
1

SESUG 2022 Paper 187

Offensive Programming:

A Threesome of Error-Throwing Macros

Quentin McMullen, Siemens Healthineers

ABSTRACT

SAS® programming can feel fraught with danger. Each time a program is executed, there is

a risk that an error in the source data or the code will lead to undetected erroneous results.

Offensive programming techniques are designed to decrease that risk by adding code to

detect and report errors as a program runs.

This paper presents three offensive utility macros for runtime validation of SAS jobs:

%DupCk detects duplicate key values in a data set; %Assert detects values in a data set

that are invalid or unexpected; and %CheckRecordCounts detects the accidental deletion of

records.

By increasing the detection rates of common errors, these utilities increase the

programmer’s confidence in their results. Principles of offensive programming are discussed,

as are principles of macro design encountered during the development of the macros.

INTRODUCTION

When I started programming in SAS, I was afraid I would make a mistake. My biggest fear

was I would make a mistake, and I would not detect that mistake until it was “too late.”

“Too late” might mean I had delivered incorrect results to an internal customer, or worse, to

an external customer. I was afraid of the undetected error. To reduce the risk of making an

undetected error, I learned different ways to check my results, such as using the FREQ

procedure or PRINT procedure to produce check tables, and reviewing the SAS log to check

record counts. But I soon realized that most of my methods for checking results were

manual. As a self-aware programmer, I recognized that I was lazy (efficient). I knew that

even if I took the time to review a set of check tables after I developed a program, I wasn’t

likely to repeat that review every time I ran the program. I needed a way to automate my

checks. In time, I learned to automate these checks through the implementation of

offensive programming techniques. This paper presents three offensive macros, designed to

protect against surprises in data and code.

What is offensive programming1? It’s actually a type of defensive programming. If defensive

programming is a collection of techniques employed to handle problems in data, code, and

other surprises in the computing environment, then offensive programming is a subset of

those techniques that say, “if a problem is encountered, generate an error.” Offensive

programming is a way to make sure that unexpected conditions are immediately raised to

the attention of the programmer. A key tenet is that if a program encounters such a

condition, it should “fail loudly,” rather than quietly continue and risk returning incorrect

results (Miner, 2008).

The SAS log is your friend. If SAS detects an error in your code, it will write an error

message to your log (I use the generic term error message, to include actual ERROR:

messages as well as WARNING: messages and even bad NOTE: messages). SAS will often

continue to execute code and generate results despite errors that have been encountered.

As a programmer, you are responsible for reviewing the log after submitting code, to make

sure that SAS has not generated any error messages. Most programmers learn the maxim

that SAS results should not be trusted until the log has been reviewed. Log review is such a

1 https://en.wikipedia.org/wiki/Offensive_programming

2

critical step of the SAS programming process, that many papers have been written about

methods for automating review of the log (see Hughes, 2017 for a review).

While SAS will automatically detect many types of errors in your code, including compile-

time syntax errors and execution-time errors, there are many errors which SAS cannot

detect automatically, which are primarily errors in logic. These are errors that occur when

you have submitted code that is syntactically correct, and the data being processed satisfy

the expectations of the code, but you may have simply written incorrect code, or the data

may not satisfy your expectations. Because SAS cannot know the intent of your code, SAS

cannot detect such errors in logic. As you write code, the intent of your code, and your

expectations regarding the code and data, are defined only in your head. However, you can

write extra code that will verify that the expectations in your head have been satisfied. If

your expectations are not satisfied, then there is an error in your expectations, your code,

or your data. Regardless of the source of the error, the most critical step of error resolution

is error detection. Offensive programming methods in SAS allow you to generate error

messages in the log when logical errors occur.

OFFENSIVE PROGRAMMING IN SAS (NO MACROS YET)

The concept of offensive programming is a native part of the SAS language. While SAS

tends to be quietly fault-tolerant by default, it also provides many options to support the

development of programs that will fail loudly when errors are encountered.

As an example of fault tolerance, consider that in the DATA step, there are many errors that

will result in only a NOTE: being written to the log, or no message at all. Famously, if code

references a variable that does not exist (perhaps because of a typo in a variable name),

rather than generate an error message SAS will create the misspelled variable and write

only a NOTE to the log:

1 data want ;

2 set sashelp.class ;

3 x=NoSuchVar ;

4 run ;

NOTE: Variable NoSuchVar is uninitialized.

To the offensive programmer, this is madness. If code references a variable that does not

exist, why would it not generate an error? Prior to SAS 9.4, the only solace was that at least

a NOTE is generated in the log, and an offensive programmer could choose to treat that

note as an error message. In 9.4, SAS introduced a system option, VARINITCHK, which can

be used to change this NOTE into an actual ERROR:

1 options varinitchk=error;

2

3 data want ;

4 set sashelp.class ;

5 x=NoSuchVar ;

6 run ;

ERROR: Variable NoSuchVar is uninitialized.

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.WANT may be incomplete. When this step was

stopped there were 0 observations and 7 variables.

SAS provides many system options which can make it more likely that mistakes in code (or

data) will generate error messages in the log. Some of my favorites are shown in Table 1.

3

Table 1. Error Handling System Options

System Option Description (from SAS 9.4 Systems Options: Reference)

dkricond=error sets the error flag and writes an error message to the SAS log when a variable is missing
from an input data set during the processing of a DROP=, KEEP=, or RENAME= data set
option

dkrocond=error sets the error flag and writes an error message to the SAS log when a variable is missing
from an output data set during the processing of a DROP=, KEEP=, or RENAME= data set
option

fmterr specifies that when SAS cannot find a specified variable format, it generates an error
message and does not allow default substitution to occur

mergenoby=error specifies that an error message is issued when MERGE processing occurs without an
associated BY statement.

msglevel=i specifies that INFO: notes are written to the log when a MERGE statement would cause
variables to be overwritten

noautocorrect specifies that SAS does not automatically attempt to correct misspelled procedure
names, misspelled procedure keywords, or misspelled global statement names

varinitchk=error specifies that the DATA step stops executing and writes an error message to the SAS log
when a variable is not initialized

varlenchk=error specifies that an error message is issued when the length of a variable that is being
read is larger than the length that is defined for the variable

While the number of such error handling options has grown over time, even with such

options set to their most conservative setting, there are still many log notes which the

offensive programmers would prefer to treat as errors. For example, if a numeric expression

includes a character variable as an argument, SAS will convert the character values to

numeric values (using a default informat), with only a NOTE to the log: “Character values

have been converted to numeric values.” The strict offensive programmer would treat this

note as an error, as it is safer to code an explicit character to numeric conversion rather

than allow SAS to guess that the conversion is intended. For the offensive programmer who

is willing to use undocumented SAS features, there is an undocumented option,

DSOPTIONS=note2err, which will turn this and many other potentially problematic notes

into errors:

1 options dsoptions=note2err ;

2 data want ;

3 x = '1' * 1 ;

ERROR: Character value found where numeric value needed at line 3 column 7.

4 run;

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.WANT may be incomplete. When this step was

stopped there were 0 observations and 1 variables.

The option can be turned off with DSOPTIONS=nonote2err. While DSOPTIONS=note2err is

still undocumented, Andrew Ratcliffe (2009) has published an interesting blog post where he

provides some insights on its use and history. Apparently, it was designed as an internal

option for use by SAS testers.

When SAS detects an error, it notifies the programmer by writing an error message to the

log. An error in the log is the primary way that SAS will “fail loudly.” Through features such

as the system options described above, the SAS language allows the programmer to decide

which conditions should constitute an error. The macros presented below are simply

additional error-detection tools.

4

%DUPCK

Duplicate values can ruin your whole day. When working with SAS data sets, it’s important

to know what variable (or list of variables) identifies a unique record. A PATIENTS data set

might have PATIENTID as a unique identifier; a VISITS data set might have PATIENTID

VISITID as a unique identifier. If somehow your PATIENTS data set has multiple records

with the same PATIENTID, you have a problem. That problem could become magnified as

you work with the data.

One common place where unexpected duplicate values cause problems is the MERGE

statement. When merging two data sets, it is important to know that at least one of the two

data sets is unique by the BY variables used in the merge, because the MERGE statement

does not handle many-to-many merges nicely (Tilanus, 2008).

Early in my programming career, when I realized the importance of unique BY values in a

merge, I learned the habit of using PROC SORT NODUPKEY to confirm that the BY variables

I expected to be unique really were unique. I would sort by the BY variables, without

creating an output data set, and read the log to check that the number of records with

duplicate values was zero. Thus, my log from merging two data sets might look like:

1 *Confirm Patients data set is unique by PatientID ;

2 proc sort nodupkey data=Patients out=_null_ ;

3 by PatientID ;

4 run ;

NOTE: There were 3 observations read from the data set WORK.PATIENTS.

NOTE: 0 observations with duplicate key values were deleted.

5

6 data want ;

7 merge Patients Visits ;

8 by PatientID ;

9 run;

When I reviewed the log, if the PROC SORT NODUPKEY note indicated that one or more

observations with duplicate key values had been deleted, I would know there was a problem

in my data.

Adding PROC SORT NODUPKEY to check for duplicate values was a small step toward

offensive programming, because it added a NOTE to the log which reported the number of

duplicate records. But it would be hard to argue that the note constitutes “Failing Loudly.” I

wasn’t likely to re-read the log note every time I resubmitted the code. I really wanted an

error message in the log if duplicates were detected. As a SAS programmer, an error

message in the log is the best way for SAS to let me know that something has gone wrong.

Luckily, SAS makes it easy to produce user-generated error messages, using the PUT

statement (or PUTLOG statement introduced in version 9). BY-group processing can be used

in the DATA step to check for duplicate values of the BY variable(s). The below step will

check the PATIENTS data set for duplicate values, and will write an error message to the log

if any duplicate values are detected:

*Confirm Patients data set is unique by PatientID ;

data _null_ ;

 set Patients ;

 by PatientID ;

 if not (first.PatientID and last.PatientID) then

 putlog "ERROR: Duplicate records found " PatientID= ;

run ;

5

When that code runs, if there are any records with duplicate values, they will generate an

error in the log, e.g.:

1 data _null_ ;

2 set Patients ;

3 by PatientID ;

4 if not (first.PatientID and last.PatientID) then putlog "ERROR:

Duplicate records found "

4 ! PatientID= ;

5 run ;

ERROR: Duplicate records found PatientID=2

ERROR: Duplicate records found PatientID=2

The below log shows a merge of the PATIENTS and VISITS data sets, with an offensive

DATA _NULL_ step added to confirm that there are no duplicate PatientID values in the

PATIENTS data set:

1 *Confirm the Patients data set is unique by PatientID ;

2 data _null_ ;

3 set Patients ;

4 by PatientID ;

5 if not (first.PatientID and last.PatientID) then putlog "ERROR:

5 ! Duplicate records found " PatientID= ;

6 run ;

NOTE: There were 3 observations read from the data set WORK.PATIENTS.

7

8 data want ;

9 merge Patients Visits ;

10 by PatientID ;

11 run;

When the offensive DATA _NULL_ step runs, it validates my assumption that there are no

duplicate PatientID values in the PATIENTS data set. The absence of error messages in the

log confirms that there are no duplicate BY-values. After I run my code, I don’t need to use

my eyes to read the individual log notes to confirm that 0 duplicates were detected. If my

log has no error messages, then there are no duplicates.

Once I was in the habit of checking for duplicate values, I decided to write a macro that

would generate a DATA _NULL_ step to check for duplicates. As is typical of the macro

language, the benefit of writing a macro is not that it provides some new functionality which

cannot be had from the SAS language alone. The benefit is that it provides me with an easy

way to check for duplicates, because I will need to type less code. Once I have made it easy

to check for duplicates, I am more likely to check for duplicates.

6

The initial version of the macro looked like:

%macro DupCk

 (data

 ,by=

)

;

data _null_ ;

 set &data(keep=&by) ;

 by &by ;

 if not (first.&by and last.&by) then

 put "ERROR: Duplicate records found " &by= ;

run;

%mend DupCk;

The macro is basically a wrapper to generate the DATA _NULL_ step. It is called like

%dupck(Patients, by=PatientID), and if it detects duplicate values, the log will look like:

1 options mprint ;

2 %dupck(Patients, by=PatientID)

MPRINT(DUPCK): data _null_ ;

MPRINT(DUPCK): set Patients(keep=PatientID) ;

MPRINT(DUPCK): by PatientID ;

MPRINT(DUPCK): if not (first.PatientID and last.PatientID) then put

"ERROR: Duplicate records found " PatientID= ;

MPRINT(DUPCK): run;

ERROR: Duplicate records found PatientID=2

ERROR: Duplicate records found PatientID=2

There are important limitations to that initial version. In particular, it cannot handle multiple

BY-variables. The below enhanced version of the macro handles a list of BY-variables, and

does some minimal parameter validation:

%macro DupCk

 (data /* (r) name of data set to be checked for duplicates */

 ,by= /* (r) space-delimited list of BY variables */

 ,out=_null_ /* (o) name of output data set holding duplicates */

)

;

%local lastvar ;

%if %MissingRequiredParameters(data by) %then %goto mexit ;

%*Create a view, to honor any parenthetical options passed with &data ;

data __dupckdata (keep=&by) / view=__dupckdata ;

 set &data ;

run ;

%let lastvar=%sysfunc(scan(&by,-1,%str())) ;

7

data &out ;

 set __dupckdata ;

 by &by ;

 if NOT (first.&lastvar and last.&lastvar) then do ;

 putlog "ERROR: Data set %superq(data) is not unique by &by: " (&by)(=);

 output ;

 end ;

run ;

proc delete data=__dupckdata (memtype=view) ;

run ;

%mexit:

%mend DupCk;

The design of the macro is discussed below, but at its core, it’s still just a wrapper for a

DATA _NULL_ step that uses BY-group processing to detect duplicate values. Invoking the

macro to check for duplicate values before the merge might look like:

%dupck(Patients, by=PatientID)

%dupck(Visits, by=PatientID VisitID)

data want ;

 merge Patients Visits ;

 by PatientID ;

run ;

If that code runs and there are no error messages in the log, I know there are no duplicate

values. The close reader might notice that I added a second call to %DupCk, to check that

the VISITS data set is unique by PatientID VisitID. Strictly speaking this is not necessary for

the success of the MERGE step. But logically, I expect my VISITS data set to be unique by

PatientID and VisitID. It is helpful to confirm this expectation, because if it is not met, there

is either a problem in my data, or a problem in my understanding of my data. In either

case, I would like to be notified of that problem as soon as possible. By making it easy to

check for duplicates, I make it more likely that I will check for duplicates, and thus more

likely that I will detect duplicates when they exist.

MACRO DESIGN ISSUES (AS ILLUSTRATED BY %DUPCK)

Like most macros, the job of %DupCk is to generate some SAS code, in this case a DATA

NULL step which will check for duplicate values of a list of BY-variables. Macros are

primarily tools to be used by SAS programmers, to make it easier to generate SAS code

with less typing. When I develop a macro, I assume that the programmers who will be using

the macro are experienced with the SAS language. If they are not yet experienced with the

SAS language, they should be writing their own SAS code, without adding the complexity of

using the macro language to generate SAS code. That assumption helps guide many macro

design decisions.

MACRO NAMES

Macro names should identify the purpose of the macro. Generally, I choose longer names

that describe the purpose of a macro. I might have been tempted to call this macro

%DuplicateCheck. However, in this case I erred on the side of a shorter name. I did this

because I thought this would be a macro I called often, and if I made it a shorter name, it

would be easier to type. I also liked the symmetry with the IntCk function.

8

PARAMETER TYPES

Keyword macro parameters are better than positional parameters. One benefit of keyword

parameters is the macro can define a default value for the parameters. Almost more

importantly, keyword parameters are easier to use when invoking a macro, because you

don’t need to remember the order of the parameters. SAS functions use positional

parameters, and I often find them annoying. I’m one of those people who can never

remember the order of parameters to TRANWRD() and TRANSTR(). I would rather

remember the name of a parameter than the position of a parameter, because

programmers are used to remembering names (names of data sets, variables, procedures,

etc.).

The only benefit to positional parameters I am aware of is that you do not need to type the

parameter name when invoking the macro. If a macro has only a single positional

parameter, I feel it’s acceptable to use a positional parameter for the primary parameter

(often &data), as there is less burden on the macro user because they do not need to

remember the order of multiple parameters. In the rare case of a macro with multiple

positional parameters where the order does not matter (e.g., because they are arguments

to a commutative operation such as addition), multiple positional parameters might be

acceptable. One nice feature of the macro language is that even if a macro defines a

parameter as positional, it can still be invoked as a keyword parameter. Thus, the following

three calls all succeed, and generate identical SAS code:

%dupck(Patients, by=PatientID)

%dupck(data=Patients, by=PatientID)

%dupck(by=PatientID, data=Patients)

PARAMETER NAMES

Macro parameter names should use terms from the SAS language, for increased ease of

use. When I first learned the macro language, I remember seeing macro calls like

%DoSomething(dsn=mydata). I remember wondering what that DSN meant, until it hit me,

“oh, data set name.” For a brief time, I wrote macros like %DoSomething(dsn=,dsv=). I felt

I had learned the secret parameter-naming convention of macro authors. Then years later I

was lucky to take a macro course taught by Ian Whitlock. He asked me to consider how

much easier my macros would be to use, if I used parameter names that would be obvious

to any SAS programmer. So instead of using DSN as a parameter name for data set name,

use DATA, because the SAS language uses DATA as a parameter name on every PROC step.

Instead of using DSV as parameter for data set variable, use VAR, because every SAS

programmer knows what a VAR statement is. And a BY statement. If I read

%DupCk(mydata, by=id) I have a pretty good idea about what the code generated by the

macro will do, without even looking at the macro definition.

PARAMETER VALIDATION

Some macro developers believe that a macro should have error-handling code (defensive

programming) to validate parameter values passed by a user and prevent any errors caused

by a user passing an invalid value (such as the name of a data set that does not exist) from

generating errors in the log. I disagree. Guided by the belief that macro users should be

experienced SAS programmers, for the most part I think the macro user should be trusted

to interpret most log errors produced by a bad macro call. For example, when invoking

%DupCk I expect that the macro user will pass the name of a data set that exists, and a

BY-variable that exists, and that the data set will be sorted by the BY-variable. What

happens if the user makes a mistake? They will get an error in the log, but one that they

are familiar with, because they are SAS programmers:

9

%dupck(NoSuchData, by=id)

ERROR: File WORK.NOSUCHDATA.DATA does not exist.

NOTE: The SAS System stopped processing this step because of errors.

%dupck(sashelp.class, by=NoSuchVar)

WARNING: The variable NoSuchVar in the DROP, KEEP, or RENAME list has

 never been referenced.

NOTE: Variable NoSuchVar is uninitialized.

ERROR: BY variable NoSuchVar is not on input data set WORK.__DUPCKDATA.

NOTE: The SAS System stopped processing this step because of errors.

%dupck(sashelp.class, by=Sex)

ERROR: BY variables are not properly sorted on data set WORK.__DUPCKDATA.

last=0 Sex=M FIRST.Sex=1 LAST.Sex=1 _ERROR_=1 _N_=1

NOTE: There were 19 observations read from the data set SASHELP.CLASS.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 2 observations read from the data set WORK.__DUPCKDATA.

There would be little benefit to me writing macro code to check that the data set name

passed by the macro user actually names an existing data set, and write a custom error

message if it doesn’t exist, because when the SAS code executes it will do that for me, and

will return an error message that the user already knows how to interpret.

Some might argue that if the input data set passed to %DupCk is not sorted by the

variables listed in the BY parameter, the macro should sort the data set rather than return

an error. But that is not the way the BY statement works in the SAS language. If the macro

changed the sort order of the input data set, many users might see that as an unwanted

side effect of using the macro. What if you want to allow a user to check a data set for

duplicates without having a sorted data set? A possible enhancement to the macro would be

to add a feature to use a hash table to identify duplicate values, as described by Dorfman &

Henderson (2017). Hash tables do not require data to be sorted, but there are trade-offs

between the BY-group approach and the hash table approach. To provide flexibility for

users, we could add a new macro parameter KEY, and make both the KEY parameter and

the BY parameter optional. If the user specifies BY variables, the macro will use BY-group

processing to check for duplicates; if a user specifies KEY variables, it will use a hash table.

Often the most parameter checking I will do is to check that all of the required parameters

are not null. For that, I use a utility macro %MissingRequiredParameters. It is a function-

style macro that takes a list of macro variable names as an argument, prints an error

message to the log if any macro variable has a null value, and returns a count of the

number of macro variables that are null. If the count of null macro variables is greater than

0, the main macro will exit early. The macro definition is:

%macro MissingRequiredParameters

 (paramList /*space-delimited list of required macro parameters*/

)

;

%local

 i

 param_i

 MissingCount /*count of missing parameters*/

 MacroCalledBy /*name of macro that called this macro*/

;

%let MacroCalledBy=%sysmexecname(%sysmexecdepth - 1) ;

10

%let MissingCount=0 ;

%do i=1 %to %sysfunc(countw(¶mList,%str())) ;

 %let param_i=%scan(¶mList,&i,%str()) ;

 %if %eval(%length(%superq(¶m_i))=0) %then %do ;

 %put ERROR: (%nrstr(%%)&MacroCalledBy)

/* */Missing required parameter: %nrstr(&)¶m_i ;

 %let MissingCount=%eval(&MissingCount + 1) ;

 %end;

%end ;

%if &MissingCount %then

 %put ERROR: (%nrstr(%%)&MacroCalledBy) Macro exiting. ;

&MissingCount /*return value*/

%mend MissingRequiredParameters ;

If the invocation of %DupCk does not specify a value for both the DATA parameter and the

BY parameter, it will exit early and write an error message to the log:

1 %dupck(data=Patient)

ERROR: (%DUPCK) Missing required parameter: &by

ERROR: (%DUPCK) Macro exiting.

The decision about how best to check if a macro variable has a null value is surprisingly

complex. See Chung & King (2009) for an excellent discussion of this issue.

VARIABLE LISTS

A SAS BY statement supports multiple BY-variables. If I write a macro with a BY parameter,

it should also support multiple BY-variables, to allow an invocation like: %dupck(Visits,

by=PatientID VisitID). To support this, the macro uses the SCAN function to identify the

name of the last variable on the BY-list, to use in BY-group processing, and uses the

parenthesis notation in the PUT statement that generates the error message: (&by)(=), to

write the value of each BY variable in the error message. One limitation of the current

design is that it expects the list of BY variables to be a space-delimited list of variable

names. While this is the most common type of variable list, SAS does allow variable names

with spaces in them (named literals), such as “My Var”n, which would not be correctly

parsed by the macro.

DATA SET OPTIONS

In SAS a data set name can be passed with options, such as drop= keep= where=. When a

macro has a DATA parameter, ideally it should be able to accept any valid data set

specification, which includes honoring parenthetical options. The user of the macro knows

that the SAS language allows them to specify options for data sets, and macro design

should not prevent them from doing so. Because the macro introduced its own parenthetical

option (keep=&by), it starts by creating a VIEW which honors the user’s options, then adds

the KEEP option. With that hurdle out of the way, the user may pass it a data set name with

a WHERE option like: %dupck(sashelp.zipcode(where=(statecode='CO' and
CountyNm='Denver')),by=zip). An alternative approach for allowing users to generate a

WHERE option would be to add a WHERE parameter to the macro. But with that, the user

would only have the ability to generate a WHERE option; the macro wouldn’t support all the

other data set options available in the SAS language. By accepting options passed in the

standard SAS way, a user could pass a convoluted data set specification such as
%dupck(sashelp.zipcode(firstobs=10 obs=100 rename=(zip=MyZip)

11

where=(statecode='CO' and CountyNm='Denver')),by=MyZip). When a macro has a

DATA parameter, the macro user should be allowed to pass any valid data set specification.

CLEAN UP

Macros should always clean up after themselves, so as to avoid causing side-effects that

might be a problem for the macro user. Potential side-effects to avoid include changing the

user’s system options, and polluting the user’s work library with temporary data sets that

are conceptually internal to the macro. %DupCk cleans up after itself by using the DELETE

procedure to delete the view that was created by the macro, __dupckdata. For more on

testing macros for potential side-effects, see Frank DiIorio’s (2010) macro %WhatChanged.

%ASSERT

%DupCk made it easy for me to detect one specific problem which could cause undetected

errors in my SAS programs: duplicate values of an ID variable which I expect to be unique.

Of course, there are many other types of mistakes which can cause undetected errors;

among the most common problems in DATA step programming are invalid (or unexpected)

values and coding mistakes which lead to surprising results. As an offensive programmer, I

want a way to detect when such mistakes occur and generate an error message in the log.

Luckily, after that macro course I took with Ian Whitlock, he mentioned off-handedly, “I

wish SAS had an ASSERT statement. Someone should write an ASSERT macro.” And I

asked, “What’s an ASSERT statement?”

Many languages have an ASSERT statement, which allows you to state a Boolean expression

which is expected to be true, and if the expression is false, it will generate an error. SAS

does not have an ASSERT statement, but it’s possible to achieve similar functionality.

Consider a simple age calculation2:

data want ;

 set have ;

 Age = (VisitDate - DOB) / 365.25 ;

run ;

What could go wrong? Well, lots. The DOB could be missing, or could be in the future. The

VISITDATE could be missing, or could be in the future. Both DOB and VISITDATE could be

non-missing and within the expected range of values, but the VISITDATE could be before

the DOB, resulting in an embarrassing negative age. One simple check would be to confirm

that the calculated value for AGE is at least 18. This could be done with a conditional

PUTLOG statement:

data want ;

 set have ;

 Age = (VisitDate - DOB) / 365.25 ;

 if Age < 18 then putlog "ERROR: Invalid age " Age= ;

run ;

That will throw an error message if the AGE which is derived is less than 18 (which includes

potential embarrassments like negative values for AGE, and missing values). The Boolean

expression above evaluates whether an invalid value has been computed (Age < 18), and

writes an error to the log if the expression is true. An assertion evaluates whether a valid

value has been computed (Age >= 18), and writes an error to the log if the expression is

false. If SAS had an ASSERT statement, it might look like:

2 This is one simple way to compute age. For a review of alternatives, see Carpenter (2011).

12

data want ;

 set have ;

 Age = (VisitDate - DOB) / 365.25 ;

 assert (Age > 18) ; *Write an error if age is NOT greater than 18 ;

run ;

Not having an ASSERT statement, we can code a simple one line-macro:

%macro assert

 (assertion /* (R) Boolean expression */

 ,msg= /* (O) Message to print to log, if Boolean is false */

)

;

 if NOT (&assertion) then

 putlog "ERROR: Assertion (%superq(assertion)) is FALSE. " &msg;

%mend assert;

Which would be used like:

data want ;

 set have ;

 Age = (VisitDate - DOB) / 365.25 ;

 %assert(Age > 18)

run ;

The macro has a single required positional parameter, ASSERTION, which is a Boolean

expression that the programmer expects to be true. Any valid SAS expression can be

passed as the assertion. It has an optional keyword parameter, MSG, to write a customized

error message to the log. The macro generates a DATA step IF statement to evaluate the

expression, not a macro %IF statement, because it is evaluating a DATA step language

expression, which will usually reference variables in the program data vector. If that

expression is NOT true, the macro writes an error message to the log.

Consider an example where you have a date of birth that is in the future, causing computed

age to be negative:

data want ;

 DOB = "03Nov2101"d ;

 Age = (today() - DOB) / 365.25 ;

 %assert(Age >= 18)

run ;

When the code runs, the asserted expression will evaluate to false, and the assertion will

write an error message to the log:

ERROR: Assertion (Age >= 18) is FALSE.

The classic programming text The Pragmatic Programmer (Hunt & Thomas, 2000) has a

great section on “assertive programming.” Assertions validate data (and code) at runtime,

as code is executing. Assertions can be coded to confirm any expectation (or assumption) a

programmer has about their data. Hunt & Thomas propose a simple rule: “Whenever you

find yourself thinking ‘but of course that could never happen,’ add code to check it.” (p.

122)

It is useful to consider two logical types of assertions: pre-conditions are assertions used to

validate the inputs to some algorithm, and post-conditions are assertions used to validate

the outputs from some algorithm. Consider a slightly different age calculation example,

computing age of a clinical trial participant at an enrollment date. A more extensive use of

assertions might look like:

13

data want ;

 set have ;

 %assert("01Jan1900"d <= DOB <= today(), msg=(ID DOB)(=))

 %assert("01Jan2015"d <= EnrollDate <= "31Dec2016"d

 ,msg=(ID EnrollDate)(=)

)

 Age = (EnrollDate - DOB)/365.25 ;

 %assert(18 <= Age <= 120

 ,msg= "Participant not between 18 and 120 years old: " (ID Age)(=)

)

run ;

Two assertions of pre-conditions are used to validate that each of the inputs to the age

calculation algorithm are within the expected range. One assertion of a post-condition is

used to validate that the computed AGE is within the expected range. All three of the macro

invocations use the MSG parameter to generate a custom error message. Thus, if the AGE

assertion detects an out-of-range age, it will generate an error message like:

ERROR: Assertion (18 <= Age <= 120) is FALSE.

Participant not between 18 and 120 years old: ID=101 Age=-2.001368925

Note that %Assert, like %DupCk, does not provide some new, exciting, complex

functionality which is difficult to code in SAS without the macro language. All it generates is

a simple IF statement! But it makes it easy to code an assertion, and any time you make it

easier for a programmer to code something, it is more likely that they will do it. Perhaps

more importantly, by implementing the concept of an ASSERT statement, it encourages you

to identify all of the expectations you have about your data (and algorithms), and

automatically confirm those expectations every time the program is run. This can provide a

peace of mind which cannot be obtained through the manual review of “check tables” or

data listings, particularly for programs that will be run repeatedly, processing data that

changes over time.

In addition to providing run-time validation, %Assert also serves an additional purpose of

documenting the intent of code. Suppose I am reading code, and come across a MERGE

step like below:

data C ;

 merge A B ;

 by id ;

run ;

Immediately, a number of questions enter my head: is this intended to be a one-to-one

merge, a one-to-many merge, or a (potentially disastrous) many-to-many merge? Should

all of the records in A and B match, or is it expected that there may be mismatches? Of

course, SAS does not care about the intent of code, but programmers do. Compare that

code to the below step, with assertions added:

data C ;

 merge A(in=ina) B(in=inb) ;

 by id ;

 %assert(first.id and last.id)

 %assert(ina and inb)

run ;

Adding the %Assert calls has made it clear that the programmer intends this to be a one-to-

one merge (first assertion) and expects that all records in A and B should match (second

14

assertion). The %Assert calls have made the code more readable. They communicate

information not contained in the main code.

Note that %DupCk is really an example of a specific assertion, that is, asserting that there

are no duplicate values of some variable. I wrote %DupCk years before %Assert. If I had

developed %Assert first, I might have replaced the central IF statement in %DupCk:

if NOT (first.&lastvar and last.&lastvar) then do ;

 put "ERROR: (USER) Data set %superq(data) is not unique by &by: "

 (&by)(=) ;

with a call to %Assert:

%assert(first.&lastvar and last.&lastvar

 ,msg="Data set %superq(data) is not unique by &by: " (&by)(=)

)

McMullen (2012) describes %Assert in more detail, and provides a longer version of the

macro with additional parameters that provide enhanced functionality (e.g., ability to

specify whether false assertions should be reported as an error, warning, or note; limit the

number of log messages written by failed assertions; and create a new variable which flags

records that failed an assertion).

A warning: Once you get in the habit of using assertions, you may develop into what Hunt &

Thomas (2000) refer to as a “paranoid programmer,” one who sees risks in every piece of

code. In this case, “paranoid” is a term of endearment. For example, consider a simple

statement which computes the tax for some item, based on whether the item is taxable, the

tax rate, and the price:

if taxable = 1 then tax = taxrate * price ;

When you see such code, you will start seeing all sorts of things that could go wrong (either

with the data you are processing now, or the data your program will be processing

tomorrow, or next year). It looks like TAXABLE is expected to be a Boolean value, but what

if there are missing values? What if TAXRATE is missing, or negative, or someone enters a

TAXRATE as a percentage rather than a proportion? All of these possibilities risk creating an

embarrassing miscalculation of the TAX for an item. As an offensive programmer, when you

hear a little voice in your head say, “That could never happen,” your reaction will be to code

an assertion, to prove that it never happens, and make sure that when it does happen, your

program will throw an error.

%CHECKRECORDCOUNTS

McMullen & Black (2011) argue that documenting record counts at the end of a SAS job is

an important quality control step, which should be automated. Typically, a SAS program

starts by reading one or more source data sets, and then processes the data in some way,

before creating a final derived data set. It is common for a program to apply inclusion or

exclusion criteria which result in some source records being dropped from the derived data

set. Unfortunately, it is easy to accidentally drop more records than intended (with a

mistake in a WHERE statement, subsetting IF, or inner join), or even accidentally add

records (with a surprise many-to-many Cartesian product join, or multiple OUTPUT

statements in a DATA step). For the offensive programmer, accounting for record counts

provides a level of confidence that if such problems occur, they will be detected.

Consider the following log, from a program which generates a data set for a clinical trial

with 100 records, then drops records with duplicate IDs, missing values for treatment

assignment, or a score that is out of range:

15

1 data study ;

2 do id=1 to 33, 33, 35 to 100 ;

3 site =ceil (ranuni(3)*5) ;

4 tx =round(ranuni(3)) ;

5 score=round(ranuni(3)*100) ;

6 if id IN (3,4) then tx=. ;

7 if id =9 then score=200 ;

8 output ;

9 end ;

10 run ;

NOTE: The data set WORK.STUDY has 100 observations and 4 variables.

11 proc sort nodupkey data=study out=study1 ;

12 by id ;

13 run ;

NOTE: There were 100 observations read from the data set WORK.STUDY.

NOTE: 1 observations with duplicate key values were deleted.

NOTE: The data set WORK.STUDY1 has 99 observations and 4 variables.

14 data study2 ;

15 set study1 ;

16 if not missing(tx) ;

17 run ;

NOTE: There were 99 observations read from the data set WORK.STUDY1.

NOTE: The data set WORK.STUDY2 has 97 observations and 4 variables.

18 data final ;

19 set study2 ;

20 if NOT (0<=score<=100) then delete ;

21 run ;

NOTE: There were 97 observations read from the data set WORK.STUDY2.

NOTE: The data set WORK.FINAL has 96 observations and 4 variables.

Because the SAS log helpfully reports the counts of records in each data set, it is possible to

manually review the log to account for each dropped record. The key word in that sentence

is “manually,” which is anathema to lazy programmers. Any manual task is not likely to be

performed reliably or repeatedly. The accounting can be automated by modifying the

program, so that every time records are dropped in a step, the dropped records are output

to a separate data set. The log below is from the program, after it has been modified to

create output data sets that hold all of the records that are dropped during processing:

1 data study;

2 do ID=1 to 33, 33, 35 to 100 ;

3 site=ceil(ranuni(3)*5) ;

4 tx=round(ranuni(3)) ;

5 score=round(ranuni(3)*100) ;

6 if id IN (3,4) then tx=. ;

7 if id =9 then score=200 ;

8 output ;

9 end ;

10 run ;

NOTE: The data set WORK.STUDY has 100 observations and 4 variables.

16

11 proc sort nodupkey

12 data=study

13 out=study1

14 dupout=drop_dupID (label="Dropped records: Duplicate ID")

15 ;

16 by id;

17 run;

NOTE: There were 100 observations read from the data set WORK.STUDY.

NOTE: 1 observations with duplicate key values were deleted.

NOTE: The data set WORK.STUDY1 has 99 observations and 4 variables.

NOTE: The data set WORK.DROP_DUPID has 1 observations and 4 variables.

18 data

19 study2

20 drop_badTx (label="Dropped records: Missing TX")

21 ;

22 set study1 end=last ;

23 if missing(tx) then output drop_badtx ;

24 if not missing(tx) ;

25 output study2 ;

26 run ;

NOTE: There were 99 observations read from the data set WORK.STUDY1.

NOTE: The data set WORK.STUDY2 has 97 observations and 4 variables.

NOTE: The data set WORK.DROP_BADTX has 2 observations and 4 variables.

27 data

28 final

29 drop_badScore (label="Dropped records: Invalid Score")

30 ;

31 set study2 end=last ;

32 if NOT (0<=score<=100) then do ;

33 output drop_badscore ;

34 delete ;

35 end ;

36 output final ;

37 run ;

NOTE: There were 97 observations read from the data set WORK.STUDY2.

NOTE: The data set WORK.FINAL has 96 observations and 4 variables.

NOTE: The data set WORK.DROP_BADSCORE has 1 observations and 4 variables.

The cost of creating output data sets with dropped records is typically only a few lines of

code. After creating the dropped records data sets, accounting for the record counts

becomes a simple reporting problem. We have the source data set, the final data set, and

separate data sets of dropped records. We expect that the number of records in the final

data set is equal to the difference between the number of records in the source data set and

the number of records that were dropped. If that is not the case, then some records have

been dropped but are not accounted for.

%CheckRecordCounts accepts a list of data sets as a parameter, and then loops over the

list, counting the number of records in each data set. It compares the record count of the

first data set to the sum of the record counts of the remaining data sets. It uses a function-

style macro, %MTCNTOBS (Hamilton, 2001) as a helper to do the actual record counting.

17

%macro CheckRecordCounts

 (data /*(R) space-delimited list of data set names*/

)

;

%local i data_i count_i cumulative ;

%put ;

%put %sysfunc(repeat(-,55)) ;

%put Record Counts ;

%put %sysfunc(repeat(-,55)) ;

%do i=1 %to %sysfunc(countW(&data,%str())) ;

 %let data_i=%scan(&data,&i,%str()) ;

 %*Count the number of records in the ith data set;

 %let count_i=%mtcntobs(data=&data_i) ;

 %*Write to the log report ;

 %put &data_i %sysfunc(repeat(%str()

 ,50 - %length(&data_i) - %length(&count_i)

)) &count_i ;

 %*Decrement the cumulative count ;

 %if &i=1 %then %let cumulative=&count_i ;

 %else %let cumulative=%eval(&cumulative - &count_i) ;

%end;

%put %sysfunc(repeat(-,55)) ;

%put ;

%if &cumulative ne 0 %then

 %put ERROR: Record counts are inconsistent. ;

%mend CheckRecordCounts ;

%CheckRecordCounts writes a little report to the log, listing the number of records in each

data set, e.g.:

39 %CheckRecordCounts(Study Drop_DupID Drop_BadTx Drop_BadScore Final)

--

Record Counts

--

Study 100

Drop_DupID 1

Drop_BadTx 2

Drop_BadScore 1

Final 96

--

If all of the dropped records are not accounted for, an error message is written to the log.

Using the same sample data, if the list of data sets passed to %CheckRecordCounts did not

include Drop_BadScore, the log would show:

18

39 %CheckRecordCounts(Study Drop_DupID Drop_BadTx Final)

--

Record Counts

--

Study 100

Drop_DupID 1

Drop_BadTx 2

Final 96

--

ERROR: Record counts are inconsistent.

Invoking %CheckRecordCounts at the end of a program provides the offensive programmer

with an automated way to confirm that no records have been accidentally deleted (or

created) during processing. Like %Assert, %CheckRecordCounts has a secondary

communicative purpose. The macro call communicates the programmer’s expectation

regarding the steps in their code that drop records, and it documents the number of

dropped records in the log. The practice of writing dropped records to output data sets also

allows further possibilities, such as analysis of the dropped records themselves to identify

any interesting patterns.

LOG ERRORS VS. RETURN CODES

The offensive macros presented above are all designed to write an ERROR message to the

log if a problem is detected (duplicate values, a failed assertion, or a lost record). Such

user-generated log messages are useful because the SAS log is the critical information

source for understanding whether or not a SAS submission was successful. There are some

authors, such as Hughes (2016), who argue that there are benefits to SAS code modules

employing return codes to indicate when an error has been encountered, either in addition

to log messages or as an alternative to log messages. Hughes points out that use of return

codes can allow the design of dynamic programs which can not only detect errors but can

react to them (re-submitting code that failed, or submitting an alternative algorithm). For

those who prefer to use return codes when implementing offensive programming, the

macros presented here could easily be adapted to set a return code. For example,

%ASSERT could be adapted so that a false assertion sets the SYSCC macro variable used to

store the return code for a SAS job:

%macro assert(assertion, msg=) ;

 if NOT (&assertion) then do ;

 putlog "ERROR: Assertion (%superq(assertion)) is FALSE." &msg ;

 call symputx("SYSCC","9","G") ;

 end ;

%mend assert ;

The offensive programming approach recommends that programs fail “loudly.” You are free

to decide what “loudly” means to you. For some people, loudly means when a program fails

there is an error message in the log. For others, failing loudly might mean ending with a

non-zero return code. For others yet, failing loudly might mean immediately aborting the

SAS session.

CONCLUSION

Programs will fail. You will not be the first programmer in the world who will write a

program that cannot fail. Failure is always an option.

19

Programs that fail loudly are not a problem. The failure is detected when it occurs, and can

be investigated and resolved. Programs that fail quietly are a nightmare, particularly if they

quietly generate erroneous results. Such quiet failures can lead to undetected errors making

their way into results, reports, and decisions.

The offensive programming macros presented in this paper provide an automated defense

against undetected errors in your code and data. They encourage you to define your

expectations about your data and algorithms, and they validate that those expectations are

satisfied every time your program runs. By increasing the likelihood that errors will be

detected, they increase your confidence in your results.

REFERENCES

Carpenter, A. (2011). “Your Age In People Years: Not All Formulas Are the Same.”

Proceedings of the Pharmaceutical SAS Users Group 2011 Conference. Avaialble at

https://pharmasug.org/proceedings/2011/CC/PharmaSUG-2011-CC20.pdf.

Chung, C.Y. & King, J. (2009). “Is This Macro Parameter Blank?” Proceedings of the SAS

Global Forum 2009 Conference. Available at

https://support.sas.com/resources/papers/proceedings09/022-2009.pdf.

DiIorio, F. (2010). “%whatChanged: A Tool for the Well-Behaved Macro.” Proceedings of the

SouthEast SAS Users Group 2010 Conference. Available at

http://analytics.ncsu.edu/sesug/2010/BB01.DiIorio.pdf.

Dorfman, P.M. & Henderson, D. (2017). “Beyond Table Lookup: The Versatile SAS Hash

Object.” Proceedings of the SAS Global Forum 2017 Conference. Available at

http://support.sas.com/resources/papers/proceedings17/0821-2017.pdf.

Hamilton, J. (2001). “How Many Observations Are In My Data Set?” Proceedings of the SAS

Users Group International 26th Conference. Available at

http://www2.sas.com/proceedings/sugi26/p095-26.pdf.

Hughes, T.M. (2016). SAS Data Analytic Development: Dimensions of Software Quality.

Hoboken, NJ: John Wiley & Sons, Inc.

Hughes, T.M. (2017). “Pinching Off Your SAS Log: Adapting from Loquacious to Laconic

Logs To Facilitate Near-Real Time Log Parsing, Performance Analysis, and Dynamic, Data-

Driven Design and Optimization.” Proceedings of the SouthEast SAS Users Group 2017

Conference. Available at http://analytics.ncsu.edu/sesug/2017/SESUG2017_Paper-

209_Final_PDF.pdf.

Hunt, A. & Thomas, D. (2000). The Pragmatic Programmer. Reading, MA: Addison-Wesley.

McMullen, Q. & Black, J. (2011). “Don’t Lose Your Data! Tracking and Reporting on Dropped

Records.” Proceedings of the NorthEast SAS Users Group 2011 Conference. Available at:

https://www.lexjansen.com/nesug/nesug11/ds/ds06.pdf.

McMullen, Q. (2012). “%Assert() Your Way To Sleep-filled Nights: A One Line Data

Validation Macro.” Proceedings of the NorthEast SAS Users Group 2012 Conference.

Available at https://www.lexjansen.com/nesug/nesug12/cc/cc31.pdf.

Miner, A. (2008). “Fail Early, Fail Loudly.” Retrieved from

http://oncodingstyle.blogspot.com/2008/10/fail-early-fail-loudly.html.

Ratcliffe, A. (2009). “NOTE: More About NOTE2ERR (a.k.a. Be Of Good Type).” Retrieved

from http://www.notecolon.info/2009/10/note-more-about-note2err-aka-be-of-good.html.

SAS Institute Inc. (2016). SAS 9.4 System Options: Reference, Fifth Edition. Cary, NC: SAS

Institute Inc.

https://pharmasug.org/proceedings/2011/CC/PharmaSUG-2011-CC20.pdf
https://support.sas.com/resources/papers/proceedings09/022-2009.pdf
http://analytics.ncsu.edu/sesug/2010/BB01.DiIorio.pdf
http://support.sas.com/resources/papers/proceedings17/0821-2017.pdf
http://www2.sas.com/proceedings/sugi26/p095-26.pdf
http://analytics.ncsu.edu/sesug/2017/SESUG2017_Paper-209_Final_PDF.pdf
http://analytics.ncsu.edu/sesug/2017/SESUG2017_Paper-209_Final_PDF.pdf
https://www.lexjansen.com/nesug/nesug11/ds/ds06.pdf
https://www.lexjansen.com/nesug/nesug12/cc/cc31.pdf
http://oncodingstyle.blogspot.com/2008/10/fail-early-fail-loudly.html
http://www.notecolon.info/2009/10/note-more-about-note2err-aka-be-of-good.html

20

Tilanus, E.W. (2008). “Set, Merge, and Beyond.” Proceedings of the SAS Global Forum 2008

Conference. Available at http://www2.sas.com/proceedings/forum2008/167-2008.pdf.

ACKNOWLEDGMENTS

I am grateful to the following people for taking the time to provide feedback on a draft of

this paper: Tom Arnold; Elizabeth Axelrod; Scott Bass; Ron Fehd; and John King. Any

remaining mistakes are of course my own.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Quentin McMullen

Siemens Healthineers

quentin.mcmullen@siemens-healthineers.com

qmcmullen@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/forum2008/167-2008.pdf

