
1

SESUG 2020 Paper 168

Controlling the Order of Data in SAS®
Imelda C. Go, Questar Assessment, Inc.

ABSTRACT
This paper will go over a number of SAS® features and techniques SAS programmers use to
control the sort order of data in their data sets and reports. A custom sort order is very
important because actual needs in the field are not limited to alphabetical, numeric, or
alphanumeric ordering. There are many situations where a custom sort order is what is
preferred in an organization and/or for reporting.

INTRODUCTION
SAS® programmers are not limited to defaults or PROC options that produce output sorted
in a certain way. With a few simple techniques, you can sort your data however way you
need to.

Sorting values in variables from an observation. This paper has examples of sorting
values within a set of variables in an observation/record/row in the data set. That is, given a
set of variables of the same type (either all numeric or all character), you can sort the
values in the variables and reassign the values to the variables within the set. For example,
A=2, B=3, C=1. You would like to sort the values such that, A=1, B=2, C=3.

Sorting observations (records/rows) in a data set. The other examples will focus on
how to customize sorting observations in a data set. If you use BY-group processing in SAS,
data will often be processed and provided in default sort order in SAS output data sets.
Even if SAS provides the data in the order that is not desired, you will be able to change the
sort order of its contents to suit your needs.

HOW SAS SORTS DATA VALUES
Before you produce your custom sort order, it helps to have a good understanding of how
SAS sorts data.

 With a numeric variable, sorting is straightforward and the numeric values will be
sorted per their position on the real number line as shown in Figure 1. Missing values
will precede non missing values when in default ascending order. (SAS has three
types of missing values: numeric, special numeric, and character.)

Figure 1. Example of a Real Number Line

2

With a character variable, the SAS programmer’s concerns are greater:

o Consider all the types of characters that will appear in your data and determine
how these will be sorted. Study how SAS sorts data and determine if the default
sort order is sufficient for your needs.

o Character values are case-sensitive.

o What individual character values will appear your data? Will foreign letters,
punctuation, symbols, and/or other special characters appear in the data?

o How are numbers stored as character values sorted?

o How are alphanumeric values sorted?

Table 1 provides examples of how SAS sorts data:

Variable
Type

Data Values Values in Default Ascending
Order

Numeric 1, 2, 3, 10, 11 1, 2, 3, 10,11

Character 1, 2, 3, 10, 11 1, 10, 11, 2, 3

Character aA, Aa, AA, aa AA, Aa, aA, aa

Character A, A-, B+, B, B-, C+, C, C-, D+,
D, D-, F

A, A-, B, B+, B-, C, C+, C-, D, D+,
D-, F

Character Taylor, E. E. Taylor, E E Taylor E. E. Taylor, E E Taylor, Taylor

Character 11, 10, 01, 02, 03 01, 02, 03, 10, 11

Table 1. Examples of How Data are Sorted by Default Ascending Order

o How do invisible non-printable characters affect the sort order and data
processing?

o The presence of non-printable characters (e.g., tab, hard returns, etc.) in
the data can create problems. For example the string “ABC” will not be
treated as the having the same value as “ABC” with a TAB mark (‘09’x) is
somewhere in the “ABC” string value. Since non-printable characters are
just that (non-printable and “invisible”), the reader cannot view the non-
printable characters without a special way of seeing them. You can
remove them by using the following COMPRESS function with three
arguments:

 compress(oldvalue,,’kw’)

 The COMPRESS function removes all the non-printable characters in
the character variable oldvalue (1st argument). The 2nd argument
of the function is blank. The 3rd argument of KW means SAS will
“keep the writable characters” and eliminates the non-printable
characters from the string.

o Have you resolve inconsistencies in the data that can affect the sort order?

3

Table 2 lists a number of possible issues that you might encounter. It also lists a few character functions
that you could use to resolve any data issues prior to sorting the data.

Possible Issues Examples of school
variable values

Character Function

Unwanted leading and
trailing blanks

“ School ”
vs.

 “School”

STRIP(school)
removes leading and trailing
blanks.

LEFT, RIGHT, TRIM, TRIMN,
STRIP are functions that remove
blanks from strings.

Inconsistent case “School” vs “SCHOOL” UPCASE(school)
converts all lower case letters to
upper case.

LOWCASE(school)
converts all upper case letters to
lower case.

Embedded multiple
blanks

“High School”
vs.
“High School”

COMPBL(school)
replaces two or more consecutive
blanks with a single blank.

Change one character for
another

“HIGH SCH00L”
vs.
“HIGH SCHOOL”

TRANSLATE(school,’O’,’0’)
changes all zeroes (0) to the
capital letter O. Note that the O
(what you want to change the
character value to) is listed first
and then followed by the
character value you want to
change.

Change one or more
words in a string with
other strings

“ABC ELEMENTARY
SCHOOL”
vs.
“ABC ES”

TRANWRD(school,’Elementary
School’,’ES’)
changes all occurrences of
“Elementary School” to “ES”.
Note that what you want to
change the value to is listed after
you specify the value you want
to change.

Table 2. Examples of Functions that Can Help with Data Issues

4

SORTING NUMERIC DATA PER OBSERVATION USING SORTN
FUNCTION
Let us suppose you have the following scores data set with numeric student scores
(scores1-score5):

Let us suppose that we want the five scores for each student to be listed from lowest to
highest in the score1-score5 variables/columns. To sort the numeric values in ascending
order, use the SORTN function:

 data ordered; set scores;
 call sortn(of score1-score5);

The following data set will be produced:

SORTING CHARACTER DATA PER OBSERVATION USING SORTC
FUNCTION
Let us suppose you have the following levels data set with character student names
(student1-student4):

Let us suppose that we want the four student names listed in alphabetical order in the
student1-student4 variables/columns. To sort the character values in student1-student4
by name, use the SORTC function:

 data ordered; set levels;
 call sortc(of student1-student4);

The following data set will be produced:

5

CREATING A CUSTOM SORT ORDER WITH ONE VARIABLE
Let us look at the levels data set below, which has records listed in Gold, Silver, and
Bronze order:

Let us suppose we want to change the order of the records to Bronze, Silver, and Gold and
produce the following:

This new order is not alphabetical by medal value order. We will need to apply a custom sort
order to the data.

proc format;
 invalue order
 'Bronze' = 1
 'Silver' = 2
 'Gold' = 3;

Create a user-defined informat that
maps the values to a number that
represents the order in which the
records will appear.

data ordered;
 set levels;
 neworder=input(level, order.);

Create a new numeric variable that
will be used to sort on to produce
the custom sort order.

proc sort data=ordered;
 by neworder;

Sort on the new variable to produce
the custom sort order.

The records will now appear in the custom sort order. Note that the variable neworder was
added to the data set in order to use it as the BY variable in PROC SORT.

The two sets of PROC SQL code below will produce the same results:

6

Note that the PROC SQL does not need the addition of a new variable to sort the records.
The ORDER BY portion of the code executes the sorting.

proc sql;
create table ordered as
select * from levels
order by input(level, order.);
quit;

This also uses the user-defined
format above. The sorting is done
using the order defined in the
informat.

proc sql;
create table ordered as
select * from levels
order by case
when level = 'Bronze' then 1
when level = 'Silver' then 2
when level = 'Gold' then 3 end;
quit;

This does not use the user-defined
informat above. The order of the
records is articulated as shown.

7

CREATING A CUSTOM SORT ORDER WITH TWO OR MORE VARIABLES

We take the coding techniques used for sorting on the values of one variable and expand it
to two variables. We can infer from this example how we can extend the code beyond two
variables.

For this example, let us look at the list of gold, silver, and bronze medal recipients in the
elementary, middle, and high schools. We want a data set that shows the medals in bronze,
silver, and gold medal order and then by ES, MS, and HS level order. If we go by
alphabetical order, the medal values will be listed as Bronze, Gold, and Silver; the level
values will be listed as, ES, HS, and MS. These two sort orders are not alphabetical, and
require a custom sort order for both variables.

Our goal is to produce a data set sorted using two variables: by medal (Bronze, Silver, Gold
order) and level (ES, MS, HS order).

proc format;
 invalue order
 'Bronze' = 1
 'Silver' = 2
 'Gold' = 3;
 invalue school
 'ES' = 1
 'MS' = 2
 'HS' = 3;

Create two user-defined informats
that map the values to a number
that represents the order in which
the records will appear.

data ordered;
 set levels;
 neworder1=input(medal,order.);
 neworder2=input(level,school.);

Create a new numeric variable that
will be used to sort on to produce
the custom sort order.

proc sort data=ordered;
 by neworder1 neworder2;

Sort on the new variable to produce
the custom sort order.

8

The records will now appear in the custom sort order. Note that the variables neworder1
and neworder2 were added to the data set.

The two sets of PROC SQL code below will produce the same results:

Note that the PROC SQL code does not need the addition of new variables to sort the
records. The ORDER BY portion of the code executes the sorting.

proc sql;
create table studentlevels1 as
select * from levels
order by input(medal, order.),
input (level, school.);
quit;

This also uses the user-defined
formats above. The sorting is done
using the order defined in the
informats.

proc sql;
create table studentlevels2 as
select * from levels
order by
case when medal = 'Bronze' then 1
when medal = 'Silver' then 2
when medal = 'Gold' then 3 end,
case when level = 'ES' then 1
when level = 'MS' then 2
when level = 'HS' then 3 end;
quit;

This does not use the user-defined
informat above. The order of the
records is articulated as shown.

9

CONCLUSION
The SAS programming language offers different tools and techniques to produce a custom
sort order.

REFERENCES
Cody, Ron. 2010. SAS® Functions by Example, Second Edition. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Imelda C. Go, Ph.D.
Questar Assessment, Inc.
igo@questarai.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

