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Abstract 

Outliers in a set of data represent observations that are distinguished from the expected patterns in the 
observed data. We are attracted to them because they are somehow atypical of what we expect to see 
in the distribution of the data that we have collected or generated. We may be troubled by them be-
cause they may contain important information about the process which we are attempting to model, or 
they may simply be spurious noise or even data points that have been corrupted by noise. In any case, 
we must be careful in our treatment of them because we cannot easily decide whether they represent 
some valuable aspect of the process under study or are simply aberrations. 
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Introduction 
In the final week of the semester in a statistics class, the professor was reviewing the topics that were 
covered. He talked about exploratory data analysis, analysis of variance, regression, variable selection, 
sampling bias, hypothesis testing, data collection and data cleaning, and many more of the useful topics 
that students regularly encounter in their second statistics course. A student raised his hand and said, 
“Professor, can you give us more problems to work so we can practice our skills prior to the final exam?” 
And the professor turned to face him, pointed at him, smiled, and proclaimed “Outlier!” 

This little anecdote highlights an important statistical topic that is often encountered in statistical and 
machine learning applications. What do we mean when we call an observation an outlier? What makes 
an outlying observation different from other observations? What, if anything, must we do when we 
have outlying observations in our data? Are outliers bad? Can we simply include them with the rest of 
our data and build models with them? Can we exclude them and conduct analyses without accounting 
for them? 

Detecting Outliers in Data 

An outlier is an observation that is so different from other observations that it attracts our attention.1 It 
may be extreme in some sense, or simply “doesn’t look right” to our trained eye. In the anecdote above, 
the professor labelled the student as an outlier perhaps because, in the professor’s experience, no stu-
dent had ever asked for more problems to work. He may have been an exception to the professor’s ex-
perience-based characterization of the distribution of students’ willingness to learn statistics. 

                                                           
1 Typically, we are concerned with continuous data, but we may also consider the case for categorical data. For 
example, a rose growing in a vegetable garden may be considered to be an outlier. Or, a categorical value with un-
usually low frequency may be due to a data labelling error. Domain knowledge must be used in such cases so that 
appropriate remedial measures may be applied. Perhaps the observation is so atypical that it must be omitted 
from the analysis, or it can be relabeled and merged with another category based on additional characteristics. 
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A more formal definition is that an outlier is “an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism” [1]. Also, “an outlying ob-
servation, or outlier, is one that appears to deviate markedly from other members of the sample in 
which it occurs” [2]. 

Outlying observations cannot be ignored because they may affect the parameter estimation process. 
High-leverage points are extreme or outlying values of ●░ that distort fitted regression model estimates 

by minimizing the error criterion, ВὩ. If an observation has high influence, it will significantly change 
the parameter estimates of a fitted regression model if it is omitted from the calculation [3]. 

Detecting Outliers Using Univariate Regression 

A first step in detecting outliers in data is to perform exploratory data analysis of individual variables. 
We will use Series III of Anscombe’s quartet2 [4] to represent the importance of visual analysis before 
any statistical algorithms are applied. Table 1 indicates the Series III data points. 

Table 1 AnscombeΩǎ Quartet Series III Data 

x 10.0 8.0 13.0 9.0 11.0 14.0 6.0 4.0 12.0 7.0 5.0 

III_y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73 

Figure 1 shows the scatterplot of the data overlaid on the 45Ј line of exact fit between actual III_y and 
predicted III_y. 

 

CƛƎǳǊŜ м !ƴǎŎƻƳōŜΩǎ vǳŀǊǘŜǘ {ŜǊƛŜǎ LLL {ŎŀǘǘŜǊǇƭƻǘ ŀƴŘ ¢ǊŜƴŘ [ƛƴŜ  

We see that observation 3 (note the “3” subscript below the data point in the scatterplot) is an excep-
tion to the trend and biases the trend line upward. The coefficient of determination, Ὑ , is 0.6663, indi-
cating moderate correlation between the dependent and independent variable. The equation of the 
trend line is 

 ὍὍὍͅώ σȢππςτυπȢτωωχσϽὼ (1) 

which is close to what Anscombe originally specified to be 
 ὍὍὍͅώ σ πȢυϽὼ (2) 

                                                           
2 Anscombe’s quartet is a collection of four datasets each of which has the same mean, variance, and correlation as 
the others. However, their distributions are strikingly different. Anscombe created the quartet to emphasize the 
need for visual analysis of data in addition to computing summary statistics. 
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The regression results are given in Table 2. Note that the residuals vary widely in magnitude, and that 
the residual of the outlier at observation 3 is much larger than those of any of the data points since its 

predicted value, ὍὍὍͅώ, is too low. 

Table 2 Series III Regression Results 

 

If we include a binary indicator variable to signify the presence of the exceptional data point, we have 
new data shown below (Table 3). 

Table 3 Series III Data and Binary Indicator Variable 

x 10.0 8.0 13.0 9.0 11.0 14.0 6.0 4.0 12.0 7.0 5.0 

III_y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73 
Binary 0 0 1 0 0 0 0 0 0 0 0 

We use OLS regression to compute the least-squares coefficients of the model 
 ὍὍὍͅώ ὦ ὦὼ ὦὄὭὲὥὶώὍὲὨὭὧὥὸέὶ (3) 

The results from PROC REG are shown in Table 4. 

Table 4 Regression of III_y on x Using Binary Indicator 

 

The coefficient of determination, Ὑ , is 1, indicating exact correlation between the dependent and inde-
pendent variable (to four significant digits of accuracy). The equation of the trend line for the outlier 
model is 

 ὍὍὍͅώ τȢππυφυπȢστυσωϽὼ τȢςττςωϽὄὭὲὥὶώὍὲὨὭὧὥὸέὶ (4) 
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Figure 2 shows how the binary indicator variable improves the prediction of III_y. 

 
Figure 2 Scatterplot of III_y vs ὍὍὍͅώ for Outlier Model 

We see that the use of the binary indicator variable to distinguish the outlier for observation 3 removes 
the bias caused by the outlier and results in a near-perfect fit. The regression results are given in Table 5. 
Note that the residuals are quite small. 

Table 5 Series III Regression Results for Binary Indicator Model 

 

The effect of adding the binary indicator variable is illustrated by the following computations as shown 
in Table 6. 

Table 6 Effect of Adding Binary Indicator Variable 

Obs #3 ὙὩὫὶὩίίὭέὲ ὉήόὥὸὭέὲ Pred III_y Resid III_y 

No Indicator  Ὁήὲ ρȡ ὍὍὍͅώ σȢππςτυπȢτωωχσϽρσ    9.4989 3.24109 

With Indicator Ὁήὲ τȡ ὍὍὍͅώ τȢππυφυπȢστυσωϽρστȢςττςωϽρ 12.7400 0 
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Since outliers produce large residuals, several measures have been developed to detect outlying obser-
vations based on their associated residuals. PROC REG produces many measures of outlyingness. Among 
them are studentized deleted residuals [5] and Cook’s distance (Cook’s D) statistic [6]. 

¶ Studentized deleted residuals are residuals that have been computed from the original III_y 
value and the predicted III_y value where the ith observation has been deleted from the regres-
sion so as to eliminate its influence as an outlier. The residual of the ith observation is then nor-
malized by the adjusted mean square error of the regression excluding the deleted observation. 
Each studentized deleted residual has a Student’s t distribution with ὲ ὴ ρ degrees of free-
dom. 

¶ Cook’s D statistic is “[A]n overall measure of the combined impact of the ith case on all of the es-
timated regression coefficients” [7, p. 403]. Similar to the studentized deleted residual, Cook’s D 
is calculated by removing the ith observation and recalculating the regression estimates. The 
computed value of Cook’s D may be referred to an F distribution with ὴ and ὲ ὴ degrees of 
freedom at the median, e.g., ὊȢ ὴȟὲ ὴ. If Ὀ > 1 then observation i may be considered to be 
influential. Another rule-of-thumb is to consider any observation for which ὅέέὯȭί Ὀ τȾὲ, 
where ὲ is the number of data points, to be an outlier. 

Figure 3 contains a PROC REG-produced side-by-side chart of studentized deleted residuals and Cook’s D 
for Anscombe’s series III data without a binary indicator variable to distinguish outliers. The legend at 
the bottom of the chart indicates that the t statistic for observation 3 is significantly outlying, and the 
value of Cook’s D statistic is similarly greater than the cutoff value of 1. 

 

Figure 3 Series III_y Studentized Deleted Residuals and Cook's D 
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Figure 4 indicates the moderating effect of distinguishing outliers by using a binary indicator variable. 
None of the observations produces an extremely large residual that biases the regression estimates. 

 

Figure 4 Series III_y Studentized Deleted Residuŀƭǎ ŀƴŘ /ƻƻƪΩǎ 5 ŦƻǊ .ƛƴŀǊȅ LƴŘƛŎŀǘƻǊ aƻŘŜƭ 

Detecting Outliers Using Multivariate Regression 

Treatment of outliers in the univariate case may be straightforwardly applied to the more complex case 
of multivariate regression. We will use the Boston Housing dataset [8] to investigate treatment of outli-
ers in the multivariate case. 

The Boston housing dataset represents housing values in suburbs of Boston. It consists of 506 observa-
tions that were collected in 1978. There are 13 interval-scaled attributes and one binary variable. The 
dependent variable in this exercise is median home value in $1,000’s. Appendix A contains attribute in-
formation. 
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We used PROC REG to perform variable selection using the adjusted Ὑ  model selection option3. The 
predictors AGE and INDUS were omitted from the final model. Table 8 shows the results. 

Table 7 Regression of Median Home Value on Selected Variables 

 
  

                                                           
3 The adjusted Ὑ  method finds subsets of independent variables that best predict a dependent variable by linear 
regression in the given sample. The method finds the models with the highest adjusted Ὑ  for a given combination 
of variables in a subset of the predictors. See, e.g., https://documentation.sas.com describing PROC REG model 
selection methods. 

https://documentation.sas.com/
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Figure 5 is a scatterplot of observed versus predicted median home values. It shows the outlying obser-
vations that are not within the 95% prediction ellipse4. The observations at the upper right corner of the 
plot all have the same median home value, so it is possible that they were capped at $50,000. 

 
Figure 5 Observed vs Predicted Median Home Values 

  

                                                           
4 A prediction ellipse is a graphical representation of the ρππρ )% confidence region of prediction for the loca-
tion of a new observation assuming bivariate normality of observed and predicted points. For a Type 1 error of 5%, 
the 95% prediction ellipse represents the bivariate region of the plane in which 95% of predicted points would be 
contained. Thus, points outside of the prediction ellipse boundary may be potential outliers. 
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Table 8 represents 33 observations that equaled or exceeded the Cook’s D value of 0.0079, which indi-
cates the threshold of an influential observation for this dataset. Note that there are studentized de-
leted residual t-values that do not exceed the critical value of ὸ σ, so we conclude that Cook’s D statis-
tic may produce more “false alarms”5 than the studentized deleted residual t-statistic. 

Table 8 Multivariate Regression Influential Observations 

 

                                                           
5 The concept of a false alarm is relative in this discussion since there is no definitive knowledge that an observa-
tion is sufficiently distinct from the other points in the sample to be considered an outlier. Hence, we observe that 
Cook’s D statistic may be a more sensitive indicator than the studentized deleted residual t-statistic. 
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If we add to the model a binary indicator variable for which ὄὭὲὥὶώὍὲὨὭὧὥὸέὶρ when 
ὅέέὯί Ὀ πȢππχω and 0 otherwise, we get the following improved result as seen in Table 9: 

Table 9 Multivariate Regression Model Using Binary Indicator 

 
  



11 
 

We compare the prediction performance of the two models below. Figure 5, reproduced from above, 
shows the 95% prediction ellipse of the regression model sans binary indicator variable. Figure 6 is a 
scatterplot of observed versus predicted median home values for the regression model that includes a 
binary indicator to distinguish outlying observations. 

We observe that the observations are grouped more closely within the 95% prediction ellipse for the 
binary indicator model, and that there appear to be fewer outliers in the neighborhood of the centroid 
of median home value. We conclude that the accuracy of the model has been improved by the inclusion 
of the binary indicator variable. 

 
 Figure 5 Observed vs Predicted Med Home Values Figure 6 Observed vs Predicted Median Home Values, 
        Binary Indicator Model 
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Table 10 contains the 27 observations detected by Cook’s D statistic. Every observation in Table 8 was 
assigned ὄὭὲὥὶώὍὲὨὭὧὥὸέὶρ . In Table 10, only 11 of the original 33 distinguished observations sur-
pass the Cook’s D threshold of 0.0079.6 The inclusion of the binary indicator variable has resulted in re-
ducing the total number of suspect outliers from 33 to 27. 

Table 10 Influential Observations Distinguished by Binary Indicator Variable 

 
  

                                                           
6 Observations 365, 369, 370, 371, 372, 373, 376, 381, 406, 413, and 506 were identified as outliers in the non-bi-
nary indicator regression, as reported in Table 8. 
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We can gauge the effect of adding the binary indicator variable by comparing regression performance 
statistics in the two models, as shown in Table 11. 

Table 11 Comparison of Models 

Performance Metric No Binary Indicator Includes Binary Indicator 

Root MSE 4.73623 3.91918 

Coefficient of Variation 21.01928 17.39323 

Ὑ  0.7406 0.8227 

Adjusted Ὑ  0.7348 0.8184 

We see that adding the binary indicator to distinguish observations detected by Cook’s D statistic has 
the effect of improving the model’s accuracy by 17%7, with a corresponding increase in adjusted Ὑ  of 
8.36%. 

Detecting Outliers Using Mahalanobis Distance 

One or more outlying values in the univariate case, e.g., Anscombe’s Series III data, will be easy to spot 
because a histogram of the data will show them at a significant distance from the body of the data. In 
the multivariate case, however, creating histograms for each variable can quickly become tedious to an-
alyze, and may not readily reveal a pattern that can be used for labelling certain observations as outliers 
since there is no direct way to visualize the interactions between multiple variables. 

The Mahalanobis distance is a commonly-used metric that converts an observation consisting of several 
continuous values into a single scalar value. The histogram of the distribution of these distances can be 
used to highlight observations whose distance from the centroid of the data is considered to be exces-
sive. 

The formula for the Mahalanobis distance is 
 Ὀ ●░ ●░ ●╣╢ ●░ ● (5) 

where ●░ ὼȟὼ , ..., ὼ ȟὭ ρȟȣȟὔ is a row vector of p variables, ● is the row vector of means of 

each variable, i.e., the centroid of the data, and Ὓ  is the inverse of the sample covariance matrix.8 We 

may specify a boundary point, …ȟȢ , that determines an ellipsoid in p  dimensions. If Ὀ ●░
…ȟȢ ȟ then the point ●░ lies within the ellipsoid and is not an outlier. Otherwise ●░ is an outlier. One 

difficulty with using the Mahalanobis distance to identify outliers is that “[D]ata sets with multiple outli-
ers or clusters of outliers are subject to masking and swamping effects” [9, p. 7]. An observation that 
would be considered to be an outlier by itself is masked if there is another observation close to it which 
skews the mean and covariance estimates significantly to reduce the distance of the outlying points to 
the centroid of the data. Swamping occurs when an observation that would normally be a non-outlier is 
grouped with outlying instances that skew the mean and the covariance estimates toward the centroid 
of the group and not the centroid of the main body of the data. Distances in this case are large so that 
the normally non-outlying observation is classified as an outlier. 

Since outliers significantly influence the mean and covariance estimates of a dataset, estimates of dis-
tance ought to be computed using robust procedures such as PROC ROBUSTREG. Further discussion of 
outliers using robust algorithms is a substantial topic that is outside the scope of this paper. 

                                                           
7 We compute (RootMSE_NoIndicator-RootMSE_IncludingIndicator)/ROOTMSE_NoIndicator to get -0.17238, or 
about 17% decrease in Root MSE due to inclusion of a binary indicator variable for suspected outliers. 
8 The Mahalanobis distance is the multivariate equivalent of the z-score where ᾀ ὼ ὼӶȾί in the univariate 
case. 
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Using PROC ROBUSTREG, we computed Mahalanobis and robust distances and compared them in Figure 
7. We see that there is significant masking of Mahalanobis distances which the robust distance calcula-
tion technique uncovers. The Mahalanobis distance-observation number plot and the corresponding 
box-and-whisker plot show only moderate distances from observations to the centroid of the data, 
while the equivalent robust results from PROC ROBUSTREG reveal significant deviations. 

 
Figure 7 Comparison of Mahalanobis and Robust Distances 
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In Figure 8, we compare the predictions generated by the OLS binary indicator model using Cook’s D sta-
tistic (Figure 6) and the OLS regression using the binary outlier indicator created by PROC ROBUSTREG as 
a predictor of outlyingness.9 We observe that the two results are closely matched. 

 
Figure 8 Comparison of Robust and OLS Regression Predictions 

Table 12 contains selected performance statistics of the two regression models. We see that the robust 
regression detection of outliers is slightly more powerful than using Cook’s D as a measure of outlying-
ness. 

Table 12 Comparison of OLS Regression and Robust Regression 

Performance Metric 
OLS Regression Using /ƻƻƪΩǎ 5 

Binary Indicator 
Robust Regression Using ROBUSTREG 

Binary Indicator 

Root MSE 3.91918 3.62416 

Coefficient of Variation 17.39323 16.08394 

Ὑ  0.8227 0.8481 

Adjusted Ὑ  0.8184 0.8447 

                                                           
9 PROC ROBUSTREG creates a binary variable, eponymously called “OUTLIER”, to distinguish observations that ex-
ceed a cutoff value for outlyingness. The feature is documented in the PROC ROBUSTREG MODEL statement and 
described more fully in the Leverage-point and Outlier Detection portion of the Details section of the ROBUSTREG 
Procedure documentation. 
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Detecting Outliers Using Local Outlier Factor and Local Outlier Probability 

An outlier detection algorithm may compare an observation to all other observations in a set of data, in 
which case it is deemed to be global in scope, or it may compare the observation to its neighbors in a 
cluster, in which case it is local in scope. The detection techniques described above are global in scope, 
and here we discuss two techniques that are local in scope, pertaining to outliers relative to observa-
tions in a particular cluster. 

Local Outlier Factor 

If a point is relatively isolated from its nearest neighbors in a cluster, it may be an outlier with a degree 
of outlyingness related to its distance from its nearest local neighbors in the cluster. Using this concept, 
Breunig et al. [11] described an algorithm for finding locally-outlying observations relative to their near-
est neighbors. A point is “local in that the degree of outlyingness depends on how isolated the object is 
with respect to the surrounding neighborhood” [11, p. 93]. A tutorial example is presented in [12] in de-
tail. 

The Local Outlier Factor, a positive real number that represents the density10 of observations around a 
point compared to the density of its nearest Ὧ neighbors, can be used to quantify the isolation of a given 
point and thus measure its outlyingness. The LOF algorithm requires the specification of an integer, Ὧ, 
which represents the locality, i.e., the number of nearest neighbors to a point. Interpretation of the LOF 
is not straightforward since it is the average ratio of the density of the Ὧ nearest neighbors of a point A 
to the density of point A and is not necessarily comparable from one cluster to another. For a given 
point, a ὒὕὊͯ1 indicates similar density as its neighbors, ὒὕὊρ indicates higher density than its 
neighbors, and ὒὕὊρ indicates lower density, i.e., fewer neighbors so higher likelihood of outlying-
ness. 

We have written a SAS® macro, %LOF_LoOP, to compute the LOF and the LoOP (Local Outlier Probabil-
ity, discussed below). Several graphical representations of the data are also produced to facilitate inter-
pretation and definition of outlyingness based on the LOF and the LoOP. We applied the %LOF_LoOP 
macro to Fisher’s iris data [13] and present selected results.11 
  

                                                           
10 Density is measured in number of points per unit of distance. 
11 The %LOF_LoOP macro invocation code used to produce the LOF and LoOP graphics is given in Appendix B. 
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A histogram of the LOF may be used to suggest a cutoff value above which to declare an observation to 
be an outlier. Values ρ represent inliers, while values slightly > 1 may be “near outliers” but not con-
clusively so. In Figure 9, values >> 1, e.g., > 1.5, are likely outliers. Since the LOF is not a uniform metric 
between clusters, it is difficult to make conclusive statements such as “an observation with a LOF value 
above 1.5 ought to be treated as an outlier.” 

Figure 9 shows the frequency histogram of LOF factors for Fisher’s iris data using Ὧ ςπ nearest neigh-
bors. The choice of Ὧ is important since the LOF may change markedly according to Ὧ. Xu et al. [15] have 
developed a technique for finding an optimal value of Ὧ. 

 
Figure 9 Frequency Histogram of LOF  
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The empirical cumulative distribution function may be used to detect the LOF value at which the in-
crease in the frequency of distinct values levels off, indicating minor changes in the number of outlying 
observations. It is another way to depict the distribution of LOF values in addition to the frequency his-
togram. 

Figure 10 represents the distribution of LOF values as a cumulative proportion of the entire set of 
scores. 

 
Figure 10 Empirical CDF of Local Outlier Factor  
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Figure 11 is a scatterplot of the clustered iris data using the Ὧ ςπ nearest neighbors. In the interests of 
legibility, we set the minimum LOF value to 1.17 so that circles of LOF > 1.17 would be drawn, thus sup-
pressing circles for smaller values of the LOF. 

 

Figure 11 Scatterplot of Local Outlier Factor, Minimum Radius=1.17  
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Local Outlier Probability 

Kriegel et al. [14] have extended the local outlier paradigm to produce a probability of outlyingness (Lo-
cal Outlier Probability) which is easier to interpret than the LOF itself. The LoOP is a normalized probabil-
ity that can be compared between clusters and is thus more applicable to all of the points in a set of 
data. 

The distribution of the Local Outlier Probability for the iris data is shown in Figure 12. Similar reasoning 
as for LOF suggests that LoOP values above 0.6 may indicate that the algorithm has detected an outlying 
observation. 

 

Figure 12 Histogram of Local Outlier Probability  
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The empirical CDF of the LoOP in Figure 13 serves as a graphical description of the cumulative LoOP val-
ues and may be used similarly as the ECDF of the LOF. 

 

Figure 13 Empirical CDF of Local Outlier Probability 
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Figure 14 is the scatterplot of the LoOP of Fisher’s iris data, with circles drawn around points for which 
LoOP πȢςȢ The %LOF_LoOP macro has the provision to create an outlier flag for observations whose 
probability of outlyingness exceeds a threshold value. For example, if the macro parameter 
ὕὟὝὒὍὉὙͅὖὙὕὄ  πȢφ and the LoOP score is > 0.6, the variable OUTLIER would be set to 1 in the SAS 
output dataset produced by the macro. 

 

 

Figure 14 Scatterplot of Local Outlier Probability, Minimum Radius=0.2 

Treatment of Outliers 
Detecting outliers is the first step in remediating their tendency to influence the predictions of a regres-
sion model. They may be identified visually or through analytical means, and a binary indicator variable 
can be used to mark their presence in a regression analysis.  

Treatment of Outliers by Excision 

Our first impulse regarding outliers, once we believe that we have confidently detected them, may be to 
excise them from the sample data. We may tell ourselves that, since these outlying observations are not 
characteristic of the data, we may remove them from the analysis without consequence, and all will be 
well. But we may have fooled ourselves with the false assumption that these data points are truly outli-
ers or noise-contaminated data. What if they represent the beginning of an emerging trend? 
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For example, in ATM fraud detection, a one-time spike in the amount of cash withdrawn from an indi-
vidual’s account may represent money withdrawn for a vacation, or it may signify that a fraudster has 
hacked the account. If the issuing bank denies the transaction and it is legitimate, the accountholder will 
be angry. If the transaction is permitted and the accountholder denies making the transaction, the bank 
may be required to absorb the cost of a false positive decision and incur the expenses associated with 
cancelling the account and issuing a new debit card. A sequence of unusually large withdrawals in a 
short amount of time may signify an emerging trend of fraudulent activity, which is very expensive to 
the bank. Merely to excise such transactions as “contaminated by noise” would be to make a costly and 
easily-avoided error. 

Hopefully, we understand that simply throwing out data points ought not to be a reflex action, but must 
be considered in light of the consequences of ignoring potentially valuable information. At the very 
least, the properties of the sample data have changed, and data selection bias has been introduced into 
what was previously a random sample. 

Treatment of Outliers Using Binary Indicator Variables 

We have discussed the use of binary indicator variables to distinguish and remediate the effects of out-
lying values and observe that their use is substantiated in practice as a valid technique. We note that the 
use of binary indicators does not affect the original distribution of the sample data. 

Treatment of Outliers Using Winsorization 

Winsorization [10] is the process of replacing a specified set of extreme values of a given variable in a set 
of sample data with specified values computed from the data. Small extreme values are replaced by 
larger ones and large extreme values are replaced by smaller ones. While this substitution may reduce 
the effects of outlying values, it changes the distribution characteristics of the variable that is Winso-
rized. 

For example, in the Boston Housing data, the minimum and maximum values of CRIM are 0.00632 and 
88.97620, and the 1st and 99th percentiles are 0.01360 and 41.52920. So a 98% Winsorization of CRIM 
would substitute the values 0.01360 in place of any value lower than 0.01360 and 41.52920 in place of 
any value higher than 41.52920. We see from the box-and-whisker plots in Figure 15, which contains the 
z-score standardization of the sample data, that the range of the CRIM variable is attenuated in the Win-
sorized sample. 
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Figure 15 Comparison of Standardized Boston Housing Data and Standardized Winsorized Boston Housing Data 

Since we have seen the distorting effects of outliers in masking and swamping outlying and well-be-
haved observations, we may naturally expect to see an improvement in any model built with Winsorized 
data.  

Table 13 presents the results of predicting median home value using 98% Winsorized Boston housing 
data. The variables AGE and INDUS were omitted by the adjusted Ὑ selection algorithm. 
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Table 13 Regression Model Using 98% Winsorized Data 

 

Table 14 shows the comparison of OLS regression using a binary indicator variable and OLS regression 
using the Winsorized data. 

Table 14 Comparison of OLS Regression Using Robust Binary Indicator and Winsorized Data 

Performance Metric 
Robust Regression Using ROBUSTREG 
Binary Indicator 

OLS Regression Using 
98% Winsorized Data 

Root MSE 3.62416 4.67122 

Coefficient of Variation 16.08394 20.71966 

Ὑ  0.8481 0.7465 

Adjusted Ὑ  0.8447 0.7408 

The performance of the model built on the Winsorized sample data is clearly inferior to the model built 
on the original data using the binary indicator variable created by PROC ROBUSTREG. We conclude that 
there is significant information in the tails of the distributions of the Winsorized variables that is lost 
when a relatively indiscriminate Winsorization is performed on the Boston Housing sample data.  
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Treatment of Outliers Using Transformations 

Sometimes, transformations may be used to mitigate the distorting effects of extreme values. For exam-
ple, income is frequently distributed according to a log-normal distribution. Taking the logarithm of in-
come then produces a predictor that is more normally distributed in the logarithm of the variable. This 
approach might be recommended to reduce the skewness of income, which if untreated would tend to 
produce disproportionate effects in the model’s parameter estimates. However, introducing this trans-
formed value into the regression equation changes the model from one where change in ὣ is propor-
tional to change in ὍὲὧέάὩ to one where change in ὣ is proportional to the change in the logarithm of 
ὍὲὧέάὩ and hence the model is nonlinear in ὍὲὧέάὩ. For example, given the linear regression model 

 ὣ   Вὼ Ͻ ὍὲὧέάὩ , (6) 

if we transform ὍὲὧέάὩ to ÌÏÇ ὍὲὧέάὩ then we must solve for the parameter estimates of the model 
 ὣ   Вὼ ϽÌÏÇ ὍὲὧέάὩ . (7) 

It can be rewritten into the regression model format 

 ὣ  ὼ Ͻὼ  (8) 

where ὼ ÌÏÇ ὍὲὧέάὩ. This model is still a linear regression model because it is linear in the parame-
ters, but is no longer straightforward. Explanation of the marginal change in Y with a unit change in 
ὍὲὧέάὩ is now more complicated. 

There are many transformations possible, but each may introduce complexity into the interpretation of 
the model’s construction and complicate the insights into the data, which is the purpose of building a 
model. Domain knowledge may be useful in guiding the use of transformations and in explaining param-
eter estimates. Any factor that diminishes straightforward understanding of the model may also reduce 
the likelihood of acceptance of results. 

Summary 
We must approach outlier detection with respect for the data, since the observations in a set of data 
contain information relevant to the process being modeled. We must apply domain knowledge to help 
modelers decide which observations are typical and which are not characteristic of the generative pro-
cess. Noisy data are especially subject to outliers, and will distort OLS regression model parameter esti-
mates due to their extreme values. Robust regression algorithms such as PROC ROBUSTREG have been 
developed to mitigate the effect of extreme values. We may detect outliers by processing the data as a 
single group using global outlier detection algorithms, or in individual clusters using local detection algo-
rithms. 

Treating outliers using binary indicator variables to distinguish them from nonoutlying observations may 
produce more accurate results than Winsorizing them arbitrarily, which adds bias to the data and may 
introduce errors into the parameter estimation process. Modifying a variable’s values via a mathemati-
cal or other transformation may improve its performance but at the cost of increasing the model’s com-
plexity and hence its interpretability. A model that is not straightforward to understand may not be ac-
cepted by the user community for which it has been developed. 
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Appendix A 
The housing.names file contains descriptive information about the Boston housing data. Its URL is 
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ . 

The attributes and metadata are given below. 

Attribute Name Description 

CRIM Per-capita crime rate by town 

ZN Proportion of residential land zoned for lots over 25,000 sq. ft. 

INDUS Proportion of non-retail business acres per town 

CHAS Charles River dummy variable (=1 if tract bounds river, 0 otherwise) 

NOX Nitric oxides concentration (parts per 10 million) 

RM Average number of rooms per dwelling 

AGE Proportion of owner-occupied units built prior to 1940 

DIS Weighted distances to five Boston employment centers 

RAD Index of accessibility to radial highways 

TAX Full-value property-tax rate per $10,000 

PTRATIO Pupil-teacher ratio by town 

B 1000( Bk – 0.63)^2 where Bk is the proportion of African Americans by town 

LSTAT % lower status of the population 

MED Median value of owner-occupied homes in $1,000’s 

Appendix B 
The %LOF_LoOP heading and parameter definitions are: 

%macro LOF_LoOP( DSNIN, DSNOUT, K, VAR, DIST_FCN=euclid, LAMBDA=3, MIN_LOF=1,  

                 MIN_LOOP=0.95,  OUTLIER_PROB=.95, PLOT=NONE, PRINT=N 

               ) / minoperator ;  

  
/* PURPOSE: compute local outlier facto r (LOF) and local outlier probability (LoOP)  

 *          characterizing an observation as an outlier  within a local neighborhood  

 *  

 * Create variable OUTLIER  in & DSNOUT: if LoOP >= &OUTLIER_PROB  then OUTLIER = 1 else 0  

 *  

 * Parameters:  

 *    DSNIN        ::= name of input dataset containing interval - scaled observations  

 *    DSNOUT       ::= name of output dataset containing k - NN info  

 *    K            ::= k'th n earest neighbor within a local nbhd  

 *    VAR          ::= list of interval - scaled variables to be treated for outliers  

 *    DIST_FCN     ::= [optional] proximity measure, e.g., Euclidean or Manhattan distance  

 *    LAMBDA       ::= [optional] multiplier of the standard distance value for outlier detection  

 *    MIN_LOF      ::= [optional] min value to plot using LOF value as radius of plot bubble  

 *    MIN_LOOP     ::= [optional] min value to plot using LOOP va lue as radius of plot bubble  

 *    OUTLIER_PROB ::= [optional] if Local Outlier Prob >= &OUTLIER_PROB then OUTLIER = 1, else 0  

 *    PLOT         ::= [optional] plot control flag: ALL, LOF, LoOP, NONE  

 *    PRINT        ::= [optional] print control flag f or PROC MODECLUS: Y or N  

 */  

  

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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We used the Output Display System to capture the graphics produced by the %LOF_LoOP macro. 
ods listing close ;  

ods pdf file=  

"C: \ Users \ Username \ Documents \ My SAS Files \ Outlie rs \ SASCode\ LOF_LoOP_Iris.pdf" ;  

ods graphics on ;  

%let IRIS_VARS = sepallen sepalwid petallen petalwid ;  

%LOF_LoOP(LIBNAME.iris, iris_LOF_LOOP ,  20,  &IRIS_VARS,  

          min_LOF=1.17, min_LOOP=0.2,  outlier_prob=0.6, pl ot=all, print=n,  

          dist_fcn= Euclid  

         )  

ods graphics off ;  

ods pdf close ;  

ods listing ;  

The macro code for %LOF_LoOP is available upon request. 
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