
1

SESUG 2022 Paper 184

REDCap®: Your SAS® Friend For

Electronic Health Record Manual Abstraction

Brooke Ellen Delgoffe, Marshfield Clinic Health System, Marshfield, WI

Steffani Roush, Marshfield Clinic Health System, Marshfield, WI

ABSTRACT

This paper and presentation will demonstrate the utility of REDCap® during abstraction of

electronic health record (EHR) data. By utilizing REDCap, we can structure our abstraction

forms to minimize entry errors and save time; all in a way that works well with SAS® and

allows electronic data transfer using a secure method. REDCap allows SAS to query against

it using an API for easy data exchange. This paper will also feature an advanced export

macro that automatically downloads the data dictionary and creates a labeled SAS data set

(complete with labels and a format library based on the REDCap data dictionary). Special

data concerns when using REDCap for housing PHI and methods for interfacing with an EHR

will be reviewed with solutions presented.

INTRODUCTION

The healthcare field has long had its challenges with making data available electronically.

Even with the advent of patient portals, mobile applications, and web-based care there are

still impediments with the utility of the data coming out of these electronic records. As the

name suggests, the Electronic Health Record has a primary use in providing medical care. In

many cases, the inability to get at information electronically is specifically to protect against

access to EHR data for non-patient care reasons or just not a priority to care teams.

While not an EHR’s primary use, routine processing of data exists for quality improvement,

reporting, and research. In a multi-faceted healthcare system, like Marshfield Clinic Health

System, these direct sources of EHR data are often paired with survey data, dental data,

and outside data (like registries) before being ready for research. When all this data comes

together, you may think that a full picture must be available, but often times it takes a

skilled team of abstractors to complete the process. Manual review of EHR records to pull

out data not available electronically, perform quality assurance, and reconcile data between

sources is often necessary.

Data used for research must also undergo approval by an internal review board (IRB) and

meet strict minimum necessary guidelines in regards to viewing and utilizing protected

health information. In prospective studies, enrolling participants often includes a consent

process and subsequent survey data collection. Generally, specific tools change for each

study performed and conclude with an archival process.

REDCap® defines it’s self as a “secure web application for building and managing online

surveys and databases. While REDCap can be used to collect virtually any type of data in

any environment (including compliance with 21 CFR Part 11, FISMA, HIPAA, and GDPR), it is

specifically geared to support online and offline data capture for research studies and

operations” (Harris, et al., 2009). REDCap is a solution for many research data needs

including secure data storage, survey data collection, and secure correspondence between

patients and researchers. This paper will also show you how much of a friend it is to SAS

users.The following paper contains screenshots and code that appear to contain

patient data. All information presented belongs to test patients. Similarly, readers

cannot actually access the REDCap used, since it exists in an offline testing area.

2

KEY BENEFITS OF REDCAP

When exploring solutions for collecting any type of data there are a couple priorities that

stand out:

1. Affordability & Storage

2. Accessibility & Security

3. Ease of Use

4. Data Cleanliness / Structure

In all of these regards, REDCap becomes a good solution. The REDCap software itself is

available at no cost to non-profit organizations, so its cost depends on the size of storage

and technical support (which must come from within your organization’s own internal IT

department) required to support your needs.

REDCap Databases are available via web browser on both an intranet (internal) and internet

(external) basis. They can be set up to follow network credentialing practices and come with

a variety of different “user rights”. The servers they sit on and store data into are not

accessible to front-end users and can take on any size or location desired without the need

for individual user connection set-ups. By using a credentialed online access point, the data

remain both accessible and secure. Exports of the data are monitored and controlled.

Changes to the data are tracked and logged for easy debugging and sleuthing.

The structure of REDCap allows for two collection methods: surveys and forms. Forms

require users to log in and complete a sequence of fields, allowing for return to records and

detailed change tracking. Surveys allow for structured collection of data without the

requirement for logging in, offering a method for collecting de-identified data but still with

an option for returning later. Whether using the survey mode or forms mode, the point and

click user interface (See Figure 2. Example REDCap User Interface) supports high usability.

Training video links, syntax checkers, and on screen tutorials appear to users whom log in.

Form tips and footnotes under fields appear to those entering data (in both form and survey

modes).The abundance of reference material at hand makes it easy to learn and use even

for novel data guardians.

REDCap has many methods for creating clean, structured, data. Options for field type

(radio, checkbox, text box) come with options for defining formatted and unformatted

values (0=No, 1=Yes) and/or field validation mechanisms (dates, integers, email, etc.).

“Branching Logic” is available to conditionally hide/show fields to avoid erroneous entries

and limit viewable fields to only those necessary. On top of that, you can define and apply

“data quality rules” (See Figure 3) that can execute in real time (ex. Require Q2 when Q1 is

a certain value, Option 4 cannot be selected with Option 5 on Q3) and will present

messages to the user when broken.

Best of all, this data is very SAS compatible. When using the export functions within

REDCap there are a variety of output destinations available. Amongst them is an option to

produce a “SAS dataset”, in which it actually creates a SAS program that defines a format

library, labels, and a DATA step for importing the data. It then gives you an unformatted

csv version of the data that is read in by the program. While it may seem like an extra step

to getting a dataset, this method actually makes it very easy to make changes to formats or

variable names and requires little knowledge of REDCap or SAS. For those whom prefer to

stay within SAS, there is an API which will allow you to query against the REDCap database.

By using PROC HTTP (See Exporting Data from REDCap using the API) we can get the same

CSV export we would get manually exporting from REDCap. Unfortunately, this method

does not come with an automatic import to SAS, but the macro provided in this paper will

(See Extra Functionality to Consider). Whether using the export wizard to write SAS code

3

for importing the csv it creates for you or doing so yourself using the API, REDCap is made

to work with SAS.

THE BASICS OF REDCAP

Just like other databases you may have encountered, REDCap databases contain fields,

labels, attributes, and relationships. In the background, data generally follows a rectangular

structure (rows and columns). There are many customizations available and several

common features you might be familiar with: hyperlinking, dashboards, reporting, logging,

alerts, and data quality constraints.

In its most basic form, REDCap defines fields that can be collected in a user interface via a

form or survey. REDCap calls each grouping of fields an instrument. Consider the example

“Codebook” in Figure 1 below.

Figure 1. Example REDCap Code Book

4

In this test project, there are two instruments: one for manual abstraction and one for

electronic abstraction. Each contains defined variables and an automatic variable ending in

“_complete” that indicates the status of each instrument.

HTML FOR DATA ORGANIZATION

Note that in the field “patient_details” (Figure 1), HTML is used (not noted in the Codebook)

to create a table and embed the fields of interest so that they appear as they do in Figure 2

below. This data can be pre-loaded into the project so that it is available to the abstractor

when they open each record.

A customized view that organizes important information can be crucial to avoiding patient

mismatch errors and provide a location for important directions for how and what should be

abstracted.

They can also add comments about the values they entered by clicking on the comment

bubble next to the input field (to left of “URL Removed” below).

In this case, we are providing information in patient_details ahead of the fields for manual

abstraction by uploading data to REDCap.

Other good things to include in these sections are:

 Warnings or special instructions for the form (underneath fields)

 Links to documentation

 Instructions for where to find information

 Contact information for questions about values

By providing your abstractors a set of clear instructions and a place for comments, you will

be able to appropriately document your abstraction and save them time spent emailing or

looking up instructions. When one person asks a question, we are populating the answer for

everyone to see.

COMBINED MEDICAL RECORD LINK (CMR LINK)

In Figure 2, there is a button marked “CMR Link”. This is an “External Module” (custom

functionality) developed for our abstractors. It allows them to have our medical record

opened to a specific location. Utilizing the existing link structure, we provide the button a

URL that points to a specific document. By providing this information ahead of abstraction,

Figure 2. Example REDCap User Interface

5

we greatly reduce the time spent searching the EHR for the correct document/information.

In addition to saving abstractors search time, we are also greatly diminishing the amount of

health data that needs to be reviewed; keeping the minimum necessary consideration at the

forefront of our minds.

In addition to the document link, we are also able to provide metadata about that link to the

abstractor: “Provider Order on 04-14-2021”; allowing abstractors to confirm they are

viewing the correct document. If it is the wrong one, they can update the URL to point to

the correct document once they have located it. By doing so, they also reduce the time

needed to go back and abstract additional data.

DATA QUALITY RULES

The key to quality research is quality data. REDCap is here to assist you by setting rules for

values, which no spreadsheet can compete with. For each project, a user can define a series

of data quality rules. Many of the desired checks are pre-built into REDCap. Each can be

executed by pressing the execute button; with a resulting value showing in its place at

completion. Rules can also be set to execute in real-time.

Figure 3. REDCap Default Data Quality Rules

THE API PLAYGROUND

Once you have quality data abstracted into a secure location, the next step is exporting for

analysis.

REDCap was built to “talk nice” with a variety of programming languages and conveniently

offers a way to experiment with the syntax needed to achieve a variety of import/export

data needs: the API Playground.

Found in the left side panel, are your tools for finding the solution to your

import/export needs. In this area, you can select which function you are hoping to achieve

(for example, “Export Records”) and a variety of other options (like .csv format). Once

selected, the Playground presents the code needed in a variety of languages, as seen in

Figure 4. Unfortunately, it does not give you the exact SAS code needed, but it does give

you a usable HTTP string for feeding into PROC HTTP under cURL.

6

Notice there are two items removed from Figure 4: token and instance URL. You will need to

request a “token” value in the API area before you can use it. Once obtained, this will be

what PROC HTTP uses to gain access to your data. Treat this like a username and

password; anyone with your token can execute your code and acquire its results.

Use an external file stored in a secured directory and/or macro variables to house your

token securely to avoid misuse (See Appendix 2). The “Instance URL” is the web address to

your instance of REDCap that can be hosted internally (accessible by those connected to

your intranet) or externally (accessible by anyone with either a code, login, or public survey

link).

Once you acquire the API token, the API is now ready for use by SAS.

EXPORTING DATA FROM REDCAP USING THE API

In Appendix 1, we give the full code for exporting data from REDCap as a portable macro

definition. A portion of this code originated from SAS Sample 26065 (SAS Institute, 2006)

and SAS Sample 24717 (SAS Institute, 2020). In order to use this macro, you will need to

insert the URL(s) for your instances of REDCap (See Required Edit 1and Required Edit 2).

The following sections explain the exporting of the data dictionary in more detail as an

example and introduces important options/set-up.

SETTING OPTIONS

The first line of code in the macro sets a few options:

options nomprint nosymbolgen nomlogic;

These options prevent printing of sensitive information stored in macro variables (like your

token value) to the log or from being resolved anywhere that might reveal them. If you are

using SAS Enterprise Guide®, the values of these macro variables will still be viewable in

the “SAS Macro Variable Viewer” and these will still resolve in put statements. Be careful to

remove areas where you resolve these variables before sharing with others.

IDENTIFYING FILES

Before pulling the data down, we want to identify files to house the data temporarily and

any files that contain HTTP call information (non-default call strings). We can accomplish

this by using filename statements and specifying a network/directory location. The syntax

looks like:

filename my_dict "&BaseDIR.\Data Dictionary.csv";

Figure 4. Example of API Playground Auto-Code

7

Notice we are using a standard naming convention for the data dictionary to minimize the

amount of information being requesting, but utilizing a macro variable containing the base

directory to be sure all files end up in the same location. These statements create the files

they name and are ready to be acted on.

PROC HTTP: THE COMMON LANGUAGE

In order for SAS to obtain data from REDCap, they have to speak a common language:

HTTP. We will be using PROC HTTP to send and receive data using the following syntax:

*** PROC HTTP call for dictionary. ***;

proc http

 in=&dict_string.

 out= my_dict

 url = "&instance_url."

 method="POST"

;

run;

In this case, two calls will be required: one for the data dictionary and one for the data

itself. In both circumstances, the IN= call will either be a filename reference to an external

file containing the HTTP string or an explicit string enclosed in double quotes. The HTTP

string is what we saw in the API playground (Figure 4) in double quotes after the DATA=. In

the macro, the use of macro variables will control what appears in different parts of the

string:

token=&mytoken.%NRStr(&content=metadata&type=flat&format=csv&)

Masking the HTTP ampersands using %NRSTR() will assure that only the true macro

variables are resolved. The value &mytoken. should resolve to your token value, but the

remaining ampersands need to be passed to the API. After the token, we tell the API what

we want from it:

1) content=metadata : Data Dictionary information

2) type=flat : rectangular data (columns/rows)

3) format=csv : file destination is CSV

In PROC HTTP, the next argument is OUT= which will tell SAS where to put the information

it receives from the API. Unlike the IN= statement, OUT values can only be a file reference.

The file format must also match what is given in the HTTP string (file reference can only be

to a .csv if format=csv in HTTP string).

The URL and METHOD values should not change based on which REDCap project you are

pulling data from. As mentioned before, you will need to enter the URL that is specific to

your instance(s) of REDCap. For more information on other options in PROC HTTP, review

the Base SAS® Procedures Guide.

EXTRA FUNCTIONALITY TO CONSIDER

In addition to the basics of importing and exporting data from REDCap using PROC HTTP

calls, the next few steps are also routine:

1) Import the CSV data to a SAS data set

2) Apply data dictionary attributes to replicate what is seen in REDCap

8

IMPORTING CSV DATA TO SAS

Unfortunately, PROC HTTP does not provide an option for outputting directly to a SAS data

set, which is likely your next goal. During this next step, there are also a few additional

considerations. When importing the csv data into SAS, it may not know how to handle

certain values it finds in the raw csv files (like carriage returns, HTML, and unpaired

quotes). Some variations in processing may be required:

1) Remove Line Feeds and Carriage Returns

2) Do not use labels with HTML code in them

3) Restrict variable names to valid variable names (maximum length of 32, no

spaces, no special characters)

In Appendix 1, we can implement each of these fixes by toggling the parameters fed to the

macro. For instances where you’re looking to use labels that do have HTML code in them,

consider modifying the portion of the code that removes line feeds and carriage returns to

also remove HTML code. Another option is to strip out the HTML after you read in the data

dictionary as SAS Institute does in Sample 24717 (SAS Institute, 2020).

APPLYING SAS ATTRIBUTES

When exporting the data from REDCap it will default to using the REDCap variable names

and unformatted values:

Data exported from REDCap may not be compliant with SAS conventions, but it will also not

come with the metadata we have come to expect from SAS datasets (labels, formats,

libraries). Here are a few additional measures to take that can make your imported data

more user-friendly by leveraging the downloaded data dictionary contents:

1) Use field labels to label SAS variables (CAUTION: Those with HTML may not work

as expected).

2) Create formats by parsing the options available in REDCap

3) House formats in an external format library for future use

RUNNING THE MACRO: FINAL RESULTS

Using the below example call with fake locations and values:

%include 'C:\\REDcap API Labeling Exporter.sas';

libname PH075 'C:\Desktop';

%RedCapAPIExport(External=0

 ,mytoken=&SECURED_TOKEN.

 ,BaseDir=%bquote(C:\My Directory with Spaces)

 ,CSVName=TestData

 ,ReplaceCRLF=1

 ,SASDataName=PH075_Data

 ,format_library=1

 ,formatlibname=PH075.PH075_Formats

 ,FormatDataName=Formatted_PH075_Data

)

Figure 5. Example Raw CSV Data

9

;

The results will look like this:

Figure 6. Final SAS Datasets from REDCap

In the above figure, you will find:

 DATA_DICTIONARY (created by default): A dataset containing the REDCap data

dictionary for your project.

 CHECKBOX (created by default): A dataset containing any check box fields that will

be converted to individual indicator fields

 PH075_DATA: An unformatted version of the data with or without labels.

 FORMATTED_PH075_DATA: A formatted version of the data with or without

labels.

The macro will also produce a format library containing all formats available. In this case,

we have only the default format for the completion variables, since we did not have any

multiple-choice variables.

Figure 7. Example Format Library

Use the format library to format the unformatted version of the data conditionally when

creating reports. It is also helpful when formatting other sources of data in the same

manner as your REDCap data.

SECURING YOUR TOKEN AND MINIMIZING DATA DUPLICATION

In the macro call above you see the macro variable secured_token is the input for the token

value. This is because we don’t want you (or those reading the code/log files) to know my

token value, because then you’d have access to our data! While placing the token value into

the macro call is valid and exports from the project will still appear in the logging, anyone

running that code will have access to the data and appear to be the token owner. Yikes!

To avoid unauthorized access, you can store your token value in a file somewhere it’s more

protected. For example, the C: Drive under your user folder or other folders that only you

have access to/require credentials to enter. From there, you can tell SAS to fetch the

information only at the time of execution. Is it hack-proof? No. Is it more secure than

leaving it in your code? Yes. Storing tokens externally is especially true when storing code in

public places or when that code is ran by multiple users. So long as each person has a token

value stored in a similar path, the code should use the correct person’s token without

manual intervention.

In a similar fashion, the creation of CSV files during the import to SAS defeats the security

benefits of storing that data in REDCap if they are left there to be unmonitored copies. In

medicine, we follow a “minimum necessary” policy for access to protected health

10

information (PHI) and extreme caution should be taken when creating unmonitored PHI. For

this reason, it is generally a good idea to delete the CSVs made by the export process.

The macros in Appendix 2 (%REDCAP_TOKEN_SECURE and %REDCAP_TEMP_FILE_CLEAN)

accomplish both of these additional security measures. Additionally,

%REDCAP_TOKEN_SECURE controls options used in your session to further avoid the

printing of that token value during the export process. Before using

%REDCAP_TOKEN_SECURE you will need to identify a file path or pattern of file paths that

work for you (See Required Edit 3).

The calls must “wrap” your other calls/code. For example:

%REDCAP_TOKEN_SECURE(PID=001);

[Your Code Here]

%REDCAP_TOKEN_SECURE(CLOAK=OFF);

%REDCAP_TEMP_FILE_CLEAN(LOCATION=%bquote(C:\My Directory with Spaces),

ITEM=ALL);

Use extreme caution when providing the value “ALL” (as seen above) to the ITEM

parameter. This macro will delete all files in the directory under that condition. While

this can be extremely helpful, it can also be disastrous if you are storing important items in

that directory. To be cautious, we recommend creating a separate REDCap exports directory

that contains only delete eligible files.

Note the project id (PID) given is found in REDCap next to the project title (and in the URL)

and is used by the macro to identify the correct file containing the token.

Figure 8. Location of Project ID Values

LIMITED EXPORTS

The API playground can help you to create many types of downloads. Nearly all of what

exists in REDCap can be exported to SAS using the API method. The macro provided

represents a scenario where you are downloading all data that is captured via survey or

form instruments. With very little modification to that macro’s PROC HTTP call string, you

can perform limited exports. Here are two ways to perform a limited export of your data.

DOWNLOADING REPORTS

Within REDCap you can create a bunch of helpful reports that execute in real-time. They can

use filter logic, pull in only the fields selected, and offer helpful options (like creating one

field with a list of selected checkbox answers, instead of creating an indicator field for each).

Reports help you to limit and organize your data while using the online interface and can do

the same when you’re exporting. Consider the following modification to the PROC HTTP for

downloading reports. In this code, the macro variable report_id is used to provide the report

id given in REDCap (Circled in Figure 9).

11

%let report_id=3486;

proc http

 in="token=&secured_token.%NRSTR(&content=report&format=csv&report

_id=)&report_id.%NRSTR(&csvDelimiter=&rawOrLabel=raw&rawOrLabelHeaders

=raw&exportCheckboxLabel=false&returnFormat=csv)"

 out= my_out

 url = "&instance_url."

 method="POST"

;

debug level=1;

run;

SPECIFIC FIELDS EXPORT

In small projects exporting all data from REDCap is not too much of a concern when it

comes to processing power and the extra effort it takes to create a specific report is likely

not worth the time unless there’s a use for it on the front end. However, in larger projects it

would not be efficient to download all data every time if you only need a subset of the fields

or data. Still, it would not be efficient to create a new report for each set of limiting factors.

In this case, the option to place the limiting factors directly in the PROC HTTP string may be

the most efficient path.

In this modified PROC HTTP we are limiting to only the fields of interest by providing a

comma-delimited list of variable names to macro variable fieldlist. Note that you must place

the list inside %bquote() to avoid commas being seen as additional macro call values.

%let FieldList=%bquote(var1,var2);

proc http

 in="token=&mytoken.%NRSTR(&content=record&type=flat&format=csv&fi

elds=)&fieldlist.%NRSTR(&)"

 out= my_out

 url = "&instance_url."

 method="POST"

;

debug level=1;

run;

Figure 9. Report Identifiers

12

CONCLUSION

REDCap® is a powerful tool in use not only in research, but also in health data manual

abstraction as a whole. Whether you are collecting data for a study or creating a repository

for patient tracking, the ability to abstract medical data into a secure and electronically

accessible location is key. REDCap provides mechanisms for quality data abstraction,

documentation, and presentation. Get rid of the Excel spreadsheets and paper records, and

get ready for dynamic data ready in real-time for your SAS skills. Together REDCap and

SAS are your friends for EHR manual abstraction.

REFERENCES

Harris, P. A., Taylor, R., Minor, B., Elliott, V., Fernandez, M., O'Neal, L., . . . Duda, S. (2019, July). The
REDCap consortium: Building an international community of software platform partners. Journal
of Biomedical Informatics, 95, 103208. doi:10.1016

Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009, Apr). Research
electronic data capture (REDCap) – A metadata-driven methodology and workflow process for
providing translational research informatics support. J Biomed Inform, 42(2), 377-81.
doi:10.1016

SAS Institute. (2006, June 27). Sample 26065: Remove carriage return and linefeed characters within
quoted strings. Retrieved from SAS Support: https://support.sas.com/kb/26/065.html

SAS Institute. (2020, December 08). Sample 24717: Remove HTML tags from character strings. Retrieved
from SAS Support: https://support.sas.com/techsup/notes/v8/24/717.html

ACKNOWLEDGMENTS

I would like to thank Brent Olson for providing the initial code, which was modified to make

the %REDCAPAPIEXPORT macro and Leila Deering for bringing REDCap® into my life. This

paper would not have been possible without you.

RECOMMENDED READING

 Base SAS® Procedures Guide: HTTP Procedure

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Brooke Ellen Delgoffe

Marshfield Clinic Health System

brooke_delgoffe@hotmail.com

https://www.linkedin.com/in/brookedelgoffe/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0bdg5vmrpyi7jn1pbgbje2atoov.htm
https://www.linkedin.com/in/brookedelgoffe/

13

APPENDIX 1

/***

Program : REDcap API Labeling Exporter.sas

Programmers : Brooke Ellen Delgoffe & Brent Olson

 Marshfield Clinic Health System

 Marshfield, WI 54449

Date : 05-24-2022

Purpose: This program exports data and its data dictionary

from REDcap and stores it in CSV files.

Optionally, it can also

 --import this data into SAS work or permanent datasets

 --apply labels

 --create a formatted version of the data

 --create a format library

**

How to Use this Macro:

1. Place an %include statement calling this program

 in your program.

2. Copy one of the below templates into your code below the include

statement

 and fill in paramters.

**The BaseDir, CSVName, and mytoken fields are required for

all runs. If the data do not read in correctly, changing the

value of ReplaceCRLF may be required. All other options are

optional. To use defaults remove those definitions from the

call altogehter (erase line).

Full Definition:

%RedCapAPIExport(External=[0=Internal, 1=External]

 ,mytoken=[Enter REDcap Token (Request in REDcap prior)]

 ,BaseDir=%bquote([Enter Long UNC Path without Quotes])

 ,CSVName=[Enter Name for CSV]

 ,ReplaceCRLF=[Enter 0 or leave blank to default to 1]

 ,UseProcImport=[Enter 0 or leave blank to default to 1]

 ,SASDataName= [leave blank to name NEW_API_DATA]

 ,NoLabels=[Enter 1 or leave blank to default to 0]

 ,format_library=[Enter 1 or leave blank to default to 0]

 ,formatlibname= [enter format library name if 1 entered above]

 ,FormatDataName=[leave blank to name NEW_API_DATA_F]

 ,dict_string_path=%bquote([Location of HTTPS string for Data

Dictionary])

 ,data_string_path=%str([Location of HTTPS string for Data])

)

;

14

Minimum Definition:

%RedCapAPIExport(BaseDir=%bquote([Enter Long UNC Path without Quotes])

 ,CSVName=[Enter Name for CSV]

 ,mytoken=[Enter REDcap Token (Request in REDcap

prior)]

)

;

**

Variable Definitions:

External= Tells SAS which instance of REDcap to use (1=External

0/missing=Internal)

mytoken= API Token Requested in REDcap **required**

BaseDIR= Location you want output data in. Must use %bquote() if

directory has apostrophe in name. **required**

CSVName= Name for Raw Data CSV **required**

SASDataName= Name for SAS Data Set [Default:work.NEW_API_DATA]

NoLabels= Tells SAS not to apply the labels to the SAS dataset if set

to 1.

UseProcImport= 0=Only CSV, 1=CSV+SAS dataset [Default:1]

ReplaceCRLF= 0=Do not remove line feeds 1=remove line feeds [Default:

1]

format_library= 0=no format library, 1=format library created

[Default=0]

formatlibname= name of format library [Default: Missing=creates format

library in work directory]

FormatDataName= Name of formatted SAS dataset [Default:NEW_API_DATA_F]

The following may be used if a different

http string is needed, such as with special field requests.

These will override the defaults given in the macro.

dict_string_path=gives a long path to a file containing the

 HTTP call string for puling the data dictionary.

data_string_path=gives a long path to a file containing the

 HTTP call string for pulling data.

**

Known Issues:

--If a character field in REDcap is completely null and SAS imports

 the field as numeric, the format area will create an error, but

 becuase there are no values this is not a true issue.

-Cannot be used to create formatted datasets for projects with

 formats containing a vertical bar ('|')

**/

/***/

/***!!!!!! DO NOT CHANGE BELOW DURING USE!!!!!!!!! */

/***/

%MACRO RedCapAPIExport(external=0 /*Instance of REDcap 1=External

0/null=Internal*/

15

 ,mytoken= /*API Token Requested in REDcap*/

 ,BaseDIR= /*Location you want raw data in*/

 ,CSVName= /*Name for Raw Data CSV*/

 ,SASDataName=NEW_API_DATA /*Name for SAS Data Set*/

 ,NoLabels=0 /*Supresses Labels in SAS Data Set*/

 ,UseProcImport=1 /*0=Only CSV, 1=CSV+SAS dataset*/

 ,ReplaceCRLF=1 /*0=Do not remove line feeds 1=remove line

feeds*/

 ,format_library=0 /*0=no format library 1=format library

created*/

 ,formatlibname= /*name of format library*/

 ,FormatDataName=NEW_API_DATA_F /*Name of formatted SAS

dataset*/

 ,dict_string_path=%str() /*Location of HTTPS string for

Dictionary*/

 ,data_string_path=%str() /*Location of HTTPS string for

Data*/

);

options nomprint nosymbolgen nomlogic; *do not unmask variables;

/**

Step 1. Establish Name and path of the export file(s).

**/

*** .CSV output file to contain the exported data ***;

filename my_dict "&BaseDIR.\Data Dictionary.csv";

*** .CSV output file to contain the exported data ***;

filename my_out "&BaseDIR.\&CSVName..csv";

%if &Dict_string_path. ne %str() %then %do;

 filename d1 "&dict_string_path.";

 filename d2 "&data_string_path.";

 %end;

/**

Step 2. Request all observations and data dictionary with one

row per record (TYPE=FLAT).

**/

*** Establish URL for Instance of Interest ***;

%if &external.=1 %then %do;

 %let instance_url=[ENTER YOUR EXTERNAL URL];

Required Edit 1

%end;

%else %do;

 %let instance_url=[ENTER YOUR INTERNAL URL];

Required Edit 2

%end;

16

***Set up File Refs or File Strings**;

%if &dict_string_path. ne %str() %then %do;

 %let dict_string=d1;

 %end;

 %else %do;

 %let

dict_string="token=&mytoken.%NRStr(&content=metadata&type=flat&format=

csv&)";

 %end;

%if &data_string_path. ne %str() %then %do;

 %let data_string=d2;

 %end;

 %else %do;

 %let

data_string="token=&mytoken.%NRStr(&content=record&type=flat&format=cs

v&)";

 %end;

*** PROC HTTP call for dictionary. ***;

proc http

 in=&dict_string.

 out= my_dict

 url = "&instance_url."

 method="POST"

;

run;

*** PROC HTTP call for data. ***;

proc http

 in=&data_string.

 out= my_out

 url = "&instance_url."

 method="POST";

run;

/***

Step 3. (Optional) Remove carriage returns and linefeeds that can

effect the import to SAS.

***/

%IF &ReplaceCRLF = 1 %Then %Do;

 /************************** CAUTION ***************************/

 /* */

 /* This program UPDATES IN PLACE. Create a backup copy before */

 /* running. */

 /* */

 /************************** CAUTION ***************************/

 /* Replace carriage return and linefeed characters inside */

17

 /* double quotes with a specified character. This sample */

 /* uses '; ', but any character can be used, including */

 /* spaces. CR/LFs not in double quotes will not be replaced. */

 %let repA='; '; /* replacement character */

 data _null_;

 /* RECFM=N reads the file in binary format. The file consists

*/

 /* of a stream of bytes with no record boundaries.

SHAREBUFFERS */

 /* specifies that the FILE statement and the INFILE statement

*/

 /* share the same buffer.

*/

 infile my_out recfm=n sharebuffers;

 file my_out recfm=n;

 /* OPEN is a flag variable used to determine if the CR/LF is

within */

 /* double quotes or not. Retain this value.

*/

 retain open 0;

 input a $char1.;

 /* If the character is a double quote, set OPEN to its opposite

value. */

 if a = '"' then open = ^(open);

 /* If the CR or LF is after an open double quote, replace the

byte with */

 /* the appropriate value.

*/

 if open then do;

 if a IN ('0D'x,'0A'x) then put &repA;

 end;

 run;

%End;

/*Regardles of Options Selected, replace linefeeds and carriage

returns within cells to spaces in the data dictionary */

 %let repA=' ';

 data _null_;

 /* RECFM=N reads the file in binary format. The file consists

*/

 /* of a stream of bytes with no record boundaries.

SHAREBUFFERS */

 /* specifies that the FILE statement and the INFILE statement

*/

18

 /* share the same buffer.

*/

 infile my_dict recfm=n sharebuffers;

 file my_dict recfm=n;

 /* OPEN is a flag variable used to determine if the CR/LF is

within */

 /* double quotes or not. Retain this value.

*/

 retain open 0;

 input a $char1.;

 /* If the character is a double quote, set OPEN to its opposite

value. */

 if a = '"' then open = ^(open);

 /* If the CR or LF is after an open double quote, replace the

byte with */

 /* the appropriate value.

*/

 if open then do;

 if a IN ('0D'x,'0A'x) then put &repA;

 end;

 run;

/**

Step 4. (Optional) Read .CSV data file into SAS and save it.

 Use a standard Proc Import with MAX Guessing Rows.

 Use import of data dictionary to apply labels

 (optional) create format library

 (optional) apply formats creating separate version

***/

%IF &UseProcImport = 1 %Then %Do;

 *** prep export filename for SAS ***;

 %let SASname = %sysfunc(TRANSLATE(&CSVName.,'_',' '));

 %IF %sysfunc(ANYDIGIT(&SASname.,1)) = 1 %Then %let SASname =

%sysfunc(CATS(_,&SASname.));

 %let SASname = %sysfunc(COMPRESS(&SASname., ,kn));

 %IF %sysfunc(LENGTH(&SASname.)) > 28 %Then %let SASname =

%sysfunc(SUBSTR(&SASname.,1,28));

 %put ***&SASname.***;

 /* Read in New Version of Data File*/

 PROC IMPORT OUT=RAW_API_DATA

 DATAFILE= my_out

 DBMS=csv REPLACE;

 GETNAMES=YES;

 guessingrows=MAX;

 RUN;

19

 /* Read in Data Dictionary*/

 PROC IMPORT OUT=Data_Dictionary

 DATAFILE= my_dict

 DBMS=csv REPLACE;

 GETNAMES=YES;

 guessingrows=MAX;

 RUN;

 data Data_Dictionary;

 set Data_Dictionary;

 *remove any html tags;

 retain rx1;

 if _n_=1 then rx1=prxparse("s/<.*?>//");

 call prxchange(rx1,-1,field_label);

 call prxchange(rx1,-1,section_header);

 run;

 /*Create formats*/

 data formats checkbox;

 length format_def $5000. type $9. field_label field_label2 $60.;

 set data_dictionary(keep=field_name field_label field_type

select_choices_or_calculations);

 format field_label field_label2 $60.;

 *Create an indicator variable for each value of a checkbox like

REDCap does;

 if field_type='checkbox' then do;

 do i=1 to countw(select_choices_or_calculations,'|');

*identify number of options by looking for vertical bars;

 *Format field names to comply with SAS but follow

REDCap structure;

 field_name2=strip(field_name)||"___"||strip(scan(scan(select_choi

ces_or_calculations,i,'|'),1,','));

 field_name2=substr(field_name2,1,32);

 field_label2=strip(field_label)||":

"||strip(scan(scan(select_choices_or_calculations,i,'|'),2,','));

 len1=find(scan(select_choices_or_calculations,i,'|'),',')+1;

 len2=length(strip(scan(select_choices_or_calculations,i,'|')));

 format_def="0='No' 1='Yes'"; *Define a format as

yes/no;

 type='Numeric';

 output checkbox;

 end;

 if field_type='checkbox' then delete; *delete old entry

once individual variables are defined;

 end;

20

 *For categorical variables, keep original entry;

 else if countw(select_choices_or_calculations,'|') > 0 then do;

 field_name=strip(substr(field_name,1,32)); *SAS compliant names;

 do i=1 to countw(select_choices_or_calculations,'|');*identify

number of options by looking for vertical bars;

 *Assign character if unformatted values contain a letter;

 if

anyalpha(strip(scan(scan(select_choices_or_calculations,i,'|'),1,','))

) then do;

 val='"'||strip(scan(scan(select_choices_or_calculations,i,'|'),1,

','))||'"="'||strip(substr(scan(select_choices_or_calculations,i,'|'),

find(scan(select_choices_or_calculations,i,'|'),',')+1,length(strip(sc

an(select_choices_or_calculations,i,'|')))))||'"';

 type='Character';

 len1=find(scan(select_choices_or_calculations,i,'|'),',')+1;

 len2=length(strip(scan(select_choices_or_calculations,i,'|')));

 end;

 *Otherwise assume numeric;

 else do;

 val=strip(scan(scan(select_choices_or_calculations,i,'|'),1,','))

||'="'||strip(substr(scan(select_choices_or_calculations,i,'|'),find(s

can(select_choices_or_calculations,i,'|'),',')+1,length(strip(scan(sel

ect_choices_or_calculations,i,'|')))))||'"';

 type='Numeric';

 end;

 format_def=catx(' ',format_def,val); *create a format statement

to go with each variable;

 end;

 drop i val;

 end;

 *For free text no formats are needed;

 else do;

 field_name=strip(substr(field_name,1,32)); *if free text,

then make sure name is SAS compliant;

 end;

 output formats;

 run;

 *keep only format information;

 data formats;

 length field_name $32. field_label $60.;

 set checkbox(drop=field_name field_label

rename=(field_name2=field_name field_label2=field_label)) formats ;

 drop field_name2 field_label2;

 run;

 /*Create label statements*/

21

 proc sql noprint;

 select distinct strip(field_name)||'="'||strip(field_label)||'"'

 into :label_statement

 separated by ' '

 from formats;

 quit;

 /*Create format statements*/

 proc sql noprint;

 select distinct

 case when type='Character' then "value

$"||strip(substr(field_name,1,31))||"_ "||strip(format_def)|| ' ;'

 else "value "||strip(substr(field_name,1,31))||"_

"||strip(format_def)|| ' ;'

 end

 ,

 case when type='Character' then field_name||"

$"||strip(substr(field_name,1,31))||"_. "

 else field_name||"

"||strip(substr(field_name,1,31))||"_. "

 end

 into :format_statement

 separated by ' ',

 :applyformats

 separated by ' '

 from formats

 where format_def ne '=""';

 proc sql noprint;

 select distinct field_name

 into :yesno_formats

 separated by ' '

 from data_dictionary

 where field_type='yesno';

 quit;

 *add form complete fields;

 proc sql noprint;

 select distinct substr(strip(form_name)||"_complete",1,32)

 into :completion_fields

 separated by ' '

 from data_dictionary

 quit;

 /*(optional) Create Format Library*/

 %if &format_library.=1 AND %symexist(format_statement) %then %do;

 libname save "&BaseDir.";

 proc format lib=save.&formatlibname.;

 &format_statement.

 value yesno 0='No' 1='Yes';

 value completionstat 0='Incomplete' 1='Unverified' 2='Complete';

 quit;

22

 %end;

 %else %if %symexist(format_statement) %then %do;

 proc format;

 &format_statement.

 value yesno 0='No' 1='Yes';

 value completionstat 0='Incomplete' 1='Unverified' 2='Complete';

 quit;

 %end;

 %else %do;

 proc format;

 value completionstat 0='Incomplete' 1='Unverified' 2='Complete';

 quit;

 %end;

 /*******************

 Create Final Dataset

 -apply labels

 ********************/

 data &SASDataName.;

 set RAW_API_DATA;

 %if &NoLabels.=0 %then %do;

 label &label_statement.;

 %end;

 run;

 %if &FormatDataName. ne %str() %then %do;

 /*******************

 (optional) Create Formatted Dataset

 -apply labels and formats

 ********************/

 %if &format_library.=1 and %symexist(format_statement)

%then %do;

 options fmtsearch=(save.&formatlibname. WORK);

 %end;

 data &FormatDataName.;

 set RAW_API_DATA;

 %if &NoLabels.=0 %then %do;

 label &label_statement.;

 %end;

 %if %symexist(applyformats) %then %do;

 format &applyformats.

 %if %symexist(yesno_formats)=1 %then %do;

 &yesno_formats. yesno.

 %end;

 ;

 %end;

 format &completion_fields. completionstat.;

 run;

23

 %end;

%End;

 /*Clear Intermediate Datasets*/

 proc datasets lib=work memtype=data nolist;

 delete raw_api_data formats;

 run;

%MEND RedCapAPIExport;

APPENDIX 2

/**

PROGRAM : RA_REDCAP_TOKEN_CLOAK.sas

PROGRAMMER : Steffani Roush & Brooke Ellen Delgoffe

DATE : 06-04-2021

PURPOSE: This program defines macros which

"cloak" REDCap token values, delete unnecessary

import/export CSVs and are applied as wrapper code

around existing code used for exporting/importing

data from REDCap.

!!! Before Using !!!

--> Make sure you have your [INSTANCE]_[PID]_config.txt

 file and connection strings configured correctly.

--> Use the macro variable &SECURED_TOKEN. anywhere the

 value of the token should appear in your code.

--> Remove options statements for mprint, mlogic, and symbolgen from

code

 going between the macro calls. The value of these options will be

restored

 by the bottom wrapper.

--> Remove put statements that may print strings that include your

token value.

 (EX: Http call strings).

Minimum Macro Call Templates:

*goes at top of program;

 %REDCAP_TOKEN_SECURE(PID=[REDCap Project ID]);

*go at bottom of program;

 %REDCAP_TOKEN_SECURE(CLOAK=OFF);

*optional at bottom of program;

 %REDCAP_TEMP_FILE_CLEAN(LOCATION=%bquote([export/import

location]), ITEM=[ALL or specific names]);

Call Definitions and Parameters:

24

REDCAP_TOKEN_SECURE: tells SAS to start or stop using

 token information located outside SAS and controls

 options that prevent the values from being displayed

 in the log.

 This macro references the &DWID\[INSTANCE]_[PID]_config.txt

 file stored under [Enter your path to files]

Required Edit 3. Long Path to Token Files

 Arguments:

 PID: REDCap project ID

 Values: No constraints.

 CLOAK: tells SAS whether you're putting the cloak

 on or taking it off.

 Values:[ON/OFF/DB] DEFAULT=ON (!! Use DB only for debugging

!!)

 INSTANCE(Optional): Tells SAS the location of your REDCap

Project.

 Values:[INT/EXT] DEFAULT=INTERNAL

REDCAP_TEMP_FILE_CLEAN: Removes temporary files created

 during the import/export of REDCap data. Used to delete

 all in a directory or one file at a time.

 Arguments:

 LOCATION: directory location of temporary files enclosed

 in bquote to avoid issues with spaces in long paths.

 ITEM: The name of files to be deleted or ALL for a full directory

delete.

 Do not include the file extention here. Names are not case-

sensitive.

 EXT(Optional): Specifies the file extension when not a csv. Do

not

 include a period in the value.

 DEFAULT=CSV

***/

%macro REDCAP_TOKEN_SECURE(PID=0 /*REDCap Project ID*/

 ,INSTANCE=INT /*Specify REDCap

Instance*/

 ,CLOAK=ON /*Turn Cloak on or off*/

);;

/* Save debugging options */

%let oldopts =

 %sysfunc(getoption(mprint))

 %sysfunc(getoption(Symbolgen))

 %sysfunc(getoption(mLogic));

%if &CLOAK.=OFF %then %do;

 /* Turn old debugging options back on */

 option &oldopts. ;

25

 %put NOTE: Cloaking behavior was turned off. Options have

been restored to their previous values.;;

%end; /*CLOAK OFF*/

%else %if &CLOAK.=ON %then %do;

 %if &PID.=0 %then %do;

 %put ERROR: REDCap Project ID has not been entered. PID is

indicated after PID= in REDCap URL.;

 %end; /*PID Check*/

 %else %do;

 /*Locate Token Information*/

 options mprint symbolgen mlogic; *turn on to evaluate

path variables;

 filename token "[Enter your path to

files]\&dwid.\&instance._&pid._config.txt";

 /* Prevent macros from being printed to the log

temporarily */

 option nomprint nosymbolgen nomlogic;

 /*Import Token Information*/

 %GLOBAL SECURED_TOKEN;

 data _null_;

 length token_txt $32767;

 retain token_txt '';

 infile token flowover dlmstr='//' end=last;

 input;

 token_txt=cats(token_txt,_infile_);

 if last then call

symput('SECURED_TOKEN',strip(token_txt));

 run;

 %put NOTE: The value of SECURED_TOKEN has been

assigned and cloaking behavior turned on.;

 %end;/*PID specified*/

%end; /*CLOAK ON*/

%else %do;

 /* Allow Macro values to Print to log */

 option mprint symbolgen mlogic;

 %put WARNING: Your token information is vulvernable! Use

this setting only for debugging, specify ON or OFF otherwise.;

 /*Locate and Import Token Information*/

 %global SECURED_TOKEN;

 filename token "[Enter your path to

files]\&dwid.\&instance._&pid._config.txt";

 data _null_;

 length token_txt $32767;

 retain token_txt '';

 infile token flowover dlmstr='//' end=last;

 input;

26

 token_txt=cats(token_txt,_infile_);

 if last then call

symput('SECURED_TOKEN',strip(token_txt));

 run;

 %put NOTE: The value of macro variable SECURED_TOKEN has

been assigned;

%end; /*CLOAK ERROR*/

%mend REDCAP_TOKEN_SECURE;

%macro REDCAP_TEMP_FILE_CLEAN (LOCATION=%str() /*filepath to check*/

 ,ITEM=%str() /*Filename

to delete or ALL*/

 ,EXT=csv /*Extension of

file(s) to delete*/

);;

%if &ITEM.=ALL %then %do;

 filename filelist "&location.";

 data _null_;

 dir_id = dopen('filelist');

 total_members = dnum(dir_id);

 do i = 1 to total_members;

 member_name = dread(dir_id,i);

 if scan(lowcase(member_name),2,'.')="&ext." then do;

 file_id = mopen(dir_id,member_name,'i',0);

 if file_id > 0 then do;

 freadrc = fread(file_id);

 rc = fclose(file_id);

 rc = filename('delete',member_name,,,'filelist');

 rc = fdelete('delete');

 end;

 rc = fclose(file_id);

 end;

 end;

 rc = dclose(dir_id);

 run;

 %put NOTE: All .&ext. files in &LOCATION. have been deleted.;

%end;

%else %do;

 /* Delete files one at a time*/

 %if %sysfunc(fileexist("&LOCATION.\&ITEM.%str(.)&ext.")) ge 1

%then %do;

 %let

rc=%sysfunc(filename(temp,"&LOCATION.\&ITEM.%str(.)&ext."));

 %let rc=%sysfunc(fdelete(&temp));

 %end;

 %else %do;

27

 %put The file "&LOCATION.\&ITEM.%str(.)&ext." does not

exist;

 %end;

%end;

%mend REDCAP_TEMP_FILE_CLEAN;

	Abstract
	Introduction
	Key Benefits of REDCap
	The Basics of REDCap
	HTML for Data Organization
	Combined Medical Record Link (CMR Link)
	Data Quality Rules
	The API Playground
	Exporting Data from REDCap using the API
	Setting Options
	Identifying Files
	PROC HTTP: The Common Language

	Extra Functionality to Consider
	Importing CSV Data to SAS
	Applying SAS Attributes
	Running The Macro: Final Results
	Securing your Token and Minimizing Data Duplication

	Limited Exports
	Downloading Reports
	Specific Fields export

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information
	Appendix 1
	Appendix 2

