SESUG 2022 Paper 110

Essential Programming Techniques Every
SAS® User Should Learn

Kirk Paul Lafler, sasNerd

Abstract

SAS® software boasts countless functions, algorithms, procedures, options, methods, code constructs, and other features to
help users automate and deploy solutions for specific tasks and problems, as well as to access, transform, analyze, and manage
data. This paper identifies and shares essential programming techniques that a pragmatic user and programmer should learn.
Topics include determining the number of by-group levels that exist within classification variables; data manipulation with the
family of CAT functions; merging or joining multiple tables of data; performing table lookup operations with user-defined
formats; creating single-value and value-list macro variables with PROC SQL; examining and processing the contents of value-list
macro variables; determining the FIRST., LAST. and Between by-group rows; processing repetitive data with arrays; and using
metadata to better understand the contents of SAS datasets.

Introduction

Celebrating a milestone like a birthday, an anniversary, or a gratifying achievement can give us all an amazing feeling about
some precious memory that has occurred in, or during, our lives. Memories of significant milestones can also be experienced
and celebrated by companies too. You see, it wasn’t too long ago when a small startup, later called SAS Institute, began their
journey to change the lives of millions of users with a product called SAS software. What makes this such a special celebration is
that this small startup along with their software became a powerhouse in analytics where a world of data is transformed daily
into a world of intelligence. This not so minor achievement has positively affected many organizations and millions of SAS users
around the globe for more than a half-century now. Congratulations to SAS Institute, its employees, and its incredible user
community for this amazing accomplishment, because we all have had, in some way or another, the good fortune to be part of
this incredible journey.

As we march on into the 215t century, SAS users continue their quest for knowledge by learning techniques to not only enhance
their own skillsets to gain career advantage. Whether you’re a beginner who's just started your journey learning the various
SAS techniques, an intermediate or an advanced user who has developed code, programs and/or applications using SAS
software, do everything possible to expand your skillset. The good news is that there is no shortage of ways to learn and
enhance your SAS skills including accessing the many SAS communities such as communities.sas.com, blogs.sas.com,
www.lexjansen.com, and countless others. Always remain curious about the various technologies by exploring all available
techniques and take the time to continue your professional growth through learning.

Essential Programming Techniques Every SAS User Should Learn

The most common response to the question, “What essential programming techniques should SAS users learn?” varies
depending on who you ask. The fact is if you were to ask ten different SAS users what essential programming techniques a SAS
user should learn you’d most likely receive a variety of responses. For some, essential programming techniques include arrays,
faster programming constructs and table lookups. For others, essential programming techniques include modernizing outdated,
statements, functions, options, coding constructs, algorithms and other techniques with newer, faster and more scalable
programming techniques. So, what essential SAS programming techniques should be learned? To shed some light on this very
important question, a few topics are shared, below.

Conditional Logic Scenarios

A powerful and necessary programming technique in the SAS® software is its ability to perform different actions depending on
whether a programmer-specified condition evaluates to true or false. The method for accomplishing this is to use one or more
conditional statements, expressions, and constructs to build a level of intelligence in a program or application. Conditional logic
scenarios in the DATA step are frequently implemented using IF-THEN / ELSE and SELECT statements. The SQL procedure also
supports logic scenarios and is implemented with a coding technique known as a CASE expression.

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Conditional Logic with IF-THEN / ELSE

The IF-THEN / ELSE construct in the DATA step enables a sequence of conditions to be assigned that when executed proceeds
through the sequence of logic conditions until a match in an expression is found or until all conditions are exhausted. The
example shows a character variable Movie_Length being assigned a value of either “Shorter Length”, “Average Length”, or
“Longer Length” based on the mutually exclusive conditions specified in the IF-THEN and ELSE conditions. Although not
required, an ELSE condition serves as an effective technique for continuing processing to the next specified condition when a

In

match is not found. An ELSE condition can also be useful as a “catch-al

IF-THEN / ELSE Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;

DATA IF THEN_EXAMPLE ;
ATTRIB Movie Length LENGTH=$14 LABEL='Movie Length’ ;
SET MYDATA.MOVIES ;
IF LENGTH < 120 THEN Movie Length = ‘Shorter Length’ ;
ELSE IF LENGTH > 160 THEN Movie_Length = ‘Longer Length’ ;
ELSE Movie_ Length = ‘Average Length’ ;

RUN ;

PROC PRINT DATA=IF THEN EXAMPLE NOOBS ;
VAR TITLE LENGTH Movie_Length ;

to prevent a missing value from being assigned.

RUN ;
Title Length | Movie_Length
Brave Heart 177 | Longer Length
Casablanca 103 | Shorter Length
Christmas Wacation 87 | Shorter Length
Coming to America 1186 | Ehorter Length
Dracula 130 | Average Length
DOressed to Kil 106 | Shorter Length
Fomrest Gump 142 | Awerage Length
Ghost 127 | Awerage Length
Jaws 125 | Awerage Length
Jurassic Park 127 | Awerage Length
Lethal Weapon 110 | Ehorter Length
Michae 106 | Shorter Length
Mational Lampoon's Wacation 98 | Shorter Length
Puoltergeist 115 | Shorter Length
Rocky 120 | Awerage Length
Scarface 170 | Longer Length
Silence of the Lambs 118 | Shorter Length
Star Wars 124 | Awerage Length
The Hunt for Red October 136 | Average Length
The Terminator 108 | Shorter Length
The Wizard of Oz 101 | Shorter Length
Titanic 124 | Longer Length

Conditional Logic with SELECT-WHEN / OTHERWISE

Another form of conditional logic available to users is a SELECT statement. Its purpose is to enable a sequence of logic
conditions to be constructed in a DATA step by specifying one or more WHEN conditions and an optional OTHERWISE
condition. When executed, processing continues through each WHEN condition until a match is found that satisfies the
specified expression. Typically, one or more WHEN conditions are specified in descending frequency order representing a series
of conditions. The next example shows a value based on the mutually exclusive conditions specified in the sequence of logic
conditions of “Shorter Length”, “Average Length”, or “Longer Length” being assigned to the character variable Movie_Length.

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Although not required, the OTHERWISE condition can be useful in the assignment of a specific value or as a “catch-all” to
prevent a missing value from being assigned.

SELECT-WHEN / OTHERWISE Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;
DATA SELECT_EXAMPLE ;
SET MYDATA.MOVIES ;
SELECT ;
WHEN (LENGTH < 120) Movie_ Length ‘Shorter Length’ ;
WHEN (LENGTH > 160) Movie_ Length = ‘Longer Length’ ;
OTHERWISE Movie Length = ‘Average Length’ ;
END ;
RUN ;

PROC PRINT DATA=SELECT_ EXAMPLE NOOBS ;
VAR TITLE LENGTH Movie_Length ;

RUN ;

SELECT-WHEN / OTHERWISE Results:
Title Length | Movie_Length
Brave Heart 177 | Longer Length
Casablanca 103 | Shorter Length
Christmas Vacation 87 | Shorter Length
Coming to America 118 | Shorter Length
Dracula 120 | Average Length
DOressed to Kil 106 | Shorter Length
Faomest Gump 142 | Awerage Length
Ghost 127 | Awerage Length
Jaws 125 | Awerage Length
Jurazsic Park 127 | Awerage Length
Lethal Weapon 110 | Shorter Length
Michae 108 | Shorter Length
Mational Lampoon's Wacation 98 | Shorter Length
Poltergeist 116 | Shorter Length
Rocky 120 | Awerage Length
Scarface 170 | Longer Length
Silence of the Lambs 118 | Shorter Length
Star Wars 124 | Awerage Length
The Hunt for Red Oclober 135 | Awerage Length
The Terminator 108 | Shorter Length
The Wizard of Oz 101 | Ehorter Length
Titanic 184 | Longer Length

Conditional Logic with CASE Expressions
Another form of conditional logic available to users is a case expression. Its purpose is to provide a way of conditionally

selecting result values from each row in a table (or view). Like an IF-THEN/ELSE or SELECT construct in the DATA step, a case
expression can only be specified in the SQL procedure. It supports a WHEN-THEN clause to conditionally process some but not
all the rows in a table. An optional ELSE expression can be specified to handle an alternative action should none of the
expression(s) identified in the WHEN condition(s) not be satisfied. A case expression must be a valid SQL expression and
conform to syntax rules similar to DATA step SELECT-WHEN statements. Even though this topic is best explained by example, a
quick look at the syntax follows.

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

CASE <column-name>
WHEN when-condition THEN result-expression
<WHEN when-condition THEN result-expression> ..

<ELSE result-expression>
END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made available to each
when-condition and is classified as a simple case expression. When it is not specified, the column-name must be coded in each
when-condition and is classified as a searched case expression. If a when-condition is satisfied by a row in a table (or view),
then it is considered “true” and the result-expression following the THEN keyword is processed. The remaining WHEN
conditions in the case expression are skipped. If a when-condition is “false”, the next when-condition is evaluated. SQL
evaluates each when-condition until a “true” condition is found or in the event all when-conditions are “false”, it then executes
the ELSE expression and assigns its value to the CASE expression’s result. A missing value is assigned to a case expression when
an ELSE expression is not specified and each when-condition is “false”.

In the next example, a searched case expression is illustrated. A searched case expression in the SQL procedure provides users
with the capability to perform more complex comparisons. Although the number of keystrokes can be more than with a simple
case expression, the searched case expression offers the greatest flexibility and is the primary form used by SQL’ers. The
noticeable absence of a column name as part of the case expression permits any number of columns to be specified from the
underlying table(s) in the WHEN-THEN/ELSE logic scenarios.

The next example shows a searched case expression being used to assign the character variable Movie_Length with the AS
keyword. A value of “Shorter Length” for movie lengths less than 120 minutes, “Longer Length” for movie lengths greater than
160 minutes, or “Average Length” for all other movie lengths is assigned to the newly created column. Although not required,
to prevent a missing value from being

|u

an ELSE condition can be useful in the assignment of a specific value or as a “catch-al
assigned.

Searched CASE Expression Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;
PROC SQL;
SELECT TITLE,
LENGTH,
CASE

WHEN LENGTH < 120 THEN 'Shorter Length'
WHEN LENGTH > 160 THEN 'Longer Length'

ELSE 'Average Length'
END AS Movie_Length
FROM MYDATA.MOVIES ;
QUIT ;

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Searched CASE Expression Results:

Title Length | Movie_Length
Brave Heart 177 | Longer Length
Casablanca 103 | Shorter Length
Christmas Wacation @7 | Shorter Length
Coming to America 115 | Shorter Length
DOraculza 130 | Awerage Length
DOressed to Kil 105 | Shorter Length
Fomest Gump 142 | Awerage Length
Ghost 127 | Average Length
Jaws 126 | Awerage Length
Juraszic Park 127 | Awerage Length
Lethal Weapon 110 | Shorter Length
Michae 105 | Shorter Length
Mational Lampoon's Wacation 88 | Shorter Length
Puoltergeist 115 | Shorter Length
Rocky 120 | Awerage Length
Scarface 170 | Longer Length
Silence of the Lambs 118 | Shorter Length
Star Wars 124 | Average Length
The Hunt for Red October 135 | Awerage Length
The Terminator 108 | Shorter Length
The Wizard of Oz 101 | Shorter Length
Titanic 124 | Longer Length

As previously mentioned, searched case expressions provide users with the capability to perform more complex logic
comparisons. Combined with logical and comparison operators, searched case expressions along with their WHERE clause
counterparts, provide the capabilities to construct complex logic scenarios. In the next example a listing of “Action” and
“Comedy” movies are displayed. Using a searched case expression, a value of “Shorter Length” for movie lengths less than 120
minutes, “Longer Length” for movie lengths greater than 160 minutes, or “Average Length” for all other movie lengths is
assigned to the newly created column. A column heading of Movie_Type is assigned to the new column with the AS keyword.

Searched CASE Expression Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;
PROC SQL;
SELECT TITLE, RATING, LENGTH, CATEGORY,
CASE
WHEN UPCASE (CATEGORY) CONTAINS 'ACTION' AND LENGTH < 120 THEN 'Action Short'
WHEN UPCASE (CATEGORY) CONTAINS 'ACTION' AND LENGTH > 160 THEN 'Action Long'
WHEN UPCASE (CATEGORY) CONTAINS 'ACTION' AND
LENGTH BETWEEN 120 AND 160 THEN 'Action Medium’
WHEN UPCASE (CATEGORY) CONTAINS 'COMEDY' AND LENGTH < 120 THEN 'Comedy Short'
WHEN UPCASE (CATEGORY) CONTAINS 'COMEDY' AND LENGTH > 160 THEN 'Comedy Long'
WHEN UPCASE (CATEGORY) CONTAINS 'COMEDY' AND
LENGTH BETWEEN 120 AND 160 THEN 'Comedy Medium'
ELSE 'Not Interested'
END AS MOVIE_TYPE
FROM MYDATA.MOVIES
WHERE UPCASE (CATEGORY) CONTAINS 'ACTION' OR 'COMEDY';
QUIT;

Essential Programming Techniques Every SAS® User Should Learn, continued

Searched CASE Expression Results:

SESUG 2022

Title Rating | Length Category MOVIE_TYPE
Brave Haar R 177 | Action Adwenture Action Long
Casablanca PG 102 | Drama Mot Interested
Christmas Vacation PG-13 87 | Comedy Comedy Short
Coming to America R 116 | Comedy Comedy Short
Dracula R 130 | Horror Mot Interested
Drressad to Kill R 105 | Drama Mystenas Mot Interestad
Forrest Gump PG-13 142 | Drama Mot Interested
Ghast PE-12 127 | Drama Romance Mot Interested
Jaws PG 125 | Action Adventure Action Medium
Jurassic Park PGE-12 127 | Action Action Medium
Lethal Weapon R 110 | Action Cops & Robber | Action Short
Mizhael PG-13 106 | Drama Mot Interestad
Mational Lampoon's VWacation | PG-13 83 | Comedy Comedy Short
Poltergeist PG 115 | Horor Mot Interested
Rocky PG 120 | Action Adwenture Action Medium
Scarfaca R 170 | Action Cops & Robber | Action Long
Silence of the Lambs R 118 | Drama Suspense Mot Interested
StarWars PG 124 Action Sei-Fi Action Medium
The Hunt for Red October PG 135 | Action Adventure Action Medium
The Terminator R 108 | Action Sci-Fi Action Short
The Wizard of Oz G 101 | Adventure Mot Interestad
Titanic PG-12 194 Dramza Romancea Mot Interestad

Subsetting with WHERE Expressions in a PROCedure

Gupta (2006) describes using a subsetting-IF versus a WHERE-statement or WHERE= data set option to subset observations. To
avoid using a subsetting-IF statement in a DATA step, SAS users may be able to specify a WHERE= data set option for subsetting
purposes directly in a procedure. This approach prevents the creation of a data set and, as a result, is more likely to scale better
by reducing CPU and I/O resources. Gupta emphasizes an important detail that all SAS users should know when specifying a
WHERE condition in a procedure, “Multiple WHERE conditions within SAS procedures are not cumulative as they are in a DATA
step meaning the most recent WHERE condition replaces any, and all, previously specified WHERE condition(s).”

PROC PRINT with WHERE Expression Code:

/* WHERE Statement to Subset Observations */
proc print data=sashelp.cars noobs ;

where type=”SUV” or type="Wagon”
run ;

<or >
/* WHERE= Data Set Option to Subset Observations */

proc print data=sashelp.cars (where=(type="SUV” or type="Wagon”)) noobs ;
run ;

http://www2.sas.com/proceedings/sugi31/238-31.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Using the IN Operator for Comparisons

Legacy SAS applications and program code often use one, or more, OR comparison operators to handle logic scenarios.
Although syntactically correct, a series of individual comparisons separated by an OR comparison operator is generally less
efficient than using an IN operator. The reason is due to the way an IN operator operates. When an IN operator is specified, SAS
stops making comparisons as soon as it finds a match. This is not the case with an OR operator. In the next example, a number
of individual comparisons are specified using an OR operator.

OR Comparison Operator Code:

PROC SQL ;
SELECT Origin, Type, MSRP
FROM SASHELP.Cars
WHERE Type = "SUV"
OR Type "Truck"
OR Type = "Wagon"
ORDER BY MSRP ;
QUIT ;

In the next example, an IN operator is specified to help modernize the process of handling a number of individual comparisons.
The IN operator provides a convenient, and concise, way to specify scenarios with many OR comparisons. A similar example
using DS2 SQLSTMT package approach can be found here.

IN Operator Code:

PROC SQL ;
SELECT Origin, Type, MSRP
FROM SASHELP.Cars
WHERE Type IN ("SUV","Truck","Wagon")
ORDER BY MSRP ;
QUIT ;

Concatenating Strings and Variables with CAT Functions

SAS functions serve an essential role in the Base SAS software. Representing a variety of built-in and callable routines, functions
serve as the “work horses” in the SAS software providing users with “ready-to-use” tools designed to ease the burden of writing
and testing often lengthy and complex code for a variety of programming tasks. The advantage of using SAS functions is evident
by their relative ease of use, and their ability to provide a more efficient, robust and scalable approach to simplifying a process
or programming task. In this example, we show how the TRIM and LEFT functions along with the concatenate operator to
concatenate strings and variables together can be replaced with the CAT functions.

CAT Function Code:

data _null_;

length NUM 3. ABCDE $ 8 BLANK $ 1 ;
A = 'The' ;

NUM = 5 ;

B = ' Cats' ;

C = 'in' ;

D ="' the' ;

E = 'Hat' ;

BLANK = ' ' ;

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

*0ld concatenation approach with TRIM and LEFT functions and concatenation

operator ;

OLD=trim(left(A)) || BLANK || trim(left(NUM)) || BLANK || trim(left(B)) ||
BLANK || trim(left(C)) || BLANK || trim(left(D)) || BLANK || trim(left(E)) -

* Using the CAT functions to concatenate character and numeric values together ;
CAT = cat (A, NUM, B, C, D, E) ;

CATQ = catq(BLANK, A, NUM, B, C, D, E) ;

CATS cats(A, NUM, B, C, D, E) ;

CATT = catt(A, NUM, B, C, D, E) ;

CATX = catx(BLANK, A, NUM, B, C, D, E) ;

put OLD= / STRIP= / CAT= / CATQ= / CATS= / CATT= / CATX= / ;

run ;

CAT Function Results:

OLD=The 5 Cats in the Hat

CAT=The 5 Cats in the Hat

CATQ="The " 5 " Cats " "in " " the " "Hat "
CATS=The5CatsintheHat

CATT=The5 Catsin theHat

CATX=The 5 Cats in the Hat

In the example, above, a single numeric variable, NUM, and six character variables: A, B, C, D, E, and BLANK are defined with
their respective values as: NUM=5, A="The’, B=" Cats’, C="in’, D=" the’, E="Hat’ and BLANK=" ‘. The oldest way of concatenating
two or more strings or variables together is then specified, using the TRIM and LEFT functions with the concatenation operator

ul |n

90000

in an assignment statement. As an alternative, a newer and more robust concatenation approach is specified using the CAT
family of functions: CAT, CATQ, CATS, CATT, and CATX.

O CAT, the simplest of concatenation functions, joins two or more strings and/or variables together, end-to-end producing the
same results as with the concatenation (double bar) operator.

@ CATQ is similar to the default features of the CATX function, but the CATQ function adds quotation marks to any
concatenated string or variable.

© CATS removes leading and trailing blanks and concatenates two or more strings and/or variables together.
O CATT removes trailing blanks and concatenates two or more strings and/or variables together.

© CATX, perhaps the most robust CAT function, removes leading and trailing blanks and concatenates two or more strings
and/or variables together with a user-specified delimiter between each.

Concatenating (or Appending) Data Sets

Concatenating data sets is the process of combining two, or more, data sets, one after the other, with the purpose of creating a
single data set. The number of observations in the new data set is the sum total of observations in all the original input data
sets. The order of observations in the concatenated data set is arranged sequentially with the observations from the first data
set, followed by the observations from the second data set, and so on. The concatenated data set contains the same variables
as the input data sets. Should an input data set contain different variables from the other input data sets, the concatenated
data set will have missing values assigned to the variables from the other input data sets.

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Concatenating with the DATA-SET-RUN Construct
SAS provides users with a few ways to concatenate data sets. In the first example, below, an old-style DATA-SET construct is

specified to concatenate the two data sets, RUGs_2015 and RUGs_2016. Although syntactically correct, this approach does not
scale well because it forces SAS to incur heavy 1/0 (input/output) because the observations in each input data set must be read
and written to the concatenated data set.

DATA-SET-RUN Code:

data Concatenated Results ;
set RUGs_2015
RUGs_2016 ;
run ;

DATA-SET-RUN Results:

RUG Number_Papers Year

MWSUG 96 | 2015
SCSUG 25 2015
SESUG 148 2015
Wuss 102 | 2015
MWSUG 124 | 2016
SCSUG 62 | 2018
SESUG 148 | 2016
Wuss 112 2018

Concatenating with a PROC SQL Outer Union CORR
A second approach uses PROC SQL to concatenate data sets. In this next example, an OUTER UNION CORR set operator is

specified, and SQL reads and processes the tables in each query producing a new concatenated table of results.

PROC SQL Code:

proc sql ;
create table Concatenated Results as
select * from RUGs_2015
outer union corr
select * from RUGs_2016 ;
select * from Concatenated Results ;

quit ;

PROC SQL Results:

RUG Humber_Papers Year

MWSUG 85 | 2015
SCSUG 28 2015
SESUG 148 | 2015
Wuss 102 2015
MWSUG 124 | 2016
SCSUG 62 | 2018
SESUG 148 | 2016
WUss 12 2018

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Concatenating with PROC APPEND (or PROC DATASETS — APPEND Statement)

A third, and more efficient, concatenation approach is available to SAS users. Using PROC APPEND (or the APPEND statement in
PROC DATASETS), an input data set can be appended to another data set. The advantage of using this approach is reduced 1/0,
since SAS does not have to read the observations in the base data set. Appending this way offers a way to scale an application.
As the number of observations in the base data set grows, the advantage of using this approach can become huge. In the next
example, two PROC APPEND:s are specified to concatenate the observations in the RUGs_2015 and RUGs_2016 data sets.

PROC APPEND Code:

proc append base=Concatenated Results
data=RUGs_2015 ;

run ;

proc append base=Concatenated Results
data=RUGs_2016 ;

run ;

PROC APPEND Results:

RUG Number_Papers | Year
WMWSUG %6 2015
SCSUG 29 205
SESUG 143 | 2015
Wuss 102 2015
WMWSUG 124 2018
SCSUG 82 2018
SESUG 143 2018
Wuss 112 2018

Processing Multiple TABLE Statements with PROC FREQ

Benjamin (2012) describes a common problem programmers have when using PROC FREQ to produce multiple table results.
Programmers will often code two, or more, individual PROC FREQ and TABLE statements even for the same input data set.
Although the PROC FREQ code, illustrated below, is syntactically correct, invoking PROC FREQ multiple times in this way can
result in an increase in the amount of time for processing the request.

PROC FREQ Code:

proc freq data=sashelp.cars ;
table Origin / list out=work.Origin Freql ;
run ;
proc freq data=sashelp.cars ;
table Origin * Type / list out=work.Origin Freq2 ;
run ;
proc freq data=sashelp.cars ;
table Origin * Type * Cylinders / list out=work.Origin Freq3 ;
run ;

To optimize the code, programmers can force a single pass over the input data set and as a result reduce the amount of
processing time needed to produce the resulting data sets, as follows.

10

http://support.sas.com/resources/papers/proceedings12/257-2012.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Optimized PROC FREQ Code:

proc freq data=sashelp.cars ;

table Origin / list out=work.Origin Freql ;

table Origin * Type / list out=work.Origin Freq2 ;

table Origin * Type * Cylinders / list out=work.Origin Freq3 ;
run ;

List of Procedures Supporting a CLASS Statement

Procedures are classified as the “workhorses” in the SAS System. The CLASS statement specifies one, or more, character or
numeric variables used to group data into classification levels. A virtue of using a CLASS statement is that a SORT procedure is
not required to arrange and group the data, because the stats and other information is collected in memory and reported at
the end of the procedure. A partial list of SAS procedures, below, supports the use of a CLASS statement.

SAS Procedures Supporting a CLASS Statement

PROC ANOVA PROC MEANS PROC REPORT PROC TTEST
PROC DISCRIM PROC MIXED PROC SUMMARY PROC UNIVARIATE
PROC GENMOD PROC NESTED PROC SURVEYMEANS
PROC GLM PROC PHREG PROC TABULATE
PROC LOGISTIC PROC REG PROC TIMEPLOT

Producing Page Numbers with ODS RTF Pagination Functions

Page numbering is the process of applying a sequence of numbers, Roman numerals, or letters on reports, spreadsheets,
documents, books or other multi-page files. Legacy applications and program code frequently use counters or code routines to
generate and display page numbers. Simple page numbering routines may resemble something similar to the following code.

DATA Step Code:

FILENAME REPORT DISK 'c:\DATA;NULL_Beport.LST'
DATA _NULL_;
SET SASHELP.CARS END=EOF ;
FILE REPORT HEADER=H1 ; /* Execute Page_ Header Routine */
PUT Q1 Origin $6.
@10 Make $13.
@25 MSRP DOLLAR12. ;
RETURN ;

’

Hl: ; /* Page Header */
Page CTIR + 1 ;
PUT @15 DATA _NULL Detail Report
// @22 'Page Number ' Page CTR ;
RETURN ;
RUN ;

11

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Page numbers can be produced and displayed in RTF output by specifying an escape character with an ODS RTF statement, any
of the following functions, and an ODS RTF CLOSE ; statement:

v' {thispage}
v {lastpage}
v {pageof}

Page Counters with ODS RTF Functions
Output Delivery System (ODS) provides powerful features that users can use when producing output. In the next example, an

escape character is specified with the ODS RTF destination, where the functions: {thispage}, {lastpage}, and {pageof} are
specified in the title and footnote statements to produce the page numbers and the total number of pages in the report.

ODS RTF Code:

ods escapechar='"' ;
ods RTF file='c:\Print-Report.rtf' ;
proc print data=sashelp.cars noobs ;
title 'Page “~{thispage} of “~{lastpage}' ;
footnote '“{pageof}' ;
run ;
ods RTF close ;

ODS RTF Results:

Page 1 af 34 ‘— 'Page Mthispage} of AMlastpage}'

Make Mode] _ - Engine Sirs,
Acuma MDE SV | Asa i3
Aczn BEX Twvpe S1dr Sedan | Azin pds]
Acua TEX 4 Sedan | Az 14
Acua TL 44 Sedan | Az i1
Acu I5RL 44 Sedhan | A is
Acu 35 RL w/Navigasion 44 Zedan | Asia is
Acan NEK cogpe Idrmamal § Sports | Azl i1
Al A4 LST 44 Sedan | Europe 15
A AYLET comvasible Id Sedan | Emrope L3
A A43044 Sedan | Europe io
A Ad 3.0 Crmamro dhdrmaresad Sedan | Emrope in
Andi At 30 Graso ddrmio Sedas | Emrope 10
A ELELE - Sechas | Europe 0
Andi A5 3.0 Grasno 4 Sedas | Furope 30
A A4 3.0 comvesifhle Tde Sedan | Ewrope g
Arsdi At 3.0 Granro coavenihle Idr Sedan | Emrcpe 19
Al AB LT Torbo Cromino 4dr Sedan | Europe 17
A AF 4T Croamro dde Sedan | Euwrope 41
A AL L Croazro ddr Sedan | Emrope 41
A 34 Croazro ddr Sedan | Emrope 41
A RS G Sports | Erwrope 42
A TT 12 comvesifhle Jdr oo Sports | Erwrope 13
Asdi TT 1.8 Gratiro 2dr {ooanesible]) Sports | Emrope L3
Asdi TT 3.2 compe I (comesifble) Sports | Emrope i1
A AS30 Avam Qmmwo Wagos| Enrope i
A 34 Avam Qrano Wagos| Enrope 1
BMW X330 UV | Eunope 3

BMW Xi4d4 UV | Eunope 44
EMOW 3254 Sechas | Europe 13
BAOW 3150 2 Sedan | Emrope 13
BMOW 3 Sechan | Emrope i
EMOW Sedan | Europe 13
EMOW Sedan | Europe 3

EMOW Sedan | Euwrope io
EMOW Sedan | Euwrope io
BMOW 5154 Sedan | Ewrope i
BMW 33001 comvertibls 14 ip

12

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Automating the Process of Creating Multiple HTML Files

The Web offers incredible potential that impacts all corners of society. With its increasing popularity as a communications
medium, Web publishers have arguably established the Web as the greatest medium ever created. Businesses, government
agencies, professional associations, schools, libraries, research agencies, and a potpourri of society’s true believers have
endorsed the Web as an efficient means of conveying their messages to the world.

The SAS software provides users with the capability to create results and deploy selected pieces of output as HTML output files.
Using the Output Delivery System (ODS) HTML destination, output can be created that anyone can view using a web browser.
Syntactically correct HTML code is automatically produced and made ready for deployment using one of the Internet browser
software products (e.g., Internet Explorer, Google Chrome, Mozilla FireFox, Safari, etc.). As a result, the SAS System and the
HTML destination create a type of “streaming” or continuous output by adding elevator bars (horizontal and/or vertical) for
easy navigation.

In the following example, redundant code and hardcoding issues are avoided by using PROC SQL to determine the number of
unique (or distinct) values of the Origin column exist and once known are assigned to single-value and value-list macro
variables. With the unique values assigned to two macro variables, an iterative %DO statement is specified to control the
propagation of one, or more, HTML files containing one-way frequency results. The results of the three distinct HTML files that
were created are also displayed, below.

ODS HTML Code:

/* Output HTML Files Location */
filename odsout "E:\" ;

options symbolgen ;
$macro multfiles ;
proc sql noprint ;
select count(distinct origin)
into :morigin cnt /* derive number of origins */
from sashelp.cars
order by origin ;
select distinct origin
into :morigin list separated by "~" /* derive unique origin values */
from sashelp.cars
order by origin ;
quit ;

%do i=1 %to &morigin_cnt ;
ods html path=odsout (URL=NONE)
file="%SCAN(&morigin_list, &i,~)_ FrequencyReport (MultiHTMLFiles).html"
style=styles.barrettsblue ;
title "Cars with Origin in %SCAN(&morigin list,&i,~)"

proc freq data=sashelp.cars(where=(origin = "%SCAN(&morigin list,&i,~)")) ;
tables type ;
format msrp dollarl2.0 ;

run ;

quit ;

title ;

ods html close ;

%end ;

%put &morigin list ;
$mend multfiles ;

$multfiles ;

13

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

ODS HTML Results:

Automating the Process of Creating Multiple Excel Files

Statistics show that the world’s most used software application is Microsoft Excel®. Due to this dominance, SAS provides users
with several ways to send results, tables, statistics, images and other output directly to an Excel spreadsheet. In the next
example, redundant code and hardcoding issues are avoided by using PROC SQL to determine the number of unique (or
distinct) values of the Origin column and, once known, are assigned to single-value and value-list macro variables. With the
values assigned to the two macro variables, an iterative %DO statement is specified to control the propagation of Excel files
containing one-way frequency results. The results of the three distinct Excel files that were created are also displayed, below.

ODS Excel Code:

$macro multExcelfiles ;
proc sql noprint ;
select count(distinct origin)
into :morigin cnt /* derive number of origins */
from sashelp.cars
order by origin ;
select distinct origin
into :morigin list separated by "~" /* derive unique origin values */
from sashelp.cars
order by origin ;
quit ;

%do i=1 %to &morigin_cnt ;
ods Excel file="e:/%SCAN(&morigin_list,&i,~)_ FreqReport (MultiExcelFiles) .xlsx"
style=styles.barrettsblue ;
title "Cars with Origin in %SCAN(&morigin list,&i,~)"
proc freq data=sashelp.cars(where=(origin = "%SCAN(&morigin list,&i,~)")) ;
tables type ;
format msrp dollarl2.0 ;
run ;
quit ;
title ;
ods Excel close ;
%end ;
%put &morigin list ;
$mend multExcelfiles ;

$multExcelfiles ;

14

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

ODS Excel Results:

Discovering the Number of Occurrences of a Value in a Data Set
Discovering the number of occurrences of individual values in a data set is useful information, particularly when constructing
data-driven approaches. SAS provides several ways to count and determine the number of occurrences of a value in a data set.

Discovering the Number of Occurrences of a Value in a DATA Step

One approach for discovering the number of occurrences of a variable’s value(s) is to construct a DATA step counting routine. In
the next example, individual counters for the number of females and males are created, and after the last observation is read
and processed, the results for each counter is output to the Counts data set, and the results displayed with PROC PRINT.

DATA Step Code:

data Counts (drop=Sex) ;
set sashelp.Heart (keep=Sex) end=EOF ;
if Sex = "Female" then Number_Females + 1 ;
else if Sex = "Male" then Number Males + 1 ;
if EOF then do ;
Total = Number Females + Number Males ;
format Number Females Number Males Total comma7. ;
output ;
end ;
run ;
proc print data=Counts noobs ;
run ;

DATA Step Results:

Mumber_Females | Number_Males = Total

2E873 2,336 | 5200

Discovering the Number of Occurrences of a Value with the PROC FREQ NLEVELS Option

Another approach for counting the number of occurrences of a variable’s value(s) is to specify the NLEVELS option in PROC
FREQ. In this example, the variable SEX is kept and the NLEVELS option is specified for the SASHELP.Heart data set. The results
show there are two levels for the variable, SEX, with 2,873 females and 2,336 males.

PROC FREQ Code:

proc freq data=sashelp.Heart (keep=sex) NLEVELS ;
run ;

15

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

PROC FREQ Results:

The FREG Procedure

Number of Variable Levels
Variable Levels

Sex 2

Cumulative | Cumulative

Sex Frequency | Percent | Freguency Percent
Female 2873 55.15 2873 55.15
Male 2336 4485 5200 100.00

Discovering the Number of Occurrences of a Value with PROC SQL
Another approach for counting the number of occurrences of a variable’s value is to use the SUM function with an equality

expression in PROC SQL. PROC SQL'’s data access and query capabilities offer SAS users with a powerful approach to summing
down rows and across columns. In this example, a SELECT query is specified with a SUM function for counting the number of
“Females”, “Males” and their combined totals that are found in the SASHELP.HEART data set. An optional FORMAT=COMMA?7.

parameter is also specified to make the results easier to read.

PROC SQL Code:

proc sql ;
select SUM(sex="Female”) AS Number Females format=comma7.,
SUM (sex="Male”) AS Number Males format=comma?7.,
SUM(sex IN (“Female”,“Male”)) AS Total format=comma7.
from sashelp.Heart ;

quit ;

PROC SQL Results:

Mumber_Females | Number_Males = Total

2873 23356 | 5208

Using Metadata to Determine the Number of Observations in a Data Set
Metadata is everywhere and is defined as information that describes data. Other definitions include information about data, or
information about the design and specification of objects and data structures. In its most basic form, metadata is found in the
cataloging systems of every academic library, public library, school library, and special library in the world. The typical book,
magazine, microfiche, digital file, image, or object’s metadata is stored in cataloging systems. These cataloging systems are not
composed of words, sentences, paragraphs, or chapters, but contain information about its author(s), title, subject, keyword(s),
description, publisher, publication date, ISBN, format, resource identifier, copyright, and other information.

Older Methods of Determining the Number of Observations in a Data Set
Before the availability of metadata in the SAS System, users developed and included code routines that determined the number

of observations in a data set. An often used DATA step approach, since the beginning of SAS-time, constructs a variable that
counts the number of observations. Although syntactically correct, this approach does not “scale” well — due to the amount of
1/0 incurred and the sizes of data sets — when computing the counter. The the next example, a DATA step approach computes
the total number of “Sedans” found in the SASHELP.CARS data set, and displays the results using PROC PRINT.

16

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

DATA Step Code:

data sedans_counter (keep=type obs_ctr)
cars_sedans (drop=obs_ctr) ;
set sashelp.cars (keep=origin type make MSRP) end=eof ;
where upcase (type) = “SEDAN” ;
obs ctr + 1 ;
output cars_sedans ;
if eof then output sedans_counter ;
run ;

proc print data=sedans_counter noobs ;
run ;

DATA Step Results:

Type obs_cir
Sedan 262

Using DICTIONARY.TABLES Metadata to Determine the Number of Observations in a Data Set
The SAS System collects and populates valuable metadata about SAS libraries, data sets (tables), catalogs, indexes, macros,

system options, titles, views and other useful information in a collection of read-only tables called Dictionary tables. Dictionary
tables serve a special purpose for SAS users by providing system-related information about the current SAS session’s SAS
databases and applications. When a query processes a Dictionary table, SAS automatically launches a discovery process at
runtime to collect information pertinent to that table. This information is made available any time after a SAS session is started.

When users need more information about SAS data sets the TABLES Dictionary table can be very helpful. The TABLES Dictionary
table provides detailed information about the library names, the member (or data set) names, the date a data set was created
and last modified, the number of observations in a data set, and much more. The next example illustrates a popular approach
that accesses the metadata content from the DICTIONARY.TABLES table to determine the number of observations in any SAS

data set.

PROC SQL Code:

title "Number of Rows in a Table"

proc sql ;
select libname, memname, nobs format=commalO.
from Dictionary.Tables
where nobs NE . ;

quit ;

title ;

17

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

PROC SQL Results:

Number of Rows in a Table SASHELP CUAKES 15,578
Liorary Hame | Mambsr Hama Humber of Phyzical Obsarvations fﬁi TEF mENT IE
| = -
MYDATA ACTORS 13 P e :
MYDATA ACTORE_VWTH_MEZSY_DAT) 15 e e .
MTSATA 42 1= ZAZHELR ZAIMIE 704
MYDATA oM 24 cAsoELE e a0
IMYDATA = 1o ZAZHELP SLENEIL 1,703
MYDATA MOWVIES 2 SAZHELF SMEMESE 34
MYDATA MOWIZS_VWITH_MESSY_DATA 31 sazmELE e, e
ZAZHELF AACONE 2,020 SASHELE STEEL s
SAZHEE AARTM 1es SASHELP STOCKS E35
ZAZHELF ADEMEE 426 SAS-ELF =TTMES -
SAzHE.R AFMES 1,090 SAZHELR SWRTDIET 2373
SAZHELR AR a4 SASHELF SYRI00T 108
ZAZHELP APPLIANC 158 SABHELP TABLE :
ZAZHELF ASZCMGR 402 SASHELP THICK -z
SAZRELF SAZZEALL a2 ZAZHELR TIMEDATA, 40,330
TAZHELF = 24,305 zazmELR ToURIEM 20
SASHELP SMIMEM 3284 SATHELR USECON 52
SAEHELF =T 137 SASHELP WEPLAYRS 11
ZAZHELR SURROWS 24 597 SAZHELR WERIMERE 15
SASHELP SUY 1 ZAZHELR VIDMSG 7
ZAZHELF SWEISHT 50,000 SAEHELP WOTE1980 3,107
ZAZHELF CARE 428 ZAZHELR WEEMEE 345
TAZHELF CITIoAY 1,068 SASHELR WIORKERS &7
ZAZHELF CITIMON 145 TAZHELR ¥R1001 128
ZAZHELP CIMGTR 45 ZAZHELR ¥R 128
ZAZHELF CITIVK 318 ZAZHELR ZHC 7443
ZAZHELP CITYR 10 ZAZHELR ZIPCODE 41,232
ZAZHELF cLASE 18 ZAZHELR Fars 18,181
ZAZHELF cLagzsIT 15 ZAZHELR _CMPIDX_ 24

Using SASHELP.VTABLE Metadata to Determine the Number of Observations in a Data Set
SAS also provides users with metadata content in a number of SASHELP views. In this next example the number of observations

in any SAS data set can be determined by accessing the NOBS metadata content in the SASHELP.VTABLE view. This metadata
content can be displayed using any output-producing SAS procedure, as shown below.

PROC PRINT Code:

title "Number of Rows in a Table" ;

proc print data=sashelp.vtable noobs ;
var libname memname nobs ;
format nobs commalO. ;
where nobs NE . ;

run ;

title ;

18

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

PROC PRINT Results:

Number of Rows in a Table SASHELD | QUAKEE 15578
llioname | memname noba i::::z::z Efj‘l’"— 15:
wons EOUNTS ! ;."’.SI-EL:‘ ﬁ;\HUEQ 72
MYDATA | ACTORS = SASHELP | ROCKFT 1
MYDATA | ACTORE_WITH_MESSY_DATA 15 SASHELD | SASMEC o
MYDATA | A2 = 2ASHELP | SASMSG Tae
MYDATA o = SAEHELP | EHOES 385
MYDATA | EX 145 SASHELP | SLEMIXL 1,703
MY DATA MoMES = SASHELP | EMEMSG 34
MYDATA | MOVIES_WATH_MESEY_DATA Eal 2AZHELD | mmmncE 4557
SASHELP | AATOMP 2020 ZASHELD | =TEEL 7
SASHELP | AARFM 183 SASHEL® | STOCKS 559
SASHELR | ADEMES 2= SASHEL® | STTMSG 3%
SASHELR | APMSG 1= SASHELR | SURTDIET 2373
SASHELP | AIR 142 SASHEL® | SYR10OT 105
SASHELR | ASALIANC 135 SARHELR | TAELE A
SASHELP | ASSCMGR a0z SASHELS | THICK s
SASHELP | BASEBALL 322 SASHELP | TIMEDATA 40330
SASHELR | BEI 24.205 SASHELD | TOURIEM =
SASHELP | BMIMEN 3,264 SASHEL® | USECCM 252
SASHELR | BMT 137 SASHELD | WSILAYES 11
SASHELP | BURROWS 24,581 SAEHELD | WERSMSR 19
SASHELR | BUY 1 SASHELP | VIDMEG 7
SASHELP | BWEIGHT S0.000 SASHELD | WOTE1EE0 3,107
SASHELP | CARE 428 SASHELP | WEEBMEG 343
SASHELRP | CITIDAY 1,083 SASHELP | WORKERS &7
SASHELP | CITIMON 143 SASHELP | ¥YR1001 125
SASHELR | CITIQTR 45 SASHELR | YR111 125
SASHELP | CITIVW 319 SAEHELP | ZHC 7445
SASHELS | CITIVR 10 SASHEL® | ZIFCODE 4232
SASHELP | CLASE 149 SASHELR | ZTC 18,161
SASHELP | CLASEFIT 13 SAEHELP | _CMPIOX_ 42

Using PROC PRINT with Style

Hecht (2011) describes the appearance of PROC PRINT output can be customized with colors, backgrounds, fonts, justifications,
and other report components using styles. Styles can be specified for all destinations (e.g., RTF, PDF, HTML, Excel, etc.) except
the Listing destination. In the next example, the SASHELP.CARS data set is sorted in ascending order by the variables Origin,
Type, Make and MSRP; the HTML destination is opened with the HTMLBIlue style selected for output; and background and
foreground styles selected for the data, obs and total parts of the PROC PRINT report output.

PROC PRINT Code:

proc sort data=sashelp.Cars (keep=Origin Type Make MSRP)
out=work.Cars_Sorted ;
where MSRP < 20000 ;
by Origin Type Make MSRP ;
run ;

ods HTML path="/folders/myfolders" (url=none)
file="PROC-PRINT-with-Style.html"
style=HTMLBlue ;
proc print data=work.Cars_Sorted
style (data) [background=Blue foreground=white]
style (obs) [background=red foreground=white]
style (total) [background=yellow foreground=black] ;
by Origin Type ;
id Origin Type Make ;
format msrp dollarl2.0 ;

19

https://support.sas.com/resources/papers/proceedings11/270-2011.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

sum MSRP ;
run ;
ods HTML close ;

PROC PRINT Resul

Origin | Type | Make MSRF Origin | Type | Make MSRP Origin | Type | Make = MSRP
Origin | Type Make MSRP Origin | Type | Make MSRP

o g

Europe | Sedan §75,538

Origin | Type Make M5RP

m Volkswagen | $19,005 USA | Truck 567,205
Asia suv 94,240

Europe §04 543
Origin | Type | Make MSRP oo | mrz || L= LESE

Origin | Type | Make MS5RP
Wagon 534,520

UsA £495,400

$1.564,372

Asia Truck 563,614

Origin | Type Make MS5SRP

Asia Wagon 578,757

Asia $974,429

Using Available Memory with Hash Object Programming

Dorfman (2009) describes a SAS hash object as, “a high-performance look-up table residing completely in the DATA step
memory.” Due to the costs and availability of memory resources in today’s computing environments, software vendors are
doing everything they can to develop language constructs that capitalize on memory-resident operations. Dorfman further
describes that, “The hash object is implemented via a Data Step Component Interface (DSCI), meaning that it is not a part of the
DATA step proper. Rather, picture it as a black-box device you can manipulate from inside the DATA step to ask it for lightning-
quick data storage and retrieval services.”

Lafler (2016) describes a SAS hash object as, “a data structure that contains an array of items that are used to map identifying
values, known as keys (e.g., employee IDs), to their associated values (e.g., employee names or employee addresses). As
implemented, a hash object in the SAS System is used as a DATA step construct and is not available to any SAS Procedures.” A
hash object reads the contents of a data set into memory once allowing the SAS system to repeatedly access the data, as
necessary. The contents of a hash object can be saved to a SAS data set (or table), but at the end of the DATA step the hash
object and all its contents disappear. Since memory-based operations are typically faster than their disk-based counterparts,
users often experience faster and more efficient table lookup, merge, sort and transpose operations.

20

http://analytics.ncsu.edu/sesug/2009/HOW009.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Users with DATA step programming experience will find the hash object syntax relatively straight forward to learn and use.
Available in all operating systems running SAS 9 or greater, the hash object is called using methods. The syntax for calling a
method involves specifying the name of the user-assigned hash table, a dot (.), the desired method (e.g., operation) by name,
and finally the specification for the method enclosed in parentheses. The following example illustrates the basic syntax for
calling a method to define a key.

MatchTitles.DefineKey (‘Title’);

where MatchTitles is the name of the hash table, DefineKey is the name of the called method, and ‘Title’ is the specification
being passed to the method.

An essential operation frequently performed by users is the process of table lookup or search. The hash object as implemented
in the DATA step provides users with the necessary tools to conduct match-merges (or joins) of two or more data sets. Data
does not have to be sorted (or be in a designated sort order) before use as it does with the DATA step merge process. The next
example illustrates a hash object with a simple key (TITLE) to merge (or join) the MOVIES and ACTORS data sets to create a new
data set (MATCH_ON_MOVIE_TITLES) with matched observations.

Hash Object Code:

data match_on movie_titles(drop=rc) ;

©Q if 0 then set mydata.movies

mydata.actors ; /* load variable properties into hash tables */

if n_ =1 then do ;
(2] declare Hash MatchTitles (dataset:'mydata.actors') ; /* declare the name
MatchTitles for hash */

(3] MatchTitles.DefineKey ('Title') ; /* identify variable to use as key */
MatchTitles.DefineData (‘Actor_Leading’,
‘Actor_Supporting’) /* identify columns of data */
MatchTitles.DefineDone () ; /* complete hash table definition */
end ;

set mydata.movies ;

O if MatchTitles.find(key:title) = 0 then output ; /* lookup TITLE in MOVIES table
using MatchTitles hash */
run ;

Hash Object Results:

Tile I Length I Category | Year [Studio l Rating | Actor_Leading I Actor_Supporting
1 |Brave Heat 177 Action Adventure 1995 Paramount Pictures R Mel Gibson Sophie Marceau
2 |Christmas Vacation 97 Comedy 1983 Wamer Brothers PG13 Chevy Chase Beverly D'Angelo
3 |Comingto America 116 Comedy 1988 Paramount Pictures R Eddie Muphy Arsenio Hal
4 |Fomest Gump 142 Drama 1994 Paramount Pictures PG13 Tom Hanks Sally Field
5 |Ghogt 127 Drama Romance 1990 Paramount Pictures PG13 Patick Swayze Demi Moore
6 | Lethal Weapon 110 Action Cops & Robber 1987 Wamer Brothers R Mel Gibson Danny Glover
7 | Michael 106 Drama 1337 Wamer Brothers PG13 John Travoka Andie MacDowel
8 | National Lampoon's Vacation 98 Comedy 1983 Wamer Brothers PG13 Chevy Chase Beverly D'Angelo
9 |Rocky 120 Action Adventure 1976 MGM / UA PG Sylvester Stallone Talia Shire
10 |Slence of the Lambs 118 Drama Suspense 1991 Orion R Anthony Hopking Jodie Foster
11| The Hunt for Red October 135 Action Adventure 1989 Paramount Pictures PG SeanConnery Hec Baldwin
12 | The Teminator 108 Action Sci-Fi 1984 Live Entertainment R Amold Schwarzenegge Michael Biehn
13 |Ttanic 194 Drama Romance 1997 Paramount Pictures PG13 Leonardo DiCaprio Kate Winslet

21

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Conclusion

As SAS users around the world celebrate a milestone of more than a half-century using SAS software, users should learn as
many essential programming techniques as possible to enhance their careers well into the 215t century. This paper shared
numerous programming techniques that all pragmatic users and programmers should learn. From topics related to conditional
logic scenarios; subsetting with WHERE expressions; determining the number of by-group levels that exist within classification
variables; data manipulation with the family of CAT functions; merging or joining multiple tables of data; performing table
lookup operations with user-defined formats; creating single-value and value-list macro variables with PROC SQL; examining
and processing the contents of value-list macro variables; determining the FIRST., LAST. and Between by-group rows;
processing repetitive data with arrays; and using metadata to better understand the contents of SAS datasets.

References

Efficiency and Performance Tuning References and Suggested Reading
Brown, Tony and Margaret Crevar (2016). “Architecting Your SAS Grid®: Networking for Performance,” Proceedings of the 2016
SAS Global Forum (SGF) Conference.

Cohen, Robert A. and Robert N. Rodriguez (2013). “High-Performance Statistical Modeling,” Proceedings of the 2013 SAS Global
Forum (SGF) Conference.

Kaufmann, Shaun (2016). “High-Performance Data Access with FedSQL and DS2,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Lafler, Kirk Paul (2016). “Top Ten SAS® Performance Tuning Techniques,” Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Lavery, Russ (2013). “Fast Access Tricks for Large Sorted SAS Files,” Proceedings of the 2013 MidWest SAS Users Group
(MWSUG) Conference.

Lui, Lingqun (2017). “SAS Advanced Programming with Efficiency in Mind: A Real Case Study,” Proceedings of the 2017 Michigan
SAS Users Group (MISUG) Conference.

Warner-Freeman, Jennifer K. (2007). “I Cut My Processing Time By 90% Using Hash Tables - You Can Do It Too!,” Proceedings of
the 2007 North East SAS Users Group (NESUG) Conference.

Williams, Michael; Gretel Easter and Steve Bradsher (2009). “Troubleshoot Your Performance Issues: SAS® Technical Support
Shows You How,” Proceedings of the 2009 SAS Global Forum (SGF) Conference.

Hash Object References and Suggested Reading
Burlew, Michele M. (2012), “SAS® Hash Object Programming Made Easy,” SAS Press, SAS Institute, Cary, NC, USA.

Dorfman, Paul M. and Don Henderson (2017). “Beyond Table Lookup: The Versatile SAS® Hash Object,” Proceedings of the 2017
SAS Global Forum (SGF) Conference.

Dorfman, Paul M. (2016). “Using the SAS® Hash Object with Duplicate Key Entries,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Dorfman, Paul and Peter Eberhardt (2010). "Two Guys on Hash," Proceedings of the 2010 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul (2009). "The SAS® Hash Object in Action," Proceedings of the 2009 South East SAS Users Group (SESUG)
Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS® Hash Programming Techniques,” Proceedings of the 2016 SouthEast SAS Users
Group (SESUG) Conference.

Loren, Judy (2008). “How Do | Love Hash Tables? Let Me Count The Ways!,” Proceedings of the 2008 SAS Global Forum (SGF)
Conference.

Mazloom, Dari (2017). “SAS Hash Objects, Demystified,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Sakya, Daniel (2012). “SAS® HASH Programming Basics,” Proceedings of the 2012 South Central SAS Users Group (SCSUG)
Education Forum / Conference.

Schacherer, Chris (2015). “Introduction to SAS® Hash Objects,” Proceedings of the 2015 SAS Global Forum (SGF) Conference.

Secosky, Jason and Janice Bloom (2007). “Getting Started with the DATA Step Hash Object,” Proceedings of the 2007 SAS Global
Forum (SGF) Conference.

Warner-Freeman, Jennifer K. (2007). “I Cut My Processing Time By 90% Using Hash Tables - You Can Do It Too!,” Proceedings of
the 2007 North East SAS Users Group (NESUG) Conference.

22

http://support.sas.com/resources/papers/proceedings16/SAS6760-2016.pdf
http://support.sas.com/resources/papers/proceedings13/401-2013.pdf
http://support.sas.com/resources/papers/proceedings16/4342-2016.pdf
http://www.lexjansen.com/mwsug/2016/SA/MWSUG-2016-SA01.pdf
https://www.mwsug.org/proceedings/2013/HW/MWSUG-2013-HW02.pdf
http://www.misug.org/uploads/8/1/9/1/8191072/lliu_macro_efficiencies.pdf
http://www.lexjansen.com/nesug/nesug07/bb/bb16.pdf
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
https://www.sas.com/store/books/categories/usage-and-reference/sas-hash-object-programming-made-easy/prodBK_62230_en.html
http://support.sas.com/resources/papers/proceedings17/0821-2017.pdf
http://support.sas.com/resources/papers/proceedings16/10200-2016.pdf
http://analytics.ncsu.edu/sesug/2010/HOW05.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2009/HOW009.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf
http://www2.sas.com/proceedings/forum2008/029-2008.pdf
http://support.sas.com/resources/papers/proceedings17/1479-2017.pdf
http://www.lexjansen.com/scsug/2012/HASH-Programming-basics.pdf
https://support.sas.com/resources/papers/proceedings15/3024-2015.pdf
http://www2.sas.com/proceedings/forum2007/271-2007.pdf
http://www.lexjansen.com/nesug/nesug07/bb/bb16.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Macro References and Suggested Reading
Carpenter, Art (2016). Carpenter's Complete Guide to the SAS® Macro Language, Third Edition, SAS Institute Inc., Cary, NC.

Lui, Lingqun (2007). “Passing Data Set Values into Application Parameters,” Proceedings of the 2007 MidWest SAS Users Group
(MWSUG) Conference.

Roberts, Clark (1997). “Building and Using Macro Variable Lists,” Proceedings of the 1997 SAS Users Group International (SUGI)
Conference.

SAS Programming Techniques References and Suggested Reading
Benjamin, William E. Jr. (2012). “Leave Your Bad Code Behind: 50 Ways to Make Your SAS® Code Execute More Efficiently,”
Proceedings of the 2012 SAS Global Forum (SGF) Conference.

Cassidy, Deb (2003). “Keeping Up With the FUN: New Functions in SAS 9,” Proceedings of the 2003 SouthEast SAS Users Group
Conference.

Cody, Ron (2012). “A Survey of Some of the Most Useful SAS® Functions,” Proceedings of the 2012 SAS Global Forum (SGF)
Conference.

Gupta, Sunil (2006). “WHERE vs. IF Statements: Knowing the Difference in How and When to Apply,” Proceedings of the 2006
SAS Users Group International (SUGI) Conference.

Hecht, Darylene (2011). “PROC PRINT and ODS: Teaching an Old PROC New Tricks,” Proceedings of the 2011 SAS Global Forum
(SGF) Conference.

Horstman, Joshua M. (2017). “Beyond IF THEN ELSE: Techniques for Conditional Execution of SAS® Code,” Proceedings of the
2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2017). “An Introduction to PROC REPORT,” Proceedings of the 2017 South Central SAS Users Group (SCSUG)
Education Forum / Conference.

Lafler, Kirk Paul (2017). “Best Practice Programming Techniques for SAS® Users,” Proceedings of the 2017 SAS Global Forum
(SGF) Conference.

Lafler, Kirk Paul (2017). “Removing Duplicates Using SAS®,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2014). “Conditional Processing Using the Case Expression in PROC SQL,” Proceedings of the 2014 South Central
SAS Users Group (SCSUG) Education Forum / Conference.

Lafler, Kirk Paul (2009). “SAS® Macro Programming Tips and Techniques,” Proceedings of the 20009 SAS Global Forum (SGF)
Conference.

Lavery, Russ (2016). “An Animated Guide: The Internals of PROC REPORT,” Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Lui, Lingqun (2007). “Passing Data Set Values into Application Parameters,” Proceedings of the 2007 MidWest SAS Users Group
(MWSUG) Conference.

Repole Jr, Warren (2009). “Don’t Be a SAS® Dinosaur: Modernizing Programs with Base SAS 9.2 Enhancements,” Proceedings of
the 2009 SAS Global Forum (SGF) Conference.

Riba, S. David (1996). “Redesigning a Legacy: Techniques of a Quality Partner,” Proceedings of the 1996 SAS Users Group
International (SUGI) Conference.

Roberts, Clark; Deborah Testa and Russell Holmes (19997). “Audit Trail Plug-ins for SAS® Software Applications,” Proceedings of
the 1999 Western Users of SAS Software (WUSS) Conference.

Roberts, Clark (1997). “Building and Using Macro Variable Lists,” Proceedings of the 1997 SAS Users Group International (SUGI)
Conference.

Shapiro, Mira (2016). “SAS® Functions You May Have Been MISSING,” Proceedings of the 2016 PharmaSUG Conference.

Sun, GuanGhui (Brian) (2011). “Why Dummy Variable Makes You SMART, and How to Do it SEXY,” Proceedings of the 2011
Western Users of SAS Software (WUSS) Conference.

Venam, Srinivas; Manvitha Yennam; and Phaneendhar Vanam (2016). “Good Programming Practice [GPP] in SAS® & Clinical
Trials,” Proceedings of the 2016 Western Users of SAS Software (WUSS) Conference.

Wang, Hui (2015). “Creating Data-Driven SAS® Code with CALL EXECUTE,” Proceedings of the 2015 PharmaSUG Conference.

Whitlock, lan (2006). “How to Think Through the SAS® DATA Step,” Proceedings of the 2006 SAS Users Group International
(SUGI) Conference.

23

https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html
https://www.mwsug.org/proceedings/2007/appdev/MWSUG-2007-A02.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER78.PDF
http://support.sas.com/resources/papers/proceedings12/257-2012.pdf
http://analytics.ncsu.edu/sesug/2003/SE10-Cassidy.pdf
http://support.sas.com/resources/papers/proceedings12/241-2012.pdf
http://www2.sas.com/proceedings/sugi31/238-31.pdf
https://support.sas.com/resources/papers/proceedings11/270-2011.pdf
http://support.sas.com/resources/papers/proceedings17/0326-2017.pdf
https://www.lexjansen.com/scsug/2017/An-Introduction-to-PROC-REPORT-SCSUG-2017.pdf
http://support.sas.com/resources/papers/proceedings17/0175-2017.pdf
http://support.sas.com/resources/papers/proceedings17/0188-2017.pdf
http://www.lexjansen.com/scsug/2014/Conditional-Processing-Using-the-Case-Expression-in-PROC-SQL.pdf
http://support.sas.com/resources/papers/proceedings09/151-2009.pdf
https://www.mwsug.org/proceedings/2016/TT/MWSUG-2016-TT13.pdf
https://www.mwsug.org/proceedings/2007/appdev/MWSUG-2007-A02.pdf
http://support.sas.com/resources/papers/proceedings09/143-2009.pdf
http://www.lexjansen.com/sugi/sugi21/qp/221-21.pdf
http://www.lexjansen.com/wuss/1999/WUSS99010.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER78.PDF
https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT06.pdf
http://www.lexjansen.com/wuss/2011/analy/Papers_Sun_B_74902.pdf
http://www.lexjansen.com/wuss/2016/126_Final_Paper_PDF.pdf
http://www.lexjansen.com/wuss/2016/126_Final_Paper_PDF.pdf
https://www.pharmasug.org/proceedings/2015/BB/PharmaSUG-2015-BB15.pdf
http://www2.sas.com/proceedings/sugi31/246-31.pdf

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Whitlock, lan (1998). “CALL EXECUTE: How and Why,” Proceedings of the 1998 SAS Users Group International (SUGI)
Conference.

Acknowledgments

The author wishes to thank the 2022 SESUG Conference Committee, particularly the Learning SAS Il (HOW) Section Chairs,
Andrea Lewton and Nat Wooding, for accepting my abstract, paper, and hands-on workshop (HOW); the 2022 SESUG Executive
Committee for organizing and supporting a “live” conference event; SAS Institute Inc. for providing SAS users with wonderful
software; and SAS users everywhere for being the nicest people anywhere!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

Data Sets Used in Examples

The examples presented in this paper include the RUGs_2015 and RUGs_2016 data sets; and several in the SASHELP library
including the CARS, HEART, SHOES, and STOCKS data sets You’ll be able to use these data sets for example purposes and for
testing the enclosed code examples.

The RUGs_2015 data set consists of 4 observations and 3 variables, illustrated below.

RUG ‘ Number_Papers | Year |
1 MWSUG 96 2015
2 sCsUG psi] 2015
3 SESUG 148 2015
4 Wuss 102 2015

Data Set #1. RUGs_2015

The RUGs_2016 data set consists of 4 observations and 3 variables, illustrated below.

RUG ‘ MNumber_Papers | Year |
1 MWSUG 124 2016
2 SCSUG 62 2016
3 SESUG 148 2016
4 Wuss 12 2016

Data Set #2. RUGs_2016

The MOVIES data set consists of 22 observations and 6 variables, illustrated below.

Title I Length | Category | Year | Studio I Rating

1 Brave Heart 177 Action Adventure 1995 Paramount Pictures R

2 Casablanca 103 Drama 1942 MGM / UA PG

5 Christmas Vacation 97 Comedy 1989 Warner Brothers PG-13
4 Coming to America 116 Comedy 1988 Paramount Pictures R

5 Dracula 130 Horror 1933 Columbia TriStar R

B Dressed to Kill 105 Drama Mysteries 1980 Filmways Pictures R

0 Farrest Gump 142 Drama 1994 Paramount Pictures PG13
g Ghost 127 Drama Romance 1990 Paramount Pictures PG13
9 |Jaws 125 Action Adventure 1975 Universal Studios PG
10 |Jurassic Park 127 Action 1933 Universal Pictures PG13
11 Lethal Weapon 110 Action Cops & Robber 1987 Warner Brothers R

12 |Michael 106 Drama 1997 Wamer Brothers PG-13
13 | National Lampoon's Vacation 98 Comedy 1983 Warner Brothers PG-13
14 |Poltergeist 115 Horror 1982 MGM / UA PG
15 |Rocky 120 Action Adventure 1976 MGM / Ua PG
16 [Scarface 170 Action Cops & Robber 1983 Universal Studios R

17 | Silence of the Lambs 118 Drama Suspense 1991 Orion R

18 | StarWars 124 Action SciFi 1977 Lucas Film Ltd PG

19 | The Hunt for Red Octaber 135 Action Adventure 1989 Paramount Pictures PG
20| The Teminator 108 Action SciFi 1984 Live Entertainment R

21 The Wizard of 0z 101 Adventure 1939 MGM / U& G

22 | Titanic 194 Drama Romance 1997 Paramount Pictures PG-13

Data Set #3. MOVIES

24

http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

The ACTORS data set consists of 13 observations and 3 variables, illustrated below.

The [Ao Lesing [Aot Sigpning
L1 {BraveHeat MelGlsen Sophie Marceay
L2 |Chistmas Venation Chesy Chase Bevery D'hngelo
3 |ComingtoAnesca Edde Mugty e Hal
4 |FonestGump Tom Harks SalyFeld
I Palick Swaye: Dexi Moe
b |lehdWesm MelGtsen Danry Glover
L |Mcheel John Travka hodiz MacDowel
B |Naliond Lampoar's Vacalion Chey Chase Bever Do
L9 Ry SybvesterStalore Tala Stie
10 {Siece ofhe Lanbs Arthany Hopking Jode Footer
11 The Hu for Red Oclober Sean Cornezy o Bakdwin
_n | hureld Schwazenegge Michae! Bighn
18 |Tiaric Lemardh DiCzpro Hate Windet

Data Set #4. ACTORS

The SASHELP.CARS data set consists of 428 observations and 15 variables, illustrated below.

Make | Mode! | Type | Qrigin ‘ DriveTrain ‘ MSRP | Invaice | EngineSize ‘ Cylinders ‘ Horsepower‘ MPG_City | MPG_Highway | Weight ‘ Wheelbase | Length |
1 Acura MDX SUV Asia Al $36945 §33337 a5 6 265 17 23 445 106 189
2 Acura RSX Type S Zdr Sedan Asia Front 523820 $21.761 2 4 200 24 N2 10 172
3 Acura TSX 4dr Sedan Asia Front 526990 S24.647 24 4 200 22 29 3230 105 183
4 Acura TL 4dr Sedan Asia Front $33,195 530,299 32 € 70 20 28 357 108 186
5 Acura 35 RL 4dr Sedan Asia Front 843755 839,014 35] 225 18 24 3880 15 157
[Acura 3.5 RL w/Navigation 4dr Sedan Asia Front 46100 541,100 35] 225 18 24 3883 15 157
7 Acura NSX coupe 2dr manual 5 Sports Asia Rear 589765 $79.578 32 & 250 7 24 3153 100 174
8 Pudi A4 18T 4dr Sedan Europe Front 825340 523508 18 4 17 22 31 3252 104 179
] Audi A41.8T convertible 2dr Sedan Europe Front 535340 532,506 18 4 170 23 30 3638 105 180
10 Audi Ad 3.0 4dr Sedan Europe Front 531840 528,846 3 6 220 20 28 3462 104 179
11 [Audi A4 3.0 Quattro 4dr manual Sedan Europe Al 533430 530366 3] 20 7 26 3583 104 79
12 [Audi A4 3.0 Quattro 4dr auto Sedan Europe Al £34480 531388 3] 20 18 25 3627 104 179
13 |Audi AG3.04dr Sedan Europe Front 536640 533129 3] 20 20 7 3561 109 192
14 [Audi A6 3.0 Quattro 4dr Sedan Europe Al 539640 535992 3] 20 18 25 3880 109 192
15 [Audi A4 3.0 convertible 2dr Sedan Europe Front 342430 538325 3 6 220 20 7 3814 105 180
16 [Audi A4 3.0 Quattro convertble 2dr Sedan Europe Al $44240 40075 3 6 220 18 25 4013 105 180
17 |Audi A6 27 Turbo Quattro 4dr Sedan Eurcpe Al $42840 538840 7 6 250 18 25 3836 109 192
18 [Audi A6 4.2 Quattro 4dr Sedan Eurcpe Al $49630 44936 42 8 300 7 24 4024 109 193
19 [Audi AB L Quattro ddr Sedan Eurcpe Al $69,190 $64.740 42 8 30 7 24 4339 121 204
20 |Audi 54 Quattro ddr Sedan Eurcpe Al $48.040 $43556 42 8 40 14 20 385 104 179
21 |Audi RS 6 4dr Sports Europe Front $B4600 S76417 42 8 450 15 22 4024 109 191
22 Audi TT 1.8 convertible 2dr (coupe) Sports Europe Front $35340 532512 18 4 180 20 28 1A 95 159
23 |Audi TT 1.8 Quattro 2dr convertible) Sports Europe Al $37390 533891 18 4 225 20 28 8 % 159
24 Audi TT 3.2 coupe 2dr [convertible) Sports Europe All 540550 $36.739 32 & 250 21 29 3351 96 159
25 |Audi A 3.0 Avant Quattro Wago Europe Al 840840 837060 3] 20 18 25 4035 109 152
26 |Audi 54 Avant Guattro Wago Europe Al 245080 s44.445 42 2 340 15 21 3336 104 179
27 BMW X330 SUV Europe Al 537000 533873 3 6 225 16 23 4023 10 180
28 BMW Xb4 4 SUV Europe Al 552,195 347,720 44 8 325 16 22 4824 m 184

Data Set #5. SASHELP.CARS

The SASHELP.HEART data set consists of 5,209 observations and 17 variables, illustrated below.

Status ‘ DeathCause |AgeCHDdiag‘ Sex ‘AgeNSlart‘ Height |Weight | Diastolic ‘Systo\ic‘ MRW |Smuking‘AgsNDEathlG‘mleslerul|l}|uLSlatus| BP_Status ‘WeighLSlatusl Smoking_Status ‘
1 Dead Cther . Female 29 625 140 78 124 121 0 55 Normal Ovenweight Mon-smoker
2 Dead Cancer Female 41 5375 194 952 144 183 0 57 181 Desirable High Overweight Mon-smoker
3 Alive Female 7 6225 132 50 170 114 10 250 High High Overweight Moderate (6-15)
4 Alive . Female 39 6575 158 80 128 123 0 . 242 High Normal Owverweight Non-smoker
5 Alive . Male 42 66 156 7 110 116 20 . 281 High Optimal Ovenweight Heavy (16-25)
[Alive . Female 58 6175 13 52 176 17 0 . 156 Desirable High Overweight Mon-smoker
7 Alive . Female 36 6475 136 80 112 110 15 . 196 Desirable MNormal Owerweight Moderste (6-15)
8 Dead Cther . Male 53 655 130 80 114 99 0 77 276 High Normal Normal Mon-smoker
E Alive Male 35 El 194 68 132 124 0 211 Bordedine MNormal Overweight Mon-smoker
10 Dead Cerebral Vascular Disease Male 52 625 125 7 124 106 5 82 284 High Normal Normal Light (1-5)
1 |Aive . Male 33 6625 179 7 128 133 30 . 225 Borderiine Normal Overweight ;’g}w Heavy (>
12 Alive 7 Male 33 6425 151 68 108 118 0 . 221 Bordedine Optimal Ovenweight MNon-smoker
13 Alive 55 Male 33 kL 17 50 142 114 0 188 Desirable High Overweight Mon-smoker
14 Alive 79 Male 7 6725 165 7 128 118 15 Normal Overweight Moderate (6-15)
15 |Aive 66 Male 44 69 155 50 130 105 30 . 292 High High Normal ;’g}w Heavy (>
16 Alive . Female 7 645 134 76 120 108 10 . 196 Desirable MNormal MNormal Moderste (6-15)
17 Alive . Male 40 6625 151 72 132 12 30 . 192 Desirable Nomal Owverweight gg)ﬁ' Heavy (>
18 Dead Cancer 56 Male 56 6725 122 7. 120 7 15 72 194 Desirable Normal Underweight Moderate (6-15)
19 Alive . Female 42 677 162 96 138 1% 1 . 200 Bordedine High Ovenweight Light (1-5)
20 Dead Coronary Heart Disease 74 Male 46 665 157 84 142 116 30 76 233 Bordedine High Ovenweight ;‘g}w Heavy (>
21 Alive Female 37 6625 148 78 110 12 15 192 Desirable Optimal Overweight Moderste (6-15)
2 Alive Female 45 64 147 74 120 115 5 209 Bordedine Mormal Overweight Light (1-5)
23 Alive . Female 53 €575 156 74 156 122 0 . 200 Bordedine High Ovenweight Mon-smoker
24 |AMive . Female 36 637 122 84 132 102 0 . 184 Desirable MNormal Normal Non-smoker
25 Alive . Female 50 75 185 28 150 136 15 . 228 Borderdine High Owerweight Moderste (6-15)

Data Set #6. SASHELP.HEART

25

Essential Programming Techniques Every SAS® User Should Learn, continued

The SASHELP.SHOES data set consists of 395 observations and 7 variables, illustrated below.

Region | Product | Subsidiary | Stores | Sales | Inventory | Retums |
1 Mrica Boot Addis Ababa 12 523761 5191821 £765
2 Africa Men's Casual Addis Ababa 4 867242 £118.036 82,284
3 Africa Men's Dress Addis Ababa 7 876793 136273 52433
4 AMrica Sandal Addis Ababa 10 3562819 5204284 §1,861
5 Mrica Slipper Addis Ababa 14 =SBBE41 5279795 g1,
[AMrica Sport Shoe Addiz Ababa 4 £1,650 516,634 575
7 Afiica Women's Casual Addis Ababa 2 851,541 £98.641 £540
8 Africa Women's Dress Addis Ababa 12 5108542 5311017 53,233
gl AMrica Boot Algiers 21 821297 §73737 £710
10 AMrica Men's Casual Algiers 4 563206 5100582 82221
11 Africa Men's Dress Algiers 13 £123.743 5428575 23,621
12 Africa Sandal Algiers 25 525158 584 447 51,530
13 AMrica Slipper Algiers 17 564,891 5248198 1,823
14 AMrica Sport Shoe Algiers k] 52617 55372 5168
15 Africa Women's Dress ~ Algiers 12 850,648 5266805 52,650
16 | Africa Boot Cairo 20 84,846 518965 5225
17 Africa Men's Casual Cairo 25 £360.209 £1.063.251 £9.424
18 AMfrica Men's Dress Cairo 5 84,051 £45 962 857
19 Africa Sandal Cairo 9 510532 550430 £558
20 |Afica Slipper Cairo 5 813732 584117 81,216
21 AMrica Sport Shoe Cairo 3 82,259 £20.815 544
22 AMfrica Women's Casual Cairo 14 §328474 5340851 510,124
23 Africa Women's Dress Cairo 3 514095 551145 £745
24 Africa Boot Johannesburg 14 8,365 233,011 2483
25 AMrica Sandal Johannesburg 13 817337 £63,003 2809
iy Mrica Slipper Johannesburg 12 835452 5130025 51,565
27 Arica Sport Shoe Johannesburg 8 85172 £29,368 £135%
28 Africa Women's Dresz Johannesburg 4 842682 120127 2566

Data Set #7. SASHELP.SHOES

The SASHELP.STOCKS data set consists of 699 observations and 8 variables, illustrated below.

Stock | Date | Open | High | Low | Close | Volume |MjCJose |
1 IBM 01DECOS £89.15 S$8992 s$8156 88220 5976252 $81.37
2 IBM 01NOVD5 £81.85 8994 358064 88850 5556471 58801
3 IBM 030CTO5 £80.22 5B460 57870 SB1.B8 7019666 5B0.86
4 IEM 015EPD5 £80.16 58211 576593 88022 5772280 §79.22
5 IBM 01AUGDS £83.00 S8420 57987 SB062 4801386 57962
6 IBM 01JuLos £7430 38511 57416 $8346 8056590 58223
7 IBM 01JUNDS 7557 87773 5$7345 87420 6439536 57310
8 IBM 02MAYD5 S76.88 57811 57250 87555 6896904 57443
9 IEM 01APROS £91.4% 59176 57185 $76.38 10709200 575.05
10 [IBM 01MARDS 9264 $9373 $89.0% 59138 5025627 58979
11 IBM 01FEBOS $93.67 9497 59155 89258 4455657 55097
12 |IBM 03JANDS £98.97 59910 59144 83342 53960945 59162
13 |IBEM 01DECD4 £94.50 53900 59447 $3858 5043800 59668
14 |IBM 01NOWVD4 £89.33 59663 58923 89424 5754876 59242
15 |IBM 010CT04 £85.95 9027 $B429 88975 5839742 58785
16 |IBM 015EPD4 $84.05 8728 58324 88574 4719252 58393
17 |IBM 02AUGD4 £86.87 SB739 58150 SB469 4298600 58250
18 |IBEM 01JuLD4 £83.28 58344 58342 s8707 5525023 58505
19 |IBM 01JUND4 £83.00 9121 S87.30 $88.15 4604409 8610
20 |IBM 03MAYD4 $883.13 88975 58512 $BB59 5395555 §B653
21 IBM 01APRO4 89167 59455 5BB.01 SBB1Y 5507214 58595
22 |IEM 01MARD4 <9650 $5760 $90.28 $9184 5612921 58953
23 |IEM 02FEBD4 £99.15 £10043 59520 $9650 5392468 59407
24 |IBEM 02JAND4 £92.86 59985 $89.01 89923 7275305 59657
25 |IBM 01DECO3 £950.90 9412 59003 89268 5492235 55020
26 |IBM 03NOVD3 £89.90 59148 SB772 83054 5271663 58812
27 |IEM 010CT03 £83.75 59454 58753 $B948 6995200 58693
28 |IBM 025EP03 58240 59347 58230 88833 8523800 58581

Data Set #8. SASHELP.STOCKS

SESUG 2022

26

Essential Programming Techniques Every SAS® User Should Learn, continued SESUG 2022

Author Bio

Kirk Paul Lafler is an entrepreneur and consultant who has worked with SAS software since 1979 as a SAS consultant,
application developer, programmer, data analyst, educator and author. Kirk currently serves as a lecturer and adjunct professor
at San Diego State University, an advisor and SAS programming adjunct professor at the University of California San Diego
Extension, and an educator who teaches SAS courses, workshops, seminars, and webinars to thousands of users around the
world. Kirk has also authored or co-authored several books including PROC SQL: Beyond the Basics Using SAS, Third Edition (SAS
Press. 2019) and Google® Search Complete (Odyssey Press. 2014); hundreds of papers and articles on a variety of SAS topics; an
Invited speaker, educator, keynote and section leader at SAS user group conferences and meetings worldwide; and is the
recipient of 27 "Best" contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® /SQL / Python Consultant, Application Developer, Programmer, Data Analyst, Educator and Author
sasNerd
E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/
Twitter: @sasNerd

27

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/

