
1

SESUG 2022 Paper 157

Leveraging the CONTENTS PROCEDURE for easier SET

statements

Tamar Roomian, MS MPH, Stryker Neurovascular

ABSTRACT

When setting together multiple data sets in the data step, two common problems can arise.

First, the data sets can share variable names in common that are of different datatypes,

resulting in error messages in the log. The error messages list which variables are both

numeric and character, but fail to mention for which data sets, making it difficult for the

user to resolve the issue using the log messages alone. Second, the data sets can share

character variables of different lengths, which results in truncation of data when set

together. The SAS Institute has published a macro program, %union, to combine data sets

that have variables in common of different lengths, however it can only be used for two

data sets at a time, and it does not account for differences in case or format length. When

joining more than two data sets that contain hundreds of variables in common, resolving

these discrepancies becomes time consuming and tedious. This paper will demonstrate two

macro programs that both take advantage of the OUT statement of the CONTENTS

procedure. The first generates an easy-to-read table of all variables in common across the

data sets that have mismatched datatypes and lists which type is in which data set. The

second takes the maximum length and maximum format length, and generates code saved

in a macro variable to be used in the data step. Together, these two programs make setting

multiple data sets in the data step faster, easier, and with less programming.

INTRODUCTION

When setting together multiple data sets in the data step, two common problems can arise:

First, the data sets can share variables in common that are of different datatypes resulting

in error messages in the log.

Second, the data sets can share variables of different lengths, which results in truncation of

data.

The SAS Institute has a macro program %union to combine data sets that have variables in

common of different lengths (The SAS Institute, 2020), however it can only be used for two

data sets at a time, does not account for differences in variable name case or format length.

To illustrate, three small, simple data sets will be used (dataset1-dataset3). Each dataset

has three variables:

• name

• dob

• height

2

The following program can be used to create the three datasets needed:

data work.dataset1;

 length name $3;

 input name $ dob mmddyy10. height;

 format name $3. dob mmddyy10.;

 datalines;

Bob 12/05/1988 69

Sam 05/18/1978 72

Jan 04/23/1992 62

;

run;

data work.dataset2;

 length name $9 dob $10;

 input name $ dob $ height;

 format name $10. dob $10. ;

 datalines;

Alex 01/13/1961 70

David 10/06/1998 67

Christine 09/19/1981 65

;

run;

data work.dataset3;

 length name $10 height $2;

 input name $ dob mmddyy10. height $;

 format name $10. dob mmddyy10. height $2.;

 datalines;

Jared 02/05/2000 75

Alessandra 06/29/1975 66

Isabella 04/07/1993 60

;

run;

Name is a character variable in the three data sets but of different lengths. Dob represents

date of birth. It is a numeric variable in dataset1-dataset2 but character in dataset3. Height

is a number value. It is a character variable in dataset3 but numeric in dataset1 and

dataset2.

When the data is set together in the DATA step, the following messages appear in the log:

data combine;

set dataset1 dataset2 dataset3;

ERROR: Variable dob has been defined as both character and numeric.

ERROR: Variable height has been defined as both character and numeric.

run;

The error does not tell us which type is in which data set, leaving the programmer to

manually check.

After resolving the errors, the following warning appears:

WARNING: Multiple lengths were specified for the variable name by input data set(s). This

can cause truncation of data.

3

When joining more than two data sets that contain hundreds of variables in common,

resolving these discrepancies becomes time consuming and tedious. This paper will

demonstrate two macro programs that both take advantage of the OUT statement of the

CONTENTS Procedure.

A MACRO PROGRAM TO RECONCILE DIFFERENT DATATYPES ACROSS

MULTIPLE DATA SETS

The first macro program, ‘type,’ requires one argument. List the data sets with the same

variables in the %let dsn= statement, separated by spaces. The data sets must be in the

work library.

First, the number of data sets is counted and assigned to the dsn_count macro variable.

/*list data sets in work library in %let dsn= statement*/

%let dsn= ;

%let dsn_count= %sysfunc(countw(&dsn));

Next, a do loop and OUT statement in the CONTENTS procedure creates data sets of meta data with the
suffix _c:

%macro type;

%do i=1 %to &dsn_count;

proc contents data=%scan(&dsn, &i) noprint out= %scan(&dsn,

&i)_c;

run;

%end;

quit;

The meta data is set together. Only the data set name, the variable names, and the data

type are kept. The variable names are made lowercase to resolve any case differences that

may exist.

data varlist;

set

 %do j=1 %to &dsn_count;

 %scan(&dsn, &j)_c (keep=memname name type)

 %end;

 ;

name=lowcase(name);

run;

The SQL Procedure is used to count the number of distinct data types for each variable

name. A value of 2 means both character and numeric exist.

proc sql;

create table match as

select

name

, count (distinct type) as match

from varlist

group by name

;

quit;

4

A format is created to make the values of type clear to the user.

proc format;

value type 1="Num"

 2="Char"

;

run;

PROC SQL is used to create a table that has a row for each variable name and column for

each data set. Each cell designates if the variable for that data set is character or numeric.

/*table with all variables and data set types*/

proc sql;

create table compare as

select

A.name as variable

 %do k=1 %to &dsn_count;

 , %scan(&dsn, &k)_c.type as %scan(&dsn, &k) format=type.

 %end;

, match

from (select distinct name from varlist) as A

 %do m=1 %to &dsn_count;

left join %scan(&dsn, &m)_c on lowcase(%scan(&dsn,

&m)_c.name)=A.name

 %end;

left join match on A.name=match.name

;

quit;

Finally, the table is limited only to variables that exist as both numeric and character:
title "Variables with mismatching data types";

proc print data=compare;

where match>1;

run;

title;

%mend;

Using the example data sets, the macro can be called:

%let dsn=dataset1 dataset2 dataset3;

%let dsn_count= %sysfunc(countw(&dsn));

%type;

The result from our example datasets is as follows:

Obs variable dataset1 dataset2 dataset3 match

1 dob Num Char Num 2

2 height Num Num Char 2

5

This table is much clearer than manually checking each data set. The programmer can see

that dob is a character variable in dataset2 and height is a character variable in dataset3.

Now, the programmer can decide which variables in which data sets should be converted

from numeric to character and vice versa.

Note that the program does not specify which variables to be converted or which format to

use. That is up to the discretion of the programmer.

To continue the example, the following program is submitted to resolve the data type

discrepancies:

data dataset2a;

set dataset2;

dob2=input(dob, mmddyy10.);

format dob2 mmddyy10.;

drop dob;

rename dob2=dob;

run;

data dataset3a;

set dataset3;

height2=input(height, 8.);

drop height;

rename height2=height;

run;

data combine;

set dataset1 dataset2a dataset3a;

run;

After setting the data together, now a warning about data truncation appears in the log:

WARNING: Multiple lengths were specified for the variable name by input data set(s). This can

 cause truncation of data.

The PRINT Procedure reveals that the name variable was truncated:

Obs name dob height

1 Bob 12/05/1988 69

2 Sam 05/18/1978 72

3 Jan 04/23/1992 62

4 Ale 01/13/1961 70

5 Dav 10/06/1998 67

6 Chr 09/19/1981 65

7 Jar 02/05/2000 75

8 Ale 06/29/1975 66

9 Isa 04/07/1993 60

6

This can be resolved by a macro program in the next section.

A MACRO PROGRAM TO RESOLVE MULTIPLE LENGTHS WHEN

SETTING MULTIPLE DATA SETS

As before, the data sets must be in the work library. In addition, variables of the same

name must be the same type prior to setting. The macro program takes two arguments

1. listing the data sets in the %let dsn= statement

2. a name for the output data set in the %let out= statement

The number of data sets is counted and saved in the macro variable dsn_count.

The macro program takes advantage of the OUT statement of PROC CONTENTS. However,

we only need meta data on character variables, so the output is restricted to type=2.

%let dsn= ;

%let dsn_count= %sysfunc(countw(&dsn));

%let out= ;

%macro union ;

%do i=1 %to &dsn_count;

 proc contents data=%scan(&dsn, &i) noprint out=out&i(keep=name type

format length where=(type=2));

 run;

%end;

The outputted data sets (called “out”) are set together to create one dataset with multiple

rows per variable name per length. The lowcase function ensures that any existing case

discrepancies are resolved.

data variable_list;

set out1-out&dsn_count;

name=lowcase(name);

run;

PROC SQL is used to select the maximum length for each variable name, use this

information to write the SAS program language for assigning length and format in the select

statement, and save each into macro variables &length and &format.

proc sql noprint;

select

cat("length ", name, "$ ", max(length), ";") as length

, cat("format ", name, "$", max(length), ".", ";") as format

into :length separated by " ", :format separated by " "

from variable_list

group by name

;

quit;

7

The macro variables are called in the final set statement to assign the maximum length and

maximum format length when combining the data sets.

data &out;

&length

&format

set &dsn;

run;

%mend;

%union;

After the program is called, the warning of multiple lengths and truncation of data will no

longer appear in the log.

%let dsn=dataset1 dataset2a dataset3a;

%let dsn_count= %sysfunc(countw(&dsn));

%let out=combine

%union;

PROC PRINT confirms that the name variable appears as expected:

Obs name dob height

1 Bob 12/05/1988 69

2 Sam 05/18/1978 72

3 Jan 04/23/1992 62

4 Alex 01/13/1961 70

5 David 10/06/1998 67

6 Christine 09/19/1981 65

7 Jared 02/05/2000 75

8 Alessandra 06/29/1975 66

9 Isabella 04/07/1993 60

CONCLUSION

The meta data generated by the OUT= statement of PROC CONTENTS can be leveraged to

resolve two common problems when setting multiple data sets sharing the same variables:

variables of different types and variables of different lengths.

REFERENCES

The SAS Institute. 2020. “Sample 33407: Combining Data Sets Containing Character

Variables of Different Lengths.” Accessed March 11, 2022.

https://support.sas.com/kb/33/407.html.

https://support.sas.com/kb/33/407.html

8

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Tamar Roomian

tamar.roomian@stryker.org

