the world. The typical book,

magazine, microfiche, digital file, image, or object’s metadata is stored in cataloging systems. These cataloging systems are not

composed of words, sentences, paragraphs, or chapters, but contain information about its author(s), title, subject, keyword(s),

description, publisher, publication date, ISBN, format, resource identifier, copyright, and other information.

Older Methods of Determining the Number of Observations in a Data Set
Before the availability of metadata in the SAS System, users developed and included code routines that determined the number

of observations in a data set. An often used DATA step approach, since the beginning of SAS-time, constructs a variable that

counts the number of observations. Although syntactically correct, this approach does not “scale” well – due to the amount of

I/O incurred and the sizes of data sets – when computing the counter. The the next example, a DATA step approach computes

the total number of “Sedans” found in the SASHELP.CARS data set, and displays the results using PROC PRINT.

PROC FREQ Results:

PROC SQL Code:

PROC SQL Results:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

17

data sedans_counter(keep=type obs_ctr)

 cars_sedans(drop=obs_ctr) ;

 set sashelp.cars(keep=origin type make MSRP) end=eof ;

 where upcase(type) = “SEDAN” ;

 obs_ctr + 1 ;

 output cars_sedans ;

 if eof then output sedans_counter ;

run ;

proc print data=sedans_counter noobs ;

run ;

Using DICTIONARY.TABLES Metadata to Determine the Number of Observations in a Data Set
The SAS System collects and populates valuable metadata about SAS libraries, data sets (tables), catalogs, indexes, macros,

system options, titles, views and other useful information in a collection of read-only tables called Dictionary tables. Dictionary

tables serve a special purpose for SAS users by providing system-related information about the current SAS session’s SAS

databases and applications. When a query processes a Dictionary table, SAS automatically launches a discovery process at

runtime to collect information pertinent to that table. This information is made available any time after a SAS session is started.

When users need more information about SAS data sets the TABLES Dictionary table can be very helpful. The TABLES Dictionary

table provides detailed information about the library names, the member (or data set) names, the date a data set was created

and last modified, the number of observations in a data set, and much more. The next example illustrates a popular approach

that accesses the metadata content from the DICTIONARY.TABLES table to determine the number of observations in any SAS

data set.

title "Number of Rows in a Table" ;

proc sql ;

 select libname, memname, nobs format=comma10.

 from Dictionary.Tables

 where nobs NE . ;

quit ;

title ;

DATA Step Code:

DATA Step Results:

PROC SQL Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

18

Using SASHELP.VTABLE Metadata to Determine the Number of Observations in a Data Set
SAS also provides users with metadata content in a number of SASHELP views. In this next example the number of observations

in any SAS data set can be determined by accessing the NOBS metadata content in the SASHELP.VTABLE view. This metadata

content can be displayed using any output-producing SAS procedure, as shown below.

title "Number of Rows in a Table" ;

proc print data=sashelp.vtable noobs ;

 var libname memname nobs ;

 format nobs comma10. ;

 where nobs NE . ;

run ;

title ;

PROC SQL Results:

PROC PRINT Code:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

19

Using PROC PRINT with Style
Hecht (2011) describes the appearance of PROC PRINT output can be customized with colors, backgrounds, fonts, justifications,

and other report components using styles. Styles can be specified for all destinations (e.g., RTF, PDF, HTML, Excel, etc.) except

the Listing destination. In the next example, the SASHELP.CARS data set is sorted in ascending order by the variables Origin,

Type, Make and MSRP; the HTML destination is opened with the HTMLBlue style selected for output; and background and

foreground styles selected for the data, obs and total parts of the PROC PRINT report output.

proc sort data=sashelp.Cars(keep=Origin Type Make MSRP)

 out=work.Cars_Sorted ;

 where MSRP < 20000 ;

 by Origin Type Make MSRP ;

run ;

ods HTML path="/folders/myfolders" (url=none)

 file="PROC-PRINT-with-Style.html"

 style=HTMLBlue ;

proc print data=work.Cars_Sorted

 style (data) = [background=Blue foreground=white]

 style (obs) = [background=red foreground=white]

 style (total) = [background=yellow foreground=black] ;

 by Origin Type ;

 id Origin Type Make ;

 format msrp dollar12.0 ;

PROC PRINT Results:

PROC PRINT Code:

https://support.sas.com/resources/papers/proceedings11/270-2011.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

20

 sum MSRP ;

run ;

ods HTML close ;

Using Available Memory with Hash Object Programming
Dorfman (2009) describes a SAS hash object as, “a high-performance look-up table residing completely in the DATA step
memory.” Due to the costs and availability of memory resources in today’s computing environments, software vendors are
doing everything they can to develop language constructs that capitalize on memory-resident operations. Dorfman further
describes that, “The hash object is implemented via a Data Step Component Interface (DSCI), meaning that it is not a part of the
DATA step proper. Rather, picture it as a black-box device you can manipulate from inside the DATA step to ask it for lightning-
quick data storage and retrieval services.”

Lafler (2016) describes a SAS hash object as, “a data structure that contains an array of items that are used to map identifying
values, known as keys (e.g., employee IDs), to their associated values (e.g., employee names or employee addresses). As
implemented, a hash object in the SAS System is used as a DATA step construct and is not available to any SAS Procedures.” A
hash object reads the contents of a data set into memory once allowing the SAS system to repeatedly access the data, as
necessary. The contents of a hash object can be saved to a SAS data set (or table), but at the end of the DATA step the hash
object and all its contents disappear. Since memory-based operations are typically faster than their disk-based counterparts,
users often experience faster and more efficient table lookup, merge, sort and transpose operations.

PROC PRINT Results:

http://analytics.ncsu.edu/sesug/2009/HOW009.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

21

Users with DATA step programming experience will find the hash object syntax relatively straight forward to learn and use.
Available in all operating systems running SAS 9 or greater, the hash object is called using methods. The syntax for calling a
method involves specifying the name of the user-assigned hash table, a dot (.), the desired method (e.g., operation) by name,
and finally the specification for the method enclosed in parentheses. The following example illustrates the basic syntax for
calling a method to define a key.

MatchTitles.DefineKey (‘Title’);

where MatchTitles is the name of the hash table, DefineKey is the name of the called method, and ‘Title’ is the specification
being passed to the method.

An essential operation frequently performed by users is the process of table lookup or search. The hash object as implemented
in the DATA step provides users with the necessary tools to conduct match-merges (or joins) of two or more data sets. Data
does not have to be sorted (or be in a designated sort order) before use as it does with the DATA step merge process. The next
example illustrates a hash object with a simple key (TITLE) to merge (or join) the MOVIES and ACTORS data sets to create a new
data set (MATCH_ON_MOVIE_TITLES) with matched observations.

data match_on_movie_titles(drop=rc) ;

 if 0 then set mydata.movies

 mydata.actors ; /* load variable properties into hash tables */

 if _n_ = 1 then do ;

 declare Hash MatchTitles (dataset:'mydata.actors') ; /* declare the name

 MatchTitles for hash */

 MatchTitles.DefineKey ('Title') ; /* identify variable to use as key */

 MatchTitles.DefineData (‘Actor_Leading’,

 ‘Actor_Supporting’) ; /* identify columns of data */

 MatchTitles.DefineDone () ; /* complete hash table definition */

 end ;

 set mydata.movies ;

 if MatchTitles.find(key:title) = 0 then output ; /* lookup TITLE in MOVIES table

 using MatchTitles hash */

run ;

Hash Object Code:

Hash Object Results:

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

22

Conclusion
As SAS users around the world celebrate a milestone of more than a half-century using SAS software, users should learn as

many essential programming techniques as possible to enhance their careers well into the 21st century. This paper shared

numerous programming techniques that all pragmatic users and programmers should learn. From topics related to conditional

logic scenarios; subsetting with WHERE expressions; determining the number of by-group levels that exist within classification

variables; data manipulation with the family of CAT functions; merging or joining multiple tables of data; performing table

lookup operations with user-defined formats; creating single-value and value-list macro variables with PROC SQL; examining

and processing the contents of value-list macro variables; determining the FIRST., LAST. and Between by-group rows;

processing repetitive data with arrays; and using metadata to better understand the contents of SAS datasets.

References

Efficiency and Performance Tuning References and Suggested Reading

Brown, Tony and Margaret Crevar (2016). “Architecting Your SAS Grid®: Networking for Performance,” Proceedings of the 2016
SAS Global Forum (SGF) Conference.

Cohen, Robert A. and Robert N. Rodriguez (2013). “High-Performance Statistical Modeling,” Proceedings of the 2013 SAS Global
Forum (SGF) Conference.

Kaufmann, Shaun (2016). “High-Performance Data Access with FedSQL and DS2,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Lafler, Kirk Paul (2016). “Top Ten SAS® Performance Tuning Techniques,” Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Lavery, Russ (2013). “Fast Access Tricks for Large Sorted SAS Files,” Proceedings of the 2013 MidWest SAS Users Group
(MWSUG) Conference.

Lui, Lingqun (2017). “SAS Advanced Programming with Efficiency in Mind: A Real Case Study,” Proceedings of the 2017 Michigan
SAS Users Group (MISUG) Conference.

Warner-Freeman, Jennifer K. (2007). “I Cut My Processing Time By 90% Using Hash Tables - You Can Do It Too!,” Proceedings of
the 2007 North East SAS Users Group (NESUG) Conference.

Williams, Michael; Gretel Easter and Steve Bradsher (2009). “Troubleshoot Your Performance Issues: SAS® Technical Support
Shows You How,” Proceedings of the 2009 SAS Global Forum (SGF) Conference.

Hash Object References and Suggested Reading

Burlew, Michele M. (2012), “SAS® Hash Object Programming Made Easy,” SAS Press, SAS Institute, Cary, NC, USA.

Dorfman, Paul M. and Don Henderson (2017). “Beyond Table Lookup: The Versatile SAS® Hash Object,” Proceedings of the 2017
SAS Global Forum (SGF) Conference.

Dorfman, Paul M. (2016). “Using the SAS® Hash Object with Duplicate Key Entries,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Dorfman, Paul and Peter Eberhardt (2010). "Two Guys on Hash," Proceedings of the 2010 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul (2009). "The SAS® Hash Object in Action," Proceedings of the 2009 South East SAS Users Group (SESUG)
Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS® Hash Programming Techniques,” Proceedings of the 2016 SouthEast SAS Users
Group (SESUG) Conference.

Loren, Judy (2008). “How Do I Love Hash Tables? Let Me Count The Ways!,” Proceedings of the 2008 SAS Global Forum (SGF)
Conference.

Mazloom, Dari (2017). “SAS Hash Objects, Demystified,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Sakya, Daniel (2012). “SAS® HASH Programming Basics,” Proceedings of the 2012 South Central SAS Users Group (SCSUG)
Education Forum / Conference.

Schacherer, Chris (2015). “Introduction to SAS® Hash Objects,” Proceedings of the 2015 SAS Global Forum (SGF) Conference.

Secosky, Jason and Janice Bloom (2007). “Getting Started with the DATA Step Hash Object,” Proceedings of the 2007 SAS Global
Forum (SGF) Conference.

Warner-Freeman, Jennifer K. (2007). “I Cut My Processing Time By 90% Using Hash Tables - You Can Do It Too!,” Proceedings of
the 2007 North East SAS Users Group (NESUG) Conference.

http://support.sas.com/resources/papers/proceedings16/SAS6760-2016.pdf
http://support.sas.com/resources/papers/proceedings13/401-2013.pdf
http://support.sas.com/resources/papers/proceedings16/4342-2016.pdf
http://www.lexjansen.com/mwsug/2016/SA/MWSUG-2016-SA01.pdf
https://www.mwsug.org/proceedings/2013/HW/MWSUG-2013-HW02.pdf
http://www.misug.org/uploads/8/1/9/1/8191072/lliu_macro_efficiencies.pdf
http://www.lexjansen.com/nesug/nesug07/bb/bb16.pdf
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
https://www.sas.com/store/books/categories/usage-and-reference/sas-hash-object-programming-made-easy/prodBK_62230_en.html
http://support.sas.com/resources/papers/proceedings17/0821-2017.pdf
http://support.sas.com/resources/papers/proceedings16/10200-2016.pdf
http://analytics.ncsu.edu/sesug/2010/HOW05.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2009/HOW009.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf
http://www2.sas.com/proceedings/forum2008/029-2008.pdf
http://support.sas.com/resources/papers/proceedings17/1479-2017.pdf
http://www.lexjansen.com/scsug/2012/HASH-Programming-basics.pdf
https://support.sas.com/resources/papers/proceedings15/3024-2015.pdf
http://www2.sas.com/proceedings/forum2007/271-2007.pdf
http://www.lexjansen.com/nesug/nesug07/bb/bb16.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

23

Macro References and Suggested Reading

Carpenter, Art (2016). Carpenter's Complete Guide to the SAS® Macro Language, Third Edition, SAS Institute Inc., Cary, NC.

Lui, Lingqun (2007). “Passing Data Set Values into Application Parameters,” Proceedings of the 2007 MidWest SAS Users Group
(MWSUG) Conference.

Roberts, Clark (1997). “Building and Using Macro Variable Lists,” Proceedings of the 1997 SAS Users Group International (SUGI)
Conference.

SAS Programming Techniques References and Suggested Reading

Benjamin, William E. Jr. (2012). “Leave Your Bad Code Behind: 50 Ways to Make Your SAS® Code Execute More Efficiently,”
Proceedings of the 2012 SAS Global Forum (SGF) Conference.

Cassidy, Deb (2003). “Keeping Up With the FUN: New Functions in SAS 9,” Proceedings of the 2003 SouthEast SAS Users Group
Conference.

Cody, Ron (2012). “A Survey of Some of the Most Useful SAS® Functions,” Proceedings of the 2012 SAS Global Forum (SGF)
Conference.

Gupta, Sunil (2006). “WHERE vs. IF Statements: Knowing the Difference in How and When to Apply,” Proceedings of the 2006
SAS Users Group International (SUGI) Conference.

Hecht, Darylene (2011). “PROC PRINT and ODS: Teaching an Old PROC New Tricks,” Proceedings of the 2011 SAS Global Forum
(SGF) Conference.

Horstman, Joshua M. (2017). “Beyond IF THEN ELSE: Techniques for Conditional Execution of SAS® Code,” Proceedings of the
2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2017). “An Introduction to PROC REPORT,” Proceedings of the 2017 South Central SAS Users Group (SCSUG)
Education Forum / Conference.

Lafler, Kirk Paul (2017). “Best Practice Programming Techniques for SAS® Users,” Proceedings of the 2017 SAS Global Forum
(SGF) Conference.

Lafler, Kirk Paul (2017). “Removing Duplicates Using SAS®,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2014). “Conditional Processing Using the Case Expression in PROC SQL,” Proceedings of the 2014 South Central
SAS Users Group (SCSUG) Education Forum / Conference.

Lafler, Kirk Paul (2009). “SAS® Macro Programming Tips and Techniques,” Proceedings of the 20009 SAS Global Forum (SGF)
Conference.

Lavery, Russ (2016). “An Animated Guide: The Internals of PROC REPORT,” Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Lui, Lingqun (2007). “Passing Data Set Values into Application Parameters,” Proceedings of the 2007 MidWest SAS Users Group
(MWSUG) Conference.

Repole Jr, Warren (2009). “Don’t Be a SAS® Dinosaur: Modernizing Programs with Base SAS 9.2 Enhancements,” Proceedings of
the 2009 SAS Global Forum (SGF) Conference.

Riba, S. David (1996). “Redesigning a Legacy: Techniques of a Quality Partner,” Proceedings of the 1996 SAS Users Group
International (SUGI) Conference.

Roberts, Clark; Deborah Testa and Russell Holmes (19997). “Audit Trail Plug-ins for SAS® Software Applications,” Proceedings of
the 1999 Western Users of SAS Software (WUSS) Conference.

Roberts, Clark (1997). “Building and Using Macro Variable Lists,” Proceedings of the 1997 SAS Users Group International (SUGI)
Conference.

Shapiro, Mira (2016). “SAS® Functions You May Have Been MISSING,” Proceedings of the 2016 PharmaSUG Conference.

Sun, GuanGhui (Brian) (2011). “Why Dummy Variable Makes You SMART, and How to Do it SEXY,” Proceedings of the 2011
Western Users of SAS Software (WUSS) Conference.

Venam, Srinivas; Manvitha Yennam; and Phaneendhar Vanam (2016). “Good Programming Practice [GPP] in SAS® & Clinical
Trials,” Proceedings of the 2016 Western Users of SAS Software (WUSS) Conference.

Wang, Hui (2015). “Creating Data-Driven SAS® Code with CALL EXECUTE,” Proceedings of the 2015 PharmaSUG Conference.

Whitlock, Ian (2006). “How to Think Through the SAS® DATA Step,” Proceedings of the 2006 SAS Users Group International
(SUGI) Conference.

https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html
https://www.mwsug.org/proceedings/2007/appdev/MWSUG-2007-A02.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER78.PDF
http://support.sas.com/resources/papers/proceedings12/257-2012.pdf
http://analytics.ncsu.edu/sesug/2003/SE10-Cassidy.pdf
http://support.sas.com/resources/papers/proceedings12/241-2012.pdf
http://www2.sas.com/proceedings/sugi31/238-31.pdf
https://support.sas.com/resources/papers/proceedings11/270-2011.pdf
http://support.sas.com/resources/papers/proceedings17/0326-2017.pdf
https://www.lexjansen.com/scsug/2017/An-Introduction-to-PROC-REPORT-SCSUG-2017.pdf
http://support.sas.com/resources/papers/proceedings17/0175-2017.pdf
http://support.sas.com/resources/papers/proceedings17/0188-2017.pdf
http://www.lexjansen.com/scsug/2014/Conditional-Processing-Using-the-Case-Expression-in-PROC-SQL.pdf
http://support.sas.com/resources/papers/proceedings09/151-2009.pdf
https://www.mwsug.org/proceedings/2016/TT/MWSUG-2016-TT13.pdf
https://www.mwsug.org/proceedings/2007/appdev/MWSUG-2007-A02.pdf
http://support.sas.com/resources/papers/proceedings09/143-2009.pdf
http://www.lexjansen.com/sugi/sugi21/qp/221-21.pdf
http://www.lexjansen.com/wuss/1999/WUSS99010.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER78.PDF
https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT06.pdf
http://www.lexjansen.com/wuss/2011/analy/Papers_Sun_B_74902.pdf
http://www.lexjansen.com/wuss/2016/126_Final_Paper_PDF.pdf
http://www.lexjansen.com/wuss/2016/126_Final_Paper_PDF.pdf
https://www.pharmasug.org/proceedings/2015/BB/PharmaSUG-2015-BB15.pdf
http://www2.sas.com/proceedings/sugi31/246-31.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

24

Whitlock, Ian (1998). “CALL EXECUTE: How and Why,” Proceedings of the 1998 SAS Users Group International (SUGI)
Conference.

Acknowledgments
The author wishes to thank the 2022 SESUG Conference Committee, particularly the Learning SAS II (HOW) Section Chairs,

Andrea Lewton and Nat Wooding, for accepting my abstract, paper, and hands-on workshop (HOW); the 2022 SESUG Executive

Committee for organizing and supporting a “live” conference event; SAS Institute Inc. for providing SAS users with wonderful

software; and SAS users everywhere for being the nicest people anywhere!

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective

companies.

Data Sets Used in Examples
The examples presented in this paper include the RUGs_2015 and RUGs_2016 data sets; and several in the SASHELP library

including the CARS, HEART, SHOES, and STOCKS data sets You’ll be able to use these data sets for example purposes and for

testing the enclosed code examples.

The RUGs_2015 data set consists of 4 observations and 3 variables, illustrated below.

Data Set #1. RUGs_2015

The RUGs_2016 data set consists of 4 observations and 3 variables, illustrated below.

Data Set #2. RUGs_2016

The MOVIES data set consists of 22 observations and 6 variables, illustrated below.

Data Set #3. MOVIES

http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

25

The ACTORS data set consists of 13 observations and 3 variables, illustrated below.

Data Set #4. ACTORS

The SASHELP.CARS data set consists of 428 observations and 15 variables, illustrated below.

Data Set #5. SASHELP.CARS

The SASHELP.HEART data set consists of 5,209 observations and 17 variables, illustrated below.

Data Set #6. SASHELP.HEART

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

26

The SASHELP.SHOES data set consists of 395 observations and 7 variables, illustrated below.

Data Set #7. SASHELP.SHOES

The SASHELP.STOCKS data set consists of 699 observations and 8 variables, illustrated below.

Data Set #8. SASHELP.STOCKS

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

27

Author Bio
Kirk Paul Lafler is an entrepreneur and consultant who has worked with SAS software since 1979 as a SAS consultant,
application developer, programmer, data analyst, educator and author. Kirk currently serves as a lecturer and adjunct professor
at San Diego State University, an advisor and SAS programming adjunct professor at the University of California San Diego
Extension, and an educator who teaches SAS courses, workshops, seminars, and webinars to thousands of users around the
world. Kirk has also authored or co-authored several books including PROC SQL: Beyond the Basics Using SAS, Third Edition (SAS
Press. 2019) and Google® Search Complete (Odyssey Press. 2014); hundreds of papers and articles on a variety of SAS topics; an
Invited speaker, educator, keynote and section leader at SAS user group conferences and meetings worldwide; and is the
recipient of 27 "Best" contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® / SQL / Python Consultant, Application Developer, Programmer, Data Analyst, Educator and Author

sasNerd
E-mail: KirkLafler@cs.com

LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/
Twitter: @sasNerd

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/

