
SESUG 2022 Paper 112

Demystifying PROC SQL Join Algorithms

Kirk Paul Lafler, sasNerd

Abstract
When it comes to performing PROC SQL joins, users supply the names of the tables for joining along with the join conditions,
and the PROC SQL optimizer determines which of the available join algorithms to use for performing the join operation.
Attendees learn about the different types of join algorithms and explore nested loop (brute-force), sort-merge, index, and hash
join methods along with selected options to control processing.

Introduction
The SQL procedure is a simple and flexible tool for joining tables of data together. Certainly many of the join techniques can be
accomplished using other methods, but the simplicity and flexibility found in the SQL procedure makes it especially interesting,
if not indispensable, as a tool for the information practitioner. This paper presents the importance of joins, the join algorithms,
how joins are performed without a WHERE clause, with a WHERE clause, using table aliases, and with three tables of data.

Why Join Anyway?
As relational database systems continue to grow in popularity, the need to access normalized data stored in separate tables
becomes increasingly important. By relating matching values in key columns in one table with key columns in two or more
tables, information can be retrieved as if the data were stored in one huge file. Consequently, the process of joining data from
two or more tables can provide new and exciting insights into data relationships.

SQL Joins
A join of two or more tables provides a means of gathering and manipulating data in a single SELECT statement. Joins are
specified on a minimum of two tables at a time, where a column from each table is used for the purpose of connecting the two
tables using a WHERE clause. Typically, the tables’ connecting columns have "like" values and the same datatype attributes
since the join's success is often dependent on these values.

Example Tables
A relational database is simply a collection of tables. Each table contains one or more columns and one or more rows of data.
The examples presented in this paper apply an example database consisting of three tables: CUSTOMERS, MOVIES, and
ACTORS. Each table appears below.

 CUSTOMERS

CUST_NO NAME CITY STATE
11321 John Smith Miami FL
44555 Alice Jones Baltimore MD
21713 Ryan Adams Atlanta GA

 MOVIES

CUST_NO MOVIE_NO RATING CATEGORY
44555 1011 PG-13 Adventure
21713 3090 G Comedy
44555 2198 G Comedy
37753 4456 PG Suspense

 ACTORS

MOVIE_NO LEAD_ACTOR SUPPORTING_ACTOR
1011 Mel Gibson Sophie Marceau
2198 Chevy Chase Beverly D’Angelo
3090 Sylvester Stallone Talia Shire

Demystifying PROC SQL Join Algorithms, continued SESUG 2022

2

PROC SQL Join Algorithms
When it comes to performing PROC SQL joins, users supply the names of the tables for joining along with the join conditions,
and the PROC SQL optimizer determines which of the available join algorithms to use for performing the join operation. There
are four algorithms used in the process of performing a join:

✓ Nested Loop – A nested loop join algorithm may be selected by the SQL optimizer when processing small tables of
data where one table is considerably smaller than the other table, the join condition does not contain an equality
condition, first row matching is optimized, or using a sort-merge or hash join has been eliminated.

✓ Sort-Merge – A sort-merge join algorithm may be selected by the SQL optimizer when the tables are small to medium

size and an index or hash join algorithm have been eliminated from consideration.

✓ Index – An index join algorithm may be selected by the SQL optimizer when indexes created on each of the columns
participating in the join relationship will improve performance.

✓ Hash – A hash join algorithm may be selected by the SQL optimizer when sufficient memory is available to the system,

and the BUFFERSIZE option is large enough to store the smaller of the tables into memory.

Joining Two Tables with a WHERE Clause
Joining two tables together is a relatively easy process in SQL. To illustrate how a join works, a two-table join is linked in the
following diagram.

 CUSTOMERS MOVIES

✓Cust_no ✓Cust_no

 Name Movie_no

 City Rating

 State Category

The following SQL code references a join on two tables with CUST_NO specified as the connecting column.

PROC SQL ;
 SELECT *
 FROM CUSTOMERS, MOVIES
 WHERE CUSTOMERS.CUST_NO = MOVIES.CUST_NO ;
QUIT ;

In this example, tables CUSTOMERS and MOVIES are used. Each table has a common column, CUST_NO which is used to
connect rows together from each when the value of CUST_NO is equal, as specified in the WHERE clause. A WHERE clause
restricts what rows of data will be included in the resulting join.

Cartesian Product Joins
When a WHERE clause is omitted, all possible combinations of rows from each table is produced. This form of join is known as
the Cartesian Product. Say for example you join two tables with the first table consisting of 10 rows and the second table with 5
rows. The result of these two tables would consist of 50 rows. Very rarely is there a need to perform a join operation in SQL
where a WHERE clause is not specified. The primary importance of being aware of this form of join is to illustrate a base for all
joins. Visually, the two tables would be combined without a corresponding WHERE clause as illustrated in the following
diagram. Consequently, no connection between common columns exists.

 CUSTOMERS MOVIES

 Cust_no Cust_no

 Name Movie_no

 City Rating

 State Category

Demystifying PROC SQL Join Algorithms, continued SESUG 2022

3

To inspect the results of a Cartesian Product, you could submit the same code as before but without the WHERE clause.

PROC SQL;
 SELECT *
 FROM CUSTOMERS, MOVIES;
QUIT;

Table Aliases
Table aliases provide a "short-cut" way to reference one or more tables within a join operation. One or more aliases are
specified so columns can be selected with a minimal number of keystrokes. To illustrate how table aliases in a join works, a two-
table join is linked in the following diagram.

 MOVIES M

 Cust_no ACTORS A

✓Movie_no ✓Movie_no

 Rating Lead_actor

 Category

The following SQL code illustrates a join on two tables with MOVIE_NO specified as the connecting column. The table aliases
are specified in the SELECT statement as qualified names, the FROM clause, and the WHERE clause.

PROC SQL;
 SELECT M.MOVIE_NO,
 M.RATING,
 A.LEADING_ACTOR
 FROM MOVIES M, ACTORS A
 WHERE M.MOVIE_NO = A.MOVIE_NO;
QUIT;

Joining Three Tables
In an earlier example, you saw where customer information was combined with the movies they rented. You may also want to
display the leading actor of each movie along with the other information. To do this, you will need to extract information from
three different tables: CUSTOMERS, MOVIES, and ACTORS.

A join with three tables follows the same rules as in a two-table join. Each table will need to be listed in the FROM clause with
appropriate restrictions specified in the WHERE clause. To illustrate how a three table join works, the following diagram should
be visualized.

 CUSTOMERS MOVIES

✓Cust_no ✓Cust_no

 Name ✓Movie_no

 City Rating

 State Category

 ACTORS

✓Movie_no

 Lead_actor

Demystifying PROC SQL Join Algorithms, continued SESUG 2022

4

The following SQL code references a join on three tables with CUST_NO specified as the connecting column for the CUSTOMERS
and MOVIES tables, and MOVIE_NO as the connecting column for the MOVIES and ACTORS tables.

PROC SQL ;
 SELECT C.CUST_NO,
 M.MOVIE_NO,
 M.RATING,
 M.CATEGORY,
 A.LEADING_ACTOR
 FROM CUSTOMERS C,
 MOVIES M,
 ACTORS A
 WHERE C.CUST_NO = M.CUST_NO
 AND M.MOVIE_NO = A.MOVIE_NO ;
QUIT ;

Outer Joins
Specifically, a join is a process of relating rows in one table with rows in another. But occasionally, you may want to include
rows from one or both tables that have no related rows. This concept is referred to as row preservation and is a significant
feature offered by the outer join construct.

There are operational and syntax differences between inner (natural) and outer joins. First, the maximum number of tables that
can be specified in an outer join is two (the maximum number of tables that can be specified in an inner join is 32). Like an inner
join, an outer join relates rows in both tables. But this is where the similarities end because the result table also includes rows
with no related rows from one or both of the tables. This special handling of “matched” and “unmatched” rows of data is what
differentiates an outer join from an inner join.

An outer join can accomplish a variety of tasks that would require a great deal of effort using other methods. This is not to say
that a process similar to an outer join can not be programmed – it would probably just require more work. Let’s take a look at a
few tasks that are possible with outer joins:

• List all customer accounts with rentals during the month, including customer accounts with no purchase activity.

• Compute the number of rentals placed by each customer, including customers who have not rented.

• Identify movie renters who rented a movie last month, and those who did not.

Another obvious difference between an outer and inner join is the way the syntax is constructed. Outer joins use keywords
such as LEFT JOIN, RIGHT JOIN, and FULL JOIN, and has the WHERE clause replaced with an ON clause. These distinctions help
identify outer joins from inner joins.

Finally, specifying a left or right outer join is a matter of choice. Simply put, the only difference between a left and right join is
the order of the tables they use to relate rows of data. As such, you can use the two types of outer joins interchangeably and is
one based on convenience.

Exploring Outer Joins
Outer joins process data from two tables differently than inner joins. In this section an outer join will be illustrated. The
following code example illustrates a left outer join to identify and match movie numbers from the MOVIES and ACTORS tables.
The resulting output would contain all rows for which the SQL expression, referenced in the ON clause, matches both tables
and retaining all rows from the left table (MOVIES) that did not match any row in the right (ACTORS) table. Essentially the rows
from the left table are preserved and captured exactly as they are stored in the table itself, regardless if a match exists.

Demystifying PROC SQL Join Algorithms, continued SESUG 2022

5

SQL Code

PROC SQL;
 SELECT movies.movie_no, leading_actor, rating
 FROM MOVIES
 LEFT JOIN
 ACTORS
 ON movies.movie_no = actors.movie_no;
QUIT;

The result of a Left Outer join is illustrated by the shaded area (A and AB) in the following Venn diagram.

The following right outer join matches movie numbers from the MOVIES and ACTORS tables. The result of a right join contains
the rows that match the SQL expression, referenced in the ON clause, plus the unmatched rows from the right (ACTORS) table.

SQL Code

PROC SQL;
 SELECT movies.movie_no, actor_leading, rating
 FROM MOVIES
 RIGHT JOIN
 ACTORS
 ON movies.movie_no = actors.movie_no;
QUIT;

The result of a Right Outer join is illustrated by the shaded area (AB and B) in the following Venn diagram.

The final full outer join matches the movie numbers from the MOVIES and ACTORS tables. The resulting output contains all
rows matching the SQL expression, referenced in the ON clause with matches in both tables (is true), all the unmatched rows
from the left (MOVIES) table, and all the unmatched rows from the right (ACTORS) table.

SQL Code

PROC SQL;
 SELECT movies.movie_no, actor_leading, rating
 FROM MOVIES
 FULL JOIN
 ACTORS
 ON movies.movie_no = actors.movie_no;
QUIT;

Demystifying PROC SQL Join Algorithms, continued SESUG 2022

6

The result of a Full Outer join is illustrated by the shaded area (A, AB, and B) in the following Venn diagram.

Conclusion
The SQL procedure provides a powerful way to join two or more tables of data. It's easy to learn and use. More importantly,
since the SQL procedure follows the ANSI (American National Standards Institute) guidelines, your knowledge is portable to
other platforms and vendor implementations. The simplicity and flexibility of performing joins with the SQL procedure makes it
an especially interesting, if not indispensable, tool for the information practitioner.

References
Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2013), “Demystifying PROC SQL Join Algorithms,” Kansas City SAS® Users Group (KCASUG) 1-Day Conference,
sasNerd, Spring Valley, CA, USA.

Lafler, Kirk Paul (2013), “Demystifying PROC SQL Join Algorithms,” South Central SAS® Users Group (SCSUG) Conference,
sasNerd, Spring Valley, CA, USA.

Lafler, Kirk Paul (2013). PROC SQL: Beyond the Basics Using SAS, Second Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2012), “Demystifying PROC SQL Join Algorithms,” North East SAS® Users Group (NESUG) Conference, sasNerd,
Spring Valley, CA, USA.

Lafler, Kirk Paul (2012), “Demystifying PROC SQL Join Algorithms,” MidWest SAS® Users Group (MWSUG) Conference, sasNerd,
Spring Valley, CA, USA.

Lafler, Kirk Paul (2012), “Demystifying PROC SQL Join Algorithms,” Western Users of SAS® Software (WUSS) Conference,
sasNerd, Spring Valley, CA, USA.

Lafler, Kirk Paul (2012), “Powerful, But Sometimes Hard-to-find PROC SQL Features,” Iowa SAS® Users Conference, sasNerd,
Spring Valley, CA, USA.

Lafler, Kirk Paul (2011), “Powerful and Sometimes Hard-to-find PROC SQL Features,” PharmaSUG 2011 Conference, sasNerd,
Spring Valley, CA, USA.

Lafler, Kirk Paul (2010), “Exploring Powerful Features in PROC SQL,” SAS Global Forum (SGF) Conference, sasNerd, Spring Valley,
CA, USA.

Lafler, Kirk Paul (2008), “Kirk’s Top Ten Best PROC SQL Tips and Techniques,” Wisconsin Illinois SAS Users Conference (June 26th,
2008), sasNerd, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Exploring the Undocumented PROC SQL _METHOD Option,” Proceedings of the SAS Global Forum (SGF)
2008 Conference, sasNerd, Spring Valley, CA, USA.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG 2007
Conference, sasNerd, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings of the SAS
Global Forum (SGF) 2007 Conference, sasNerd, Spring Valley, CA, and The Bedford Group, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Acknowledgments
The author extends his thanks to the SESUG 2022 Conference Committee, particularly the Learning SAS I Section Chairs, Mel
Alexander and Josh Horstman, for accepting my abstract and paper; the SESUG 2022 Executive Committee for organizing and
supporting a “live” conference event; SAS Institute Inc. for providing SAS users with wonderful software; and SAS users
everywhere for being the nicest people anywhere!

Demystifying PROC SQL Join Algorithms, continued SESUG 2022

7

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

Author Information
Kirk Paul Lafler is a SAS consultant, application developer, and programmer; lecturer and adjunct professor at San Diego State
University; an advisor and adjunct professor at the University of California San Diego Extension; and teaches SAS, SQL, Python
and Excel courses, workshops, and webinars to users around the world. Kirk has been a SAS user since 1979 and is the author of
several books including, PROC SQL: Beyond the Basics Using SAS, Third Edition (SAS Press. 2019) along with papers and articles
on a variety of SAS topics. Kirk has also been selected as an Invited speaker, educator, keynote, and section leader at SAS
conferences; and is the recipient of 27 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® / SQL / Python Consultant, Application Developer, Programmer, Data Analyst, Educator and Author

E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/

Twitter: @sasNerd

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/

