
1 

Paper 165-2022  

Utility Macros to Check for Changes in Macro Variables, Options, or 
Formats in SAS®  

Aaron Brown, South Carolina Department of Education 

ABSTRACT  

Imagine a scenario where you create a particular macro variable, set your options as needed, or create 
formats you need early in a program.   Later, you accidentally change one of these settings, which breaks 
assumptions further down in the program.   Such a scenario can be difficult to troubleshoot.   This paper 
introduces three sets of macros that use the metadata SAS® creates during a SAS session in order to 
check if macro variables, options, or formats changed.  It utilizes the COMPARE, FORMAT, SQL, and 
OPTSAVE procedures.  

INTRODUCTION  

I worked on a project where a master program calls (via %include statements) several sub-programs 
written by different programmers.  Near the start of the main program, certain “settings” are set, such as 
creating macro variables via %let statements or setting system options via an OPTION statement.   Later 
programs assume these settings are unchanged, but sometimes a setting is accidentally changed in one 
of the included programs.  This leads to errors in subsequent programs, which take a lot of time to debug. 

To alleviate this time sink, I wrote a pair of macros: a Store macro and a Compare macro.  The Store 
macro saves the current macro variables to a dataset at the start of the centralized program.  After the 
included programs are run, a Compare macro compares the current macro variables to the snapshot 
saved via the Store macro.    

After seeing the value of comparing the macro variables, I then wrote macro pairs for to check for 
changes in options and formats.  This idea could be expanded to other settings, such as library 
references or file references, but this paper will limit itself to just 3 macro pairs: macro variables, options, 
and formats.  See the appendix for the complete code used for this paper. 

This code was written and tested in SAS Enterprise Guide.  It assumes your SAS session has access to 
the SASHELP.VMACRO view and the WORK.FORMATS library.  If your formats are automatically saved 
to a different library, update the code accordingly. 

MACRO VARIABLES 

The first pair of macros checks for changes in macro variables.  It works by using the automatically-
generated SASHELP.VMACRO view.  To help limit extraneous output, we filter on the Scope variable to 
isolate global macro variables. 

%MACRO StoreMacro; 
 PROC SQL NOPRINT; 
  create table _STOREMACRO_ as 
  select name, value 
  from sashelp.vmacro 
  where SCOPE="GLOBAL" 
  order by Name; 
 QUIT; 
%MEND; 
 

In most situations, you would invoke this macro after creating the macro variables that you expect to stay 
static for the remainder of the program.  Then, near the end of the program, invoke this comparison 
macro: 



2 

%MACRO CompMacro; 
 PROC SQL NOPRINT; 
  create table _STOREMACRO_COMP as 
  select name, value 
  from sashelp.vmacro 
  where SCOPE="GLOBAL" and  

Name IN (SELECT Name FROM _STOREMACRO_) 
  order by Name; 
 QUIT; 
 PROC COMPARE DATA=_STOREMACRO_ COMPARE=_STOREMACRO_COMP; 
  ID Name; 
 RUN; 
%MEND; 

The subquery assures that we only compare macro variables that were “saved” during the invocation of 
the Store macro.  The COMPARE procedure states any changes to the macro variables.  For example, 
let’s say there’s a macro variable named AdminID that has the value of 0 when StoreMacro is invoked.  
Later, it is erroneously changed to the word BOGUS.  When CompMacro is invoked, PROC COMPARE 
will give this output: 

 

Output 1. PROC COMPARE: Example of a Flagged Change 

If there were no changes, you should expect a printout like the below: 

 

Output 2. PROC COMPARE: Example with Changes to User-Defined Macro Variables 

 

 



3 

FORMATS 

Similarly, you can use this macro to store the current formats to a dataset named _STOREFORMAT_.  
This code assumes your formats are saved to the WORK library; if you are using an alternate library to 
store and utilize formats, alter the code appropriately.1 

%MACRO storeformat; 
 proc format library = work.formats 
  cntlout = _STOREFORMAT_; 
 run; 
%MEND; 

Then this macro can be used to compare the current formats to those from when the formats were saved. 
Note that the filter in the SQL code limits the output to the formats that existed when formats were saved; 
any formats created afterwards are excluded from the comparison.  We COMPARE on format name, 
format type2, starting value, and ending value. 

%MACRO compformat; 
 proc format library = work.formats 
  cntlout = _STOREFORMAT_COMPx; 
 run; 
 proc sql NOPRINT; 
  create table _STOREFORMAT_COMP as 
  select *  
  from _STOREFORMAT_COMPx  

where FmtName||Type IN  
            (SELECT FmtName||Type FROM _STOREFORMAT_) 

  order by FmtName, Type, Start, End 
  ; 
  drop table _STOREFORMAT_COMPx; 
 quit; 
 proc sort data=_STOREFORMAT_; BY FmtName Type Start End; run; 

proc compare data=_STOREFORMAT_ compare=_STOREFORMAT_COMP               
  LISTALL; 

  ID FmtName Type Start End; 
 run; 
%MEND; 

As an example, we can start with these formats and invoke the “save macro”. 

proc format; 
 value test 1='Null' 2='okay'; 
 value static 5='no change'; 
 invalue inTest 'original'=1; 
 picture picTest 1-5='picture test original';  
run; 
%storeformat; 
 
 
 

 

1 For further details on the specific utilities of the FORMAT procedure, see the official SAS documentation or Jack Shoemaker’s 
paper Eight PROC FORMAT Gems (https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p062-26.pdf).  
2 The Type column contains metadata about if the format is character or numeric and whether it is a value, invalue, or 
picture.  C=character format.  N=numeric format.  J=character informat.  I=numeric informat.  P=picture format. 



4 

Then we change some formats and add a character format named test by another use of PROC 
FORMAT, then run the comparison. 
 
proc format; 
 value test 1='breaking' 2='okay' 3='new' 5='new'; 
 value $test '1'='Null' '2'='okay'; 
 invalue inTest 'breaking'=1; 
 picture picTest 1-5='picture test change';  
run; 
%compformat; 
 

The PROC COMPARE output has two spots where it gives particularly useful information.  The first is 

 

Output 3. PROC COMPARE: Comparison Results for Observations, for Formats 

This section shows the change to the inTest format, showing how we changed the character string from 
“original” to “breaking.”  Likewise, the new values we added for the numeric Test format show up here, 
since they are additions to what was originally there. 

The second spot to investigate is the comparison for the LABEL column: 

 

Output 4. PROC COMPARE: Comparison Results for LABEL, for Formats 

We can see how both the picture format PicTest and the numeric format Test had a label change.  For 
the picture format, we changed the label for values 1-5 (the Start and End).  For the numeric Test, we 
only changed the label corresponding to the value of 1 (both Start and End are equal to 1.) 

An important additional note is that two formats can have the same name, but will not be compared if they 
are of a different Type.  Our example starts with just a numeric format Test, but we have both a numeric 
and character format named Test when we run the comparison.   Due to the filter in the comparison 
macro, we do not compare the character Test format because it did not exist earlier; this is done on 
purpose to mirror how SAS treats “test.” and “$test.” as different formats.  (If you remove the filter, it would 
show up among the others shown in Output 3.)  

 



5 

OPTIONS 

Now we will check for changes to options.  The storage macro saves the current options to a dataset 
named _STOREOPTION_ via the OPTSAVE procedure.   We drop the option called _Last_ from our 
comparison, because _Last_ is the name of the most-recently created (e.g., last created) data set.   As 
one would expect that to change while running a program, including it would only clutter up the output and 
be potentially misleading. 

%MACRO StoreOption; 
 PROC OPTSAVE OUT=_STOREOPTION_(WHERE=(OptName NE '_LAST_')); RUN; 
 PROC SORT DATA=_STOREOPTION_(RENAME=(OptName=Name OptValue=Value));  
  BY Name;  
 RUN; 
%MEND; 

Our comparison macro uses the same method to save current macros, then compares it via PROC 
COMPARE. 

%MACRO compoption; 
 PROC OPTSAVE OUT=_STOREOPTION_COMP(WHERE=(OptName NE '_LAST_')); RUN; 
 PROC SORT DATA=_STOREOPTION_COMP(RENAME=(OptName=Name OptValue=Value));  
  BY Name;  
 RUN; 
 PROC COMPARE data=_STOREOPTION_ compare=_STOREOPTION_COMP; 
  ID Name; 
 RUN; 
%MEND;  

If we changed the default option values of nomlogic and label to logic and nolabel, we receive this output: 

  

Output 5. PROC COMPARE: Comparison Results for LABEL, for Options 

Note that the data set generated via PROC OPTSAVE may store the option settings differently than we 
normally think about them.  The LABEL option was 1 for being set as “label” and 0 once changed to 
“nolabel”; that is, 1 means OPTION LABEL is active and 0 means OPTION NOLABEL is active. We can 
see the same binary encoding is used for the MLOGIC option.    



6 

ONE MACRO PAIR TO CHECK ALL THREE 

Finally, let’s create a pair of macros that run all these macros for you.  These two macros let you quickly 
run all the store macros before you think changes occurred, then run all the comparisons after the spot 
where you fear changes might have occurred. 

%macro QC_Store; 
 %storemacro; 
 %storeoption; 
 %storeformat; 
%mend; 
%macro QC_Compare (titlelev=2); 
 title&titlelev 'Macro Compare'; %compmacro; 
 title&titlelev 'Option Compare'; %compoption; 
 title&titlelev 'Format Compare'; %compformat; 
%mend; 

Simply invoke %QC_Store early in your program, and %QC_Compare at the spot where you want to 
check for any changes to macro variables, options, or formats.  The titlelev variables in the comparison 
macro lets you choose what Title you want.  It defaults to Title2, so as to not overwrite whatever primary 
Title you are currently using. 

My hope is that these macros will be a useful utility for programmers to check for unintended changes 
that might be causing programs to crash or output to give erroneous results.  As noted earlier, this 
concept could be expanded to checking things like library references or other mutable elements of a SAS 
session that could potentially change but one usually does not want to change. 

 

  



7 

APPENDIX: FULL PROGRAM CODE 

Some spacing may be odd due to copying this from SAS Enterprise Guide into Word.  It is recommended 
that you copy this into SAS or a text editor for readability.  This contains some comments that were 
omitted in the code excerpts above. 

*MACRO VARIABLES; 
 
%let AdminID=0; 
%let macro2=1; 
%let macro3=2; 
%MACRO StoreMacro; 
 PROC SQL NOPRINT; 
  create table _STOREMACRO_ as 
  select name, value 
  from sashelp.vmacro 
  where SCOPE="GLOBAL" 
  order by Name; 
 QUIT; 
%MEND; 
%MACRO CompMacro; 
 PROC SQL NOPRINT; 
  create table _STOREMACRO_COMP as 
  select name, value 
  from sashelp.vmacro 
  where SCOPE="GLOBAL" and Name IN (SELECT Name FROM _STOREMACRO_) 
  order by Name; 
 QUIT; 
 PROC COMPARE DATA=_STOREMACRO_ COMPARE=_STOREMACRO_COMP; 
  ID Name; 
 RUN; 
%MEND; 
*save initial values; 
%StoreMacro; 
*do a comparison when no changes; 
%CompMacro; 
*change a macro variable then check for changes; 
%let adminid=BOGUS; 
%CompMacro; 
 
*OPTIONS; 
 
%MACRO StoreOption; 
 PROC OPTSAVE OUT=_STOREOPTION_(WHERE=(OptName NE '_LAST_')); RUN; 
 PROC SORT DATA=_STOREOPTION_(RENAME=(OptName=Name OptValue=Value));  
  BY Name;  
 RUN; 
%MEND; 
%MACRO compoption; 
 PROC OPTSAVE out=_STOREOPTION_COMP(WHERE=(OptName NE '_LAST_')); run; 
 proc sort data=_STOREOPTION_COMP(RENAME=(OptName=Name OptValue=Value));  
  BY Name;  
 run; 
 proc compare data=_STOREOPTION_ compare=_STOREOPTION_COMP; 
  ID Name; 
 run; 
%MEND; 
*store options; 
%StoreOption; 
*change options from default of nomlogic and label; 
options mlogic nolabel; 
*_LAST_ Specifies the most recently created data set, so drop it from comparison since it is 
expected to change; 
proc options option=_LAST_; run; 
*check for differences; 
%compoption; 
 
  
*FORMATS; 
 



8 

%macro storeformat; 
 proc format library = work.formats 
  cntlout = _STOREFORMAT_; 
 run; 
%mend; 
%macro compformat; 
 proc format library = work.formats 
  cntlout = _STOREFORMAT_COMPx; 
 run; 
 proc sql NOPRINT; 
  *only retain formats/informats with the same name and type as in _STOREFORMAT_.  
It is assumed okay if new formats/informats made; 
  create table _STOREFORMAT_COMP as 
  select *  
  from _STOREFORMAT_COMPx  
  where FmtName||Type IN (SELECT FmtName||Type FROM _STOREFORMAT_) 
  order by FmtName, Type, Start, End 
  ; 
  drop table _STOREFORMAT_COMPx; 
 quit; 
 proc sort data=_STOREFORMAT_; BY FmtName Type Start End; run; 
 proc compare data=_STOREFORMAT_ compare=_STOREFORMAT_COMP LISTALL; 
  ID FmtName Type Start End; 
 run; 
%mend; 
 
proc format; 
 value test 1='Null' 2='okay'; 
 value static 5='no change'; 
 invalue inTest 'original'=1; 
 picture picTest 1-5='picture test original';  
run; 
%storeformat; 
 
proc format; 
 value test 1='breaking' 2='okay' 3='new' 5='new'; 
 *a character format TEST does not overwrite the numeric format; 
 value $test '1'='Null' '2'='okay'; 
 
 invalue inTest 'breaking'=1; 
 picture picTest 1-5='picture test change';  
run; 
%compformat; 
 
 
*MACRO TO RUN ALL THREE AT ONCE; 
 
%macro QC_Store; 
 %storemacro; 
 %storeoption; 
 %storeformat; 
%mend; 
%macro QC_Compare (titlelev=2); 
 title&titlelev 'Macro Compare'; %compmacro; 
 title&titlelev 'Option Compare'; %compoption; 
 title&titlelev 'Format Compare'; %compformat; 
%mend;   



9 

ACKNOWLEDGMENTS 

The author thanks the SESUG chair and staff for this conference and the opportunity to present.  

CONTACT INFORMATION   

Your comments and questions are valued and encouraged. Contact the author at: 

Aaron R. Brown 
South Carolina Department of Education 
E-mail: arbrown@ed.sc.gov 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  


