
 1

SESUG 2020 – Paper 150

Look Up Not Down: Advanced Table Lookups in Base SAS

Jay Iyengar, Data Systems Consultants, Oak Brook, IL
 Josh Horstman, Nested Loop Consulting, Indianapolis, IN

ABSTRACT

One of the most common data manipulation tasks SAS® programmers perform is combining tables through table lookups. In
the SAS programmer’s toolkit many constructs are available for performing table lookups. Traditional methods for performing
table lookups include conditional logic, match-merging and SQL joins. In this paper we concentrate on advanced table lookup
methods such as formats, multiple SET statements, and HASH objects. We conceptually examine what advantages they
provide the SAS programmer over basic methods. We also discuss and assess performance and efficiency considerations
through practical examples.

INTRODUCTION

Within Base SAS, the two most commonly used table lookup techniques are the DATA step merge, and the Proc Sql join.
Most SAS users are quite familiar with these techniques and employ them extensively. In our experience, the DATA step
merge is considered to be the more complex method, where the Proc Sql join is considered to be more intuitive and user-
friendly. For this paper, we define these techniques as traditional table lookup methods. Opinions vary on the performance
and efficiency of these two techniques, for given programming situations. Because of the attention they receive in the SAS
literature, and their exclusion from many SAS programming courses, many SAS users aren’t aware of advanced techniques
for combining input tables or SAS data sets. However, SAS contains advanced capabilities for performing table lookups.
More experienced SAS users, especially Certified SAS Programmers are more familiar with table lookup methods.

WHAT ARE TABLE LOOKUPS?

With the advent of databases, a process was devised for organizing data structures in database objects. Part of this process
involved deciding how to collect and store large amounts of data within a database. Distinct pieces of information would be
stored in separate columns, called fields in database terminology. As databases grew in scale, it became practical and
efficient to store data in separate database objects. Databases containing large numbers of variables could store sets of
variables in unique tables. This was the idea of the relational database. Specific variables could be retrieved from their
respective tables by linking to their table. This is the basic concept of a table lookup.

In terms of the structure of a table lookup, a table lookup is performed when two or more data sets are combined horizontally.
Table is just an informal name for a SAS data set. The tables are joined based on the value of a key variable or primary key.
Each table is indexed on a primary key, which is common to both data sets. Technically, the primary key should be a way to
uniquely identify records in a data set. For example, many healthcare data sets, use Patient ID as a primary key. In a DATA
step Merge, the primary key is the BY variable, specified in a BY statement. In a Proc Sql join, the primary key is the variable
specified in a join condition in the WHERE or ON clause.

Amongst SAS users, table lookups have been used interchangeably with merges and joins. In the simple example of a table
lookup, you have a Base table which contains the bulk of your data, and a lookup table which contains only a few variables.
The Base table can be thought of as a master data set containing millions of records or observations, where the lookup table
is usually much smaller. This example of a table lookup is directly relevant to healthcare data sets which can be very
massive. Healthcare data sets may contain millions of patient records, and codes to indicate medical diagnoses or
procedures. They must be linked to smaller reference tables to obtain the code definitions. Figure 1 displays a schematic
of a table lookup with five tables.

2

Figure 1. Table Lookup Schema

METHODS FOR TABLE LOOKUPS

There are many methods available for performing table lookups using Base SAS software, ranging from the simple to the
complex. Carpenter (2001 and 2015) details several such methods.

Selecting a method to use for a given situation may depend on a number of factors. When dealing with large data sets,
efficient performance may be a priority. In other cases, it may be desirable to keep the code as simple as possible for ease
of maintenance and reuse. Each table lookup method has its own advantages and disadvantages, which must be
considered in the context of the task being performed.

It is advantageous for the SAS programmer to be familiar with a variety of methods. Although this paper focuses on several
more advanced techniques, we begin with a review of several simple approaches commonly used.

SIMPLE TABLE LOOKUP METHODS

At its core, a table lookup is simply retrieving a value for one variable based on the value for another. One of the simplest
methods for accomplishing this is by hard-coding the relationship between the two variables directly into the programming
logic. This is often done through a series of IF…THEN…ELSE statements or a SELECT statement. Horstman (2017)
presents a method for hard-coding a table lookup using the WHICHC/WHICHN and CHOOSEC/CHOOSEN DATA step
functions. These approaches are quick and easy when the lookup values are few in number and unlikely to change, but they
do not scale well.

Another way of performing a table lookup is by combining multiple data sets using the MERGE statement in the DATA step.
This is a very common approach because it is simple and versatile. However, it does have some limitations. One notable
drawback is that data sets must generally be sorted before they can be merged in this manner. When data sets are large,
sorting can be a costly operation. In addition, there are other pitfalls associated with the DATA step merge. Horstman
(2018) details several potential problems.

SQL joins are another common means of accomplishing a table lookup. One advantage of a SQL join over a DATA step
merge is that there is typically no need to sort the incoming data sets prior to a SQL join. Thus, the table lookup can be
completed with a minimal amount of code. However, SQL joins can be quite resource-intensive in certain situations.

ADVANCED TABLE LOOKUP METHODS

Although the simple table lookup methods listed above are sufficient for the majority of programming tasks, there are
situations when a more advanced procedure can be advantageous. This paper examines the following five methods:

3

1. Formats

2. Hash Tables

3. Multiple SET Statements

4. Indexes with the KEY= Option

5. Arrays and the DOW Loop

METHOD #1: FORMATS

One of the traditional and basic ways to perform a table lookup is to use SAS Formats. Although his is a basic technique,
we’ve chosen to explore FORMATS because they present an alternative to the commonly used DATA step merge, and
PROC SQL join. Thus for the purposes of this paper, FORMATS will be treated as an advanced lookup technique.

To perform a table lookup using formats, the SAS user creates a user-defined format using PROC FORMAT. The
programmer has two options. The key values and the data values of a user-defined format can be coded explicitly in a PROC
FORMAT VALUE statement, or based on variables in a SAS data set. Thus, the lookup table may not be a table at all
depending on the method chosen. If the programmer creates the format from a SAS data set, the data set must have a
specific structure containing key values and data values. Conversely, the lookup values need to be specified directly in the
code, and hard-coded and mapped to key values in the PROC FORMAT step.

PROC FORMAT WITH PUT FUNCTION

Figure 2. Proc Format and DATA step using Put Function.

 /* Map Race Code to Racial Description */
 Proc Format;
 Value $RaceEth
 1 = 'White'
 2 = 'Black'
 3 = 'Hispanic'
 5 = 'Asian Pacific Islander';
 NOTE: Format $RACEETH has been output.
 Run;
 NOTE: PROCEDURE FORMAT used (Total process time):
 real time 0.06 seconds
 cpu time 0.03 seconds

 /* Derive New Variable containing Race Description */
 Data CARRIER_CLAIM_2010;
 Set SASDATA1.CARRIER_CLAIM_2010;
 RaceEth_Description = Put(Race, $RaceEth.);
 Run;

 NOTE: There were 1163957 observations read from the data set SASDATA1.CARRIER_CLAIM_2010.

NOTE: The data set WORK.CARRIER_CLAIM_2010 has 1163957 observations and 14 variables.
NOTE: DATA statement used (Total process time):
 real time 3.86 seconds
 cpu time 1.54 seconds

4

In the example in Figure 2, a user-defined format RACEETH is created in the first step using PROC FORMAT. RACEETH
assigns descriptive labels for racial categories to numeric values. The format is defined as numeric because the key values
are numeric, which are assigned to character data values. The format specifies a limited, small number of values and labels.
This is typical for demographic variables which are commonly discrete or nominal, as opposed to continuous.

In the second step, a DATA step reads the SAS data set CARRIER_CLAIM_2010, which contains Medicare claims data for
2010. CARRIER_CLAIM_2010 is our Base table. As indicated in the SAS log, it’s a large data set, containing 1,163,957
records. RACE is a variable in CARRIER_CLAIM_2010 which contains numeric codes. As we stated earlier, administrative
healthcare data sets contain codes to indicate diagnoses, procedures, physicians, etc.

In this case, the format $RACEETH contains the lookup values, instead of the values being stored in a separate table.
The lookup is performed by applying the newly created format to the RACE variable, and storing the result in a new variable.
An assignment statement and a PUT function are used to create the RACEETH_DESCRIPTION variable. The format
RACEETH is included as an argument in the PUT function and applied to RACE.

One drawback of this technique is that it requires a lot of maintenance for larger sets of data values. A demographic variable
such as race is well-suited to this technique, because it contains a small number of distinct values. If the set of values were in
the hundreds, imagine how tedious and arduous a task it would be for the programmer to hard-code all those unique values.
Also suppose that the values need to be updated or values need to be added to the format. In this case, the programmer
needs to manually modify and edit the hard-coded values. This takes the risk that typos or mistakes will be made which
might compromise the validity of the data.

In this example, the format with a PUT function method executed efficiently. In terms of performance, the table lookup
processed in a very short amount of time with a base table containing over a million records. The log in Figure 1 shows the
execution took less than 4 seconds of real time, and under 2 seconds of CPU. However, the technique has the disadvantage
of maintainability, because it requires manual editing. Similarly, it isn’t practical with a large volume of lookup values. A better
solution would be to utilize a data-driven technique.

PROC FORMAT CNTLIN SAS DATA SET

In our previous example, we concluded the PROC FORMAT and PUT function method was inappropriate for table
lookups where the unique lookup values were in the hundreds or thousands. For example, administrative healthcare
data sets contain ICD9 or ICD10 diagnosis codes. There can be as many as 15,000 to 17,000 individual ICD9 or
ICD10 diagnosis codes. Using the CNTLIN= option in PROC FORMAT, SAS has versatile capabilities for creating
formats to cope with such a large volume of data values. With this construct, SAS can perform effective table lookups
where the lookup values are on a large scale.

SAS can create a format from a SAS data set which contains the lookup values. In PROC FORMAT, you need to
specify the SAS data set using the CNTLIN=option. There are several requirements for a CNTLIN data set. It needs
to contain several variables. START contains the values in a VALUE statement from the left side of the equals sign.
LABEL contains the values from the right-side of the equal sign or the lookup values.

In Figure 2 below, the excerpt from the SAS log illustrates a DATA step which manipulates the SAS data set, ICD9DX. The
data set ICD9DX contains over 17,300 unique medical diagnosis codes. The required variables for a CNTLIN data set are
START, LABEL, and FMTNAME. The DATA step prepares ICD9DX to meet the requirements of a CNTLIN data set. TYPE,
which is assigned ‘C’, is an optional variable which indicates the type of format, character or numeric. For a format based on
a range of numeric values, an additional variable, END, would be needed.

5

Figure 3. DATA step to prepare CNTLIN data set and Proc Format with CNTLIN= option.

In the SAS log in Figure 3 above, SAS creates and outputs the format, $ICDDX based on the data set ICD9DX. The data set
ICD9DX contains both the key and lookup values which are stored in $ICDDX once it’s created. The coding for the PROC
FORMAT CNTLIN is very simple. Once again, the table lookup is executed by applying the format to a variable,
ICD9_DGNS_CD_1, on the CARRIER_CLAIM_2010 using the PUT function, and storing the result in the newly created
variable, DX1, using a simple assignment statement.

In performance, PROC FORMAT CNTLIN matched if not exceeded the efficiency of the previous technique. As shown in
Figure 3, the execution took less than 3 seconds of real time, and under 3 seconds of CPU. Our example demonstrates the
suitability of this method to handle large lookup tables. Also, the technique has the advantage of providing a data driven
solution to a table lookup. If changes need to happen to the data, they can happen at the data set level, without lots of
manual intervention by the programmer at the code level.

 /* Preparing the CNTLIN SAS Data Set */
 Data ICD9DX;
 Set advtbllu.icd9dx(Rename=(Description=Label));

 Retain Fmtname '$ICDDX' Type 'C';

 Start = Compress(code, '.');

 Keep Type Start Label Fmtname;
 Run;

 NOTE: There were 17374 observations read from the data set ADVTBLLU.ICD9DX.
 NOTE: The data set WORK.ICD9DX has 17374 observations and 4 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.02 seconds

 Proc Format Cntlin=ICD9DX;
NOTE: Format $ICDDX has been output.

 Run;

NOTE: PROCEDURE FORMAT used (Total process time):
 real time 0.19 seconds
 cpu time 0.18 seconds

NOTE: There were 17374 observations read from the data set WORK.ICD9DX.

 Data carrier_claim_2010;
 Set advtbllu.carrier_claim_2010;
 DX1 = Put(ICD9_DGNS_CD_1, $ICDDX.);
 Run;

NOTE: There were 1163957 observations read from the data set ADVTBLLU.CARRIER_CLAIM_2010.
NOTE: The data set WORK.CARRIER_CLAIM_2010 has 1163957 observations and 10 variables.

NOTE: DATA statement used (Total process time):

 real time 2.97 seconds
 cpu time 2.64 seconds

6

METHOD #2: HASH TABLES

WHAT ARE HASH TABLES

The hash object has been available in the Base SAS package since version 9. Hash tables are lookup tables defined using
hash objects. Hash objects are commonly referred to as hash tables. Technically, the hash object is a DATA step component
object consisting of attributes and methods. The hash object must be declared and instantiated within a DATA step. Once
defined, hash objects are stored in memory for the duration of the DATA step, while data values are accessed and retrieved
from the table. Thus, hash tables use in-memory processing, as opposed to disk-based processing.

The tabular structure of a hash object is similar to a SAS data set, and contains rows and columns. The hash table contains
a key component and a data component, analogous to key values and data values respectively. The key values must be
unique and serve as an index or primary key for mapping to the data values. Key and data variables can be single, or
composite, consisting of multiple variables, and allow storage of multiple key and data values. The hash table has the
versatile feature of allowing key and data variables to be character, numeric or a mixture of the two. Data loaded into a hash
object can be hard-coded in a DATA step, or loaded directly from a SAS data set. Unlike a DATA step merge, a hash table
lookup doesn’t require data to be sorted or indexed prior to processing.

HASH TABLE CODING

In the DECLARE HASH statement, the hash object is invoked, the hash table is given a name, and dimensions for the hash
table are defined. If the hash table is loaded from a SAS data set, it’s specified in parentheses and double quotes as shown
below. If this is the case, it’s not necessary to explicitly define the hash table dimensions in terms of rows and columns.
Otherwise, the number of buckets or total cells for the hash table needs to be specified in parentheses.

.

The next sets of statements initialize the variables that the declared hash table will contain. The DefineKey method defines
the key variables of the hash table, which serves as a primary key, and indexes the hash table. The key variables are
specified in parentheses and double-quotes. The key variables can be taken from the SAS data set which the hash table is
based on.

The DefineData property method defines the data component of the hash table. The data variable contains the actual lookup
values we’re interested in. The data variable is specified in parentheses and double-quotes, and can be taken from the SAS
data set which populates the hash table. There can be multiple data variables defined within the hash table.

The DefineDone property method completes the declaration of the hash table. It indicates that the dimensions, SAS data
set, and variables have all been specified. The End statement concludes the block of code which defines the hash table.

HashTableName.DefineKey (“Key Variable(s)”);

HashTableName.DefineData (“Data Variable(s)”);

HashTableName.DefineDone;

End;

Declare Hash ‘Hash Table Name’ (“libref.sasdatasetname”);

7

DATA STEP PROCESSING USING HASH TABLES

It is important to understand how a HASH object processes and performs a table lookup. To understand this, it’s necessary
to look behind the scenes at what SAS is doing when it executes code. One of the internal constructs which the DATA step
uses is the Program Data Vector (PDV). The PDV holds one record of data at a time as it’s processed by DATA step code
during each iteration or loop of the DATA step. The following diagram shows what happens to the PDV as each line of DATA
step code is executed in a hash table lookup operation.

Data BENE_MATCH BENE_NO_MATCH;
 If 0 Then Set sasfiles.finder_attrib;

PDV

BENE_ID PRFNPI EOF1 CLM_ID RC _ERROR_ _N_

 0 . 0 1

Figure 4. Set Statement and PDV

The first line of code is a non-executing SET statement. When you specify ‘IF 0 Then Set’, SAS compiles the SET statement,
and adds the variables contained in the data set FINDER_ATTRIB to the PDV. If it was an executing SET statement, the
PDV would be populated with the first record of data from FINDER_ATTRIB. Instead SAS initializes variables to missing. The
variables from the other SAS data set have been added to the PDV as well. In addition the PDV contains any temporary
variables defined during the step (EOF1), and the automatic variables, _ERROR_ and _N_. The variable _N_ counts DATA
step iterations.

 If _N_=1 Then Do;

 Declare Hash Provider (dataset: 'sasfiles.finder_attrib');
 Provider.DefineKey ('BENE_ID');
 Provider.Definedata('PrfNPI');
 Provider.Definedone ();
 End;

PDV

BENE_ID PRFNPI EOF1 CLM_ID RC _ERROR_ _N_

 0 . 0 1

Figure 5. Hash Object Creation and PDV.

In the next step, SAS initializes and declares the hash object only in the first iteration of the DATA step (IF _N_=1).
The hash object is created in memory. The hash table, PROVIDER, is loaded with data from the data set,
SASFILES.FINDER_ATTRIB. Key and data variables are defined for the PROVIDER hash table. No changes occur in the
PDV, because the hash table resides in memory and doesn’t require any data processing to take place. Nothing from the
hash object is added to the PDV.

8

 Do Until (EOF1);
 Set sasfiles.carrier2010 end=EOF1;

PDV

BENE_ID PRFNPI EOF1 CLM_ID RC _ERROR_ _N_

00013D2EFD8E45D1 0 887243388666441 . 0 1

Figure 6. Second SET statement executes

Inside the DO Loop, SAS executes the SET statement and reads the data set SASFILES.CARRIER2010. The temporary
variable EOF1 is defined using the END= option. The first observation in SASFILES.CARRIER2010 is read and loaded into
the PDV. The data set SASFILES.CARRIER2010 actually contains many more variables than can be shown here. The full
data set is listed in the appendix.

Call Missing (PRFNPI);

PDV

BENE_ID PRFNPI EOF1 CLM_ID RC _ERROR_ _N_

00013D2EFD8E45D1 0 887243388666441 . 0 1

Figure 7. CALL MISSING

The CALL MISSING routine initializes the values of the Lookup variable PRFNPI to missing.

 Do Until (EOF1);
 Set sasfiles.carrier2010 end=EOF1;
 Call Missing (PRFNPI);

RC = Provider.find();

PDV

BENE_ID PRFNPI EOF1 CLM_ID RC _ERROR_ _N_

00013D2EFD8E45D1 2657039888 0 887243388666441 0 0 1

Figure 8. The Find Method

9

Using the FIND Method, SAS searches the hash table PROVIDER using BENE_ID as the key variable, and the value of
BENE_ID from the first record of SAS data set CARRIER2010 that’s in the PDV. A match in the hash table PROVIDER is
found, and SAS populates PRFNPI in the PDV from the value in the hash table. The variable RC (Return Code) is created
and indicates the result of the FIND Method. Its assigned RC=0 because the FIND Method successfully found a match.

 Do Until (EOF1);
 Set sasfiles.carrier2010 end=EOF1;
 Call Missing (PRFNPI);
 RC = Drgcode.find();
 If RC=0 Then Output BENE_MATCH;

PDV

BENE_ID PRFNPI EOF1 CLM_ID RC _ERROR_ _N_

00013D2EFD8E45D1 2657039888 0 887243388666441 0 0 1

Figure 9. Output to SAS data set.

Because the FIND Method was successful (RC=0), an IF-THEN statement writes the record in the PDV to the output data
set, BENE_MATCH. This ends the first iteration of the DATA step.

HASH TABLE EXAMPLES

The Data Set

The data sets used for this hash table example comes from the GDELT (Global Database of Events, Language, and Tone)
Project. The GDELT Project built a worldwide database of international conflicts and interactions between countries around
the world. The database stores records of events covered by different media networks and news outlets. It was compiled
from hundreds of print, broadcast, and online news sources. The full database consists of 250 million historical records
dating back from the present day to 1979, and is updated periodically. For the examples using hash tables, a subset of the
full database was used. This subset was used as the base table in our hash table example. A PROC CONTENTS of the
GDELT data set is provided in the appendix. A snapshot of the GDELT data set is displayed in Figure 10 below.

Figure 10. GDELT data set

The lookup table for this hash table example is much smaller and contains Event Descriptions for the Event Codes in the
base table. A sample of the lookup table is provided in Figure 11 below.

GlobalEventID Day Actor1Code Actor1Name Actor2Code Actor2Name EventCode AvgTone

11409131 19930101 CHNGOV LI PENG CHN CHINA 20 8.759124088

11409132 19930101 CHNGOV JIANG ZEMIN CHN CHINESE 40 15.18386714

11409133 19930101 CHNGOV LI PENG CHN CHINA 40 8.759124088

11409134 19930101 CHNGOV JIANG ZEMIN CHN CHINA 43 9.230769231

11409135 19930101 CHNGOV JIANG ZEMIN CHN CHINA 43 9.230769231

11409136 19930101 CHNGOV LI PENG CHN CHINA 51 8.759124088

11409137 19930101 CHNGOV CHINA CHN CHINA 100 13.22645291

10

CAMEOEVENTCODE EVENTDESCRIPTION

1 MAKE PUBLIC STATEMENT

10 Make statement, not specified below

11 Decline comment

12 Make pessimistic comment

13 Make optimistic comment

14 Consider policy option

15h Acknowledge or claim responsibility

Figure 11. Event Code Lookup Table

A series of tests were run on the data sets using the hash table lookup method. The tests were performed using SAS
University Edition version 3.8. SAS University Edition is run on a virtual machine which contains system resources. The
virtual machine has 3.5 GB of random-access memory (RAM), and 11.5 GB of storage space. SAS University Edition is
known to freeze or crash when the number of observations exceeds 10 million. This is due to storage space or space
allocation limitations for output data sets. As a result, the amount of data read from the base table was limited to 5 million
observations.

Figure 12. hash table-Table Lookup

The hash table lookup example in Figure 12 illustrates a many-to-one merge. The base table contains duplicate records for
distinct values of the key variable EVENTCODE. The lookup table contains a single record for each unique value of
EVENTCODE. The OBS= option was used to limit the number of observations read and processed from the base table to
5000000. The lookup table with event code contains 300 observations.

 Data CODE_MATCH CODE_No_Match;
 If 0 Then Set cameo_event_codes;

 IF _N_=1 Then Do;
 Declare Hash CODE (dataset: 'cameo_event_codes');
 CODE.DefineKey ('EVENTCODE');
 CODE.DefineData ('EVENTDESCRIPTION');
 CODE.DefineDone();
 End;

 Do Until (EOF1);
 Set advtbllu.gdelt_all(obs=5000000) End=EOF1;
 Call Missing (EVENTDESCRIPTION);
 RC = CODE.Find();
 IF RC=0 Then Output CODE_MATCH;
 Else IF RC^=0 Then Output CODE_No_Match;
 End;

 Run;

 NOTE: There were 299 observations read from the data set WORK.CAMEO_EVENT_CODES.
 NOTE: There were 5000000 observations read from the data set ADVTBLLU.GDELT_ALL.
 NOTE: The data set WORK.CODE_MATCH has 4998980 observations and 11 variables.
 NOTE: The data set WORK.CODE_NO_MATCH has 1020 observations and 11 variables.
 NOTE: DATA statement used (Total process time):
 real time 14.92 seconds
 cpu time 7.95 seconds

11

The output of the table lookup includes separate data sets for matches and non-matches based on the return code. As
indicated Figure 12, the SAS log shows the execution of the table lookup completed in less than 15 seconds of real time. In
order to assess relative efficiency of the hash table technique, this exercise was repeated using conventional table lookup
techniques. The example was repeated using the common DATA step merge and PROC SQL join constructs.

Figure 13. DATA step Merge Table Lookup

In Figure 13 above is the SAS log from the retest of the same example using the DATA step merge. Repeating the example
with the DATA step merge resulted in a total execution time of 52.75 seconds of real time, and 24.75 seconds of CPU, as
displayed in Figure 13. This is three times the amount of CPU time and over three times the amount of real time it took to
execute the table lookup using hash tables. CPU time is appropriate as a metric of efficiency here because both tests were
performed using the same platform and system.

Figure 14 displays the SAS log from a retest using a PROC SQL join. A third run of the same example using a PROC SQL
inner join resulted in an execution of 35.58 seconds of real time, and only 8.14 seconds of CPU, as shown in Figure 14. Still,
the hash table method performed better in terms of real time, although the results of CPU time were practically the same.

 /* Data Step Merge Example */
 Proc Sort Data=advtbllu.gdelt_all(Obs=5000000) Out=GDELT_ALL;
 By EVENTCODE;
 Run;

NOTE: There were 5000000 observations read from the data set ADVTBLLU.GDELT_ALL.
NOTE: PROCEDURE SORT used (Total process time):
 real time 21.88 seconds
 cpu time 18.05 seconds

 Proc Sort Data = advtbllu.cameo_event_codes(Rename=(cameoeventcode=eventcode))
 out=cameo_event_codes Nodupkey;
 By EVENTCODE;
 Run;

 NOTE: The data set WORK.CAMEO_EVENT_CODES has 299 observations and 2 variables.
 NOTE: PROCEDURE SORT used (Total process time):
 real time 0.63 seconds
 cpu time 0.03 seconds

 Data AdmHlth.gdelt_all_v2;
 Merge gdelt_all (IN=A) cameo_event_codes (IN=B);
 By EVENTCODE;
 If A and B;
 Run;

 NOTE: There were 5000000 observations read from the data set WORK.GDELT_ALL.
 NOTE: There were 299 observations read from the data set WORK.CAMEO_EVENT_CODES.
 NOTE: The data set ADMHLTH.GDELT_ALL_V2 has 4998980 observations and 10 variables.
 NOTE: DATA statement used (Total process time):
 real time 30.24 seconds
 cpu time 6.42 seconds

12

Figure 14. DATA step Merge Table Lookup

To assess the efficiency as the volume of data increases, additional tests were conducted using the GDELT_ALL data set at
larger sample sizes of 8 million and 12 million observations. The tests were conducted using each of the three table lookup
methods; DATA step merge, PROC SQL join, and hash table lookup. As shown in Table1 below, in real time, the hash table
was the most efficient at sample sizes of 5 million and 12 million observations.

 DATA step Merge Proc Sql Join Hash Table

5000000 Obs 52.75 35.58 14.92

8000000 Obs 45.7 16.04 20.41

12000000 Obs 1:54.73 48.25 30.39

Table 1. Real time Performance Comparison: Intermediate methods vs. Hash Table

The results in CPU time are displayed in Table 2. In CPU time, there was no performance improvement of using the hash
table instead of the PROC SQL join. However, there was a large gap between each of these two techniques, and the
resource-intensive DATA step merge. This is due in part to running the time-consuming SORT procedure on the base table.
The most striking difference between the hash table and DATA step merge came at the sample size of 12 million
observations.

 DATA step Merge Proc Sql Join Hash Table

5000000 Obs 24.75 8.14 7.95

8000000 Obs 37.15 11.47 11.90

12000000 Obs 56.55 18.68 18.41

Table 2. CPU time Performance Comparison: Intermediate methods vs. hash table

 /* Proc Sql Join Example */
 Proc Sql INOBS=5000000;
 Create Table gdelt_All_V2 as
 Select A.*, B.EventDescription
 From advtbllu.gdelt_all as A, cameo_event_codes as B
 Where A.EventCode=B.EventCode;
 NOTE: Table WORK.GDELT_ALL_V2 created, with 4998980 rows and 10 columns.
 Quit;
 NOTE: PROCEDURE SQL used (Total process time):
 real time 35.58 seconds
 cpu time 8.14 seconds

13

METHOD #3: MULTIPLE SET STATEMENTS

Another method for performing a table lookup is using a DATA step with multiple SET statements. This is conceptually
similar to performing a DATA step merge, but the MERGE statement is not used. This allows the programmer to take direct
control of the process of matching up records based on the value of one or more key variables. It also has the potential to
dramatically reduce processing time when compared with the use of the MERGE statement.

It is important to note that this method still requires the input data sets be sorted. As in the traditional merge, we will be
stepping through each data set sequentially, reading each record only once.

A SIMPLE ANALOGY

Imagine you are given two alphabetized stacks of books. Your task is to make a list of the books that are common to both
stacks. You take a book from the top of each stack, one in each hand, and compare them. In your left hand is a copy of
“Anna Karenina” and in the other is “Animal Farm”. Since these do not match, you should move along to the next book from
one of the stacks, but which one? We know the stacks are already sorted alphabetically, so it would not make sense to
continue taking books from the stack that had “Anna Karenina” on top. That title comes after “Animal Farm” alphabetically. If
we continue drawing books from that stack, we will go through the entire stack without finding a match.

Rather, we must discard “Animal Farm” and draw another book from the right-hand stack. If we were to find another copy of
“Anna Karenina”, we would add that to our list of matches. But what if we find that “Anne of Green Gables” is next on the
stack that began with “Animal Farm”? That is also not a match for “Anna Karenina”, but we should now draw our next book
from the left-hand stack because the last book we took from that stack (“Anna Karenina”) comes before the most recent draw
from the right-hand stack (“Anne of Green Gables”).

This process is analogous to performing a table lookup using two SET statements. The stacks are data sets, the books are
records, and the book titles are our key variables. We use two SET statements to read records from the respective input
data sets, and we choose which data set to read next by comparing values of our key variable.

EXAMPLE WITH TWO SET STATEMENTS

To illustrate this method, we return to the example used above when the hash object was introduced. We have a large
claims data set, CARRIER_CLAIMS_2010, and we wish to lookup the value of a variable called PRFNPI from another data
set called FINDER_ATTRIB. The lookup is to be performed using a shared variable, BENE_ID.

The code below shows how this table lookup can be performed using two SET statements. Notice we first sort each data set
by the common key variable BENE_ID, just as we would if we were using the MERGE statement.

proc sort data=sasfiles.carrier_claim_2010 out=carrier_claim_2010;

 by bene_id;

run;

proc sort data=sasfiles.finder_attrib out=finder_attrib;

 by bene_id;

run;

data bene_match;

 set carrier_claim_2010(rename=(bene_id=bid));

 if bid = bene_id then output;

 do while (bid > bene_id);

 set finder_attrib;

 if bid = bene_id then output;

 end;

run;

14

The SET statement reads one record from the data set(s) specified on the statement each time it is executed. Thus, when
this DATA step begins executing, the first SET statement reads in the first record from the CARRIER_CLAIM_2010 data set.
As discussed earlier in the paper, these values are held in memory in a storage location known as the Program Data Vector
(PDV). However, because a RENAME= data set option was used in conjunction with the CARRIER_CLAIM_2010 data set
on the SET statement, the values of the variable BENE_ID from the data set will be referenced in the PDV using the name
BID instead.

The next line is an IF statement which compares the values of BID and BENE_ID. However, since we renamed BENE_ID
from the claims data set to BID, there will not be a value for BENE_ID in the PDV until a record is read from the
FINDER_ATTRIB data set, which has not yet occurred. The IF condition will always be false the first time through the loop.
This statement will make more sense in subsequent iterations of the DATA step, so we’ll revisit it later.

Next, a DO WHILE loop is encountered. Since BENE_ID is still missing, any non-missing value of BID will make the WHILE
condition true. Inside the DO loop, we find the second SET statement. During the first iteration of the DO loop within our first
iteration of the DATA step, this SET statement will read the first record from the FINDER_ATTRIB data set and write the
values to the PDV.

The DO loop continues iterating until it reads a value of BENE_ID which matches or surpasses the value of BID, at which
point the WHILE condition ceases to be true. If the values of BID and BENE_ID are equal, then our table lookup has
succeeded and the contents of the PDV are written to the output data set. Regardless of whether BENE_ID matches or
exceeds BID, the DO loop terminates and we reach the end of the current iteration of the DATA step.

At that point, assuming additional unread records remain in the claims data set, the flow of execution returns to the top of the
DATA step and the next iteration begins. There are now three possibilities regarding the new value of BID: it is either less
than, equal to, or greater than the most recently read value of BENE_ID.

1. If the new BID is less than BENE_ID, then we know there is no match for BID in FINDER_ATTRIB. Both the IF
condition and the WHILE condition will be false and execution will return to the top of the DATA step and we’ll move
on to the next record from the claims data set.

2. If the new BID is equal to BENE_ID, then another match has been found. The IF condition will be true, but the
WHILE condition will be false. A record will be written to the output data set, and then execution will return to the top
of the DATA step to read the next record from the claims data set.

3. If the new BID is great than BENE_ID, then it’s time to read more records from FINDER_ATTRIB until the value of
BENE_ID “catches up” with BID again. The IF condition will be false, but the WHILE condition will be true. The DO
loop will begin reading records from FINDER_ATTRIB again.

This process of reading records continues, alternating between the two data sets, always reading next from the data set that
is “further behind” and checking for a potential match with the data set that is “further ahead”. When one of the SET
statements reaches the end of its corresponding input data set, the DATA step will complete the current iteration and then
terminate.

METHOD #4: INDEXES WITH THE KEY= OPTION

Indexes give us yet another method for performing table lookups in SAS. An index provides a way to access a data set
based on the value of a key variable. Since this type of access is non-sequential, there is no need to sort the data set first.

Before such a table lookup can be performed, an index must first be created on the data set containing the values to be
looked up. This is commonly done using the DATASETS procedure as follows.

proc datasets;

 modify finder_attrib;

 index create bene_id / unique;

quit;

The MODIFY statement is used to specify the data set on which the index is to be created. This is followed by the INDEX
CREATE statement, which is subordinate to the MODIFY statement. The INDEX CREATE statement allows us create either
a simple index consisting of one key variable or a composite index consisting of multiple variables. In this example, we have
created a simple index on the data set FINDER_ATTRIB using the key variable BENE_ID. The UNIQUE option specifies
that values of BENE_ID must be unique or else the index will not be created.

15

Once the index has been created, it can be used within a SET statement by using the KEY= option to specify the name of the
key variable to be used (or, in the case of a composite index, the name of the index itself). The following DATA step code
illustrates its use:

data bene_match;

 set carrier_claim_2010;

 set finder_attrib key=bene_id/unique;

 if _iorc_ ne 0 then call missing(prfnpi);

run;

The first SET statement reads a record from the CARRIER_CLAIM_2010 data set and places those values into the PDV.
Note that this data set does not need to be sorted in any particular order, nor does it need to be indexed itself. This has the
potential to be tremendously advantageous as sorting and indexing large data sets can be quite costly.

The second SET statement reads a record from the FINDER_ATTRIB data set. However, because the KEY= option is in
effect, this is not an ordinary, sequential read. Rather, it uses the index we created earlier in order to directly access the
record corresponding with the value of BENE_ID from the PDV. This gives us a very fast way to perform a table lookup.

The final IF statement exists to handle a situation where no record is found in FINDER_ATTRIB corresponding with the value
of the key variable BENE_ID that was read from the claims data set. If that happens, the SET statement will set the value of
IORC (the input/output return code) to something other than zero. In such a case, we explicitly set the value of PRFNPI to
missing using the CALL MISSING routine so that the previous value of PRFNPI will be cleared from the PDV before an
output record is written.

METHOD #5: ARRAYS AND THE DOW LOOP

One final advanced technique discussed in this paper involves the use of arrays and a special code construct known as the
DOW loop. Some have referred to this method as “key-indexing”, although it is not related to the approach described above
involving indexes and the KEY= option.

THE DOW LOOP

Much has been written about the DOW loop since it was first popularized by (and named for) Ian Whitlock nearly 20 years
ago. We briefly describe the concept here, but Paul Dorfman (2009) provides a more thorough overview of the DOW loop
and its history.

The DATA step is an implied loop. In a typical DATA step, the statements are executed repeatedly so long as there remain
additional records on any input data sets being read. The DOW loop is a coding technique by which the programmer takes
control of this looping process. The basic form of the DOW loop consists of a DO loop with a SET statement and an
OUTPUT statement contained therein as shown below:

data new;

 do until(eof);

 set old end=eof;

 output;

 end;

stop;

run;

During each iteration of the DO loop, the SET statement reads one record from the input data set into the PDV and the
OUTPUT statement writes the contents of the PDV to a record in the output data set. This process repeats until the SET
statement has read the final record from the input data set. At that point, the EOF variable becomes true and the DO loop
terminates. The STOP statement ensures that the DATA step itself does not iterate again.

The result of the above DATA step is no different than if we had simply used the SET statement alone in the ordinary way,
without the DO loop or the OUTPUT or STOP statements. However, this construct is very flexible and powerful. Allen
(2009) details several practical uses for the DOW loop.

16

EXAMPLE USING THE DOW LOOP AND ARRAYS

Table lookups can be performed very efficiently using a combination of two DOW loops and a temporary array. The first
DOW loop reads through the lookup table and loads all the values into the array indexed on the key variable used to perform
the lookup. The second DOW loop reads through the base data set, performs the lookup by accessing the array based on
that same key variable, and writes an output record. In addition to being fast, this method has the significant advantage that
neither data set need be sorted. However, because we are using the key variable itself as the array index, this method is
only suitable when the key variable is numeric (or can be readily converted to numeric).

Since the Medicare claim examples presented above are based on an alphanumeric key variable, we base this example on
the GDELT data set presented earlier in the discussion on hash tables. The GDELT data set has approximately 13.6 million
records. One of the variables (EventCode) is a numeric event code. The lookup table, CAMEO_EVENT_CODES, contains
these event codes in a variable called CameoEventCode as well as an event description called EventDescription. Using the
following DATA step code, we create a new data set based on the GDELT data set with the event descriptions added.

data gdelt2;

 array descriptions [2042] $71 _temporary_;

 do until(alldesc);

 set sasfiles.cameo_event_codes end=alldesc;

 descriptions[CameoEventCode] = EventDescription;

 end;

 do until(allevents);

 set sasfiles.gdelt_all end=allevents;

 EventDescription = descriptions[EventCode];

 output;

 end;

 stop;

 drop CameoEventCode;

run;

The first thing to notice is the array declaration near the top of the code. This statement declares a temporary array
containing 2,042 elements, each of which is a 71-character character string. Temporary arrays consist of unnamed elements
that can only be referenced using the array name with an index.

The number of array elements was set at 2,042 because that happens to be the value of the largest event code in the input
data set. The event codes themselves will serve as the index to this array. Since the EventDescription variable in the
CAMEO_EVENT_CODES data set is character variable with a length of 71, those same attributes are given to the array
elements to ensure they are sufficiently large to hold the event description values.

After the array declaration comes the first DOW loop. Inside a DO UNTIL block is a SET statement which reads records from
CAMEO_EVENT_CODES, which is the lookup table. After each record is read, an assignment statement copies the value of
EventDescription into the array element with the corresponding value of CameoEventCode. This DO loop repeats until all
records have been read from the lookup table.

At that point, all the values of EventDescription from the lookup table have been loaded into the array. It’s not necessary that
all array elements have been used. Unused array elements will not cause any problem, although they do waste memory.

Once the first DOW loop has completed, the second one follows immediately. It also consists of a DO UNTIL block with a
SET statement inside. This SET statement reads a record from our base table, GDELT_ALL. In the subsequent assignment
statement, the value of EventCode which was read from GDELT_ALL is used as the index in a reference to the temporary
array that contains the event description. This array reference returns the event description which had been previously
stored in the array during the first DOW loop and stores it in the variable EventDescription. Finally, an OUTPUT statement
writes out a record to the output data set. This second DOW loop repeats until all records have been read from the base
data set and an equal number of records have been written to the output data set.

Everything just described occurred within a single iteration of the DATA step itself. That includes reading all the records from
both input data sets and writing all the records to the output data set. Because this was done using the DOW loop, there is
no need for the implied looping mechanism built into the DATA step. For this reason, a STOP statement is placed after the
second DOW loop to ensure the DATA step loop itself does not begin again.

17

As mentioned earlier, the main advantages of this method are that it is efficient and does not require sorted data. The
primary drawback is that it only works with a numeric key variable. Carpenter (2012, pp. 226-227) presents an adaptation of
this technique for use with a character variable as the key. Another potential drawback is that the amount of memory
required to hold the array could become problematic if the number of array elements were to become sufficiently large.

COMPARISON OF ADVANCED TABLE LOOKUP METHODS

Each of the five methods discussed has advantages and disadvantages. The programmer should evaluate the various
techniques as they relate to the task at hand to make a suitable selection. There are several factors one might need to
consider. Among these are performance, scalability, memory use, simplicity, ease of maintenance, and reusability for
future projects. Not all of these will apply to every situation. Here we will focus on comparing performance.

In order to provide a useful comparison, it is necessary to run each method using the same data on the same hardware.
Each of the five methods was used to merge the GDELT_ALL data set with the event codes and descriptions in
CAMEO_EVENT_CODES. For comparison purposes, an ordinary DATA step merge and a PROC SQL join were also used.
The code and log appear in Appendix 2. The results are summarized below.

Method CPU Time

DATA step merge 29.30 seconds (including both sorts)

PROC SQL join 30.92 seconds

Method #1: PROC FORMAT 21.29 seconds (including creating the format)

Method #2: hash table 18.28 seconds

Method #3: Two SET Statements 28.27 seconds (including both sorts)

Method #4: Index 21.15 seconds (including creating the index)

Method #5: Array and DOW Loop 16.62 seconds

Table 3. Comparison of Table Lookup Methods – Performance Results

Note that all five advanced methods discussed in this paper outperform both the DATA step merge and the PROC SQL join.
However, method #3 (two SET statements) is only a slight improvement because it still requires significant time to sort the
data sets. The other four methods, which do not require sorted data, are significantly faster. However, the resulting data set
remains unsorted. If a sorted output data set is needed anyway, then much of the advantage of these methods vanishes.

18

CONCLUSION

Table lookups are a common operation needed in data processing and analysis. While the standard approaches work well in
most situations, it is advantageous for the SAS programmer to be aware of advanced methods that may be beneficial in
certain settings. As with many aspects of programming, the optimal method depends on the situation and task at hand. It is
often wise to perform some benchmarking to determine which method(s) will best meet the goals for a given job.

REFERENCES

Allen, Richard Read, 2009. “Practical Uses of the DOW Loop.” Western Users of SAS Software (WUSS) 2009 Conference.
https://www.lexjansen.com/wuss/2009/tut/TUT-Allen.pdf.

Carpenter, Arthur L., 2001. “Table Lookups: From IF-THEN to Key-Indexing.” SAS Users Group International 26, Paper
158. https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p158-26.pdf.

Carpenter, Art. 2012. Carpenter’s Guide to Innovative SAS® Techniques. Cary, NC: SAS Institute Inc.

Carpenter, Arthur L., 2015. “Table Lookup Techniques: From the Basics to the Innovative.” SAS Global Forum 2015, Paper
2219. https://support.sas.com/resources/papers/proceedings15/2219-2015.pdf.

Dorfman, Paul M. and Koen Vyverman, 2009. “The DOW-Loop Unrolled.” SAS Global Forum 2009, Paper 038.
http://support.sas.com/resources/papers/proceedings09/038-2009.pdf.

Horstman, Joshua M., 2017. “Beyond IF THEN ELSE: Techniques for Conditional Execution of SAS® Code,” SAS Global
Forum 2017, Paper 326. https://support.sas.com/resources/papers/proceedings17/0326-2017.pdf.

Horstman, Joshua M., 2018. “Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets.” SAS
Global Forum 2018, Paper 1746. https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2018/1746-2018.pdf.

SAS Institute Inc., 2010. “SAS Certification Prep Guide – Advanced Programming for SAS 9.” Cary, NC: SAS Institute Inc.

ACL. “Using ACL Analytics>Preparing data for Analysis>Combining Data”. Accessed August 9, 2018.
https://enablement.acl.com/helpdocs/analytics/13/user-guide/en-us/ Content/ da_cmbining_data/
combining_data.htm?TocPath=Combining%20data|_____0

ACKNOWLEDGMENTS

The authors would like to thank Richann Watson SESUG 2020 Academic Chair, Lesa Caves, SESUG 2020 Operations
Chair, and Brian Varney and Nat Wooding, Know Your SAS®: Advanced Techniques Section Co-Chairs, and the SESUG
Executive Committee and Conference Team for accepting our abstract and paper and for organizing the conference.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jay Iyengar
Data Systems Consultants LLC
datasyscon@gmail.com
https://www.linkedin.com/in/datasysconsult/

Josh Horstman
Nested Loop Consulting
317-721-1009
josh@nestedloopconsulting.com
www.nestedloopconsulting.com

https://www.lexjansen.com/wuss/2009/tut/TUT-Allen.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p158-26.pdf
https://support.sas.com/resources/papers/proceedings15/2219-2015.pdf
http://support.sas.com/resources/papers/proceedings09/038-2009.pdf
https://support.sas.com/resources/papers/proceedings17/0326-2017.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1746-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1746-2018.pdf
https://www.linkedin.com/in/datasysconsult/
mailto:josh@nestedloopconsulting.com

19

Jay Iyengar is principal of Data Systems Consultants LLC. He is a SAS Consultant, Trainer, and SAS Certified Advanced
Programmer. He is co-leader of the Chicago SAS Users Group, WCSUG. He’s presented papers at SAS Global Forum
(SGF), Midwest SAS Users Group (MWSUG), Wisconsin Illinois SAS Users Group (WIILSU), Northeast SAS Users Group
(NESUG), and Southeast SAS Users Group (SESUG) conferences. He has been using SAS since 1997. His industry
experience includes Healthcare, Pharmaceutical, Public Health, Database Marketing Educational Testing, and International
Trade.

Josh Horstman is an independent statistical programming consultant and trainer based in Indianapolis with over 20 years’
experience using SAS in the life sciences industry. He specializes in analyzing clinical trial data, and his clients have
included major pharmaceutical corporations, biotech companies, and research organizations. Josh is a SAS Certified
Advanced Programmer who loves coding and is a frequent presenter at SAS Global Forum and other SAS User Group
meetings.

TRADEMARK CITATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

20

APPENDIX I – GDELT DATA SET

Data Set Name ADVTBLLU.GDELT_ALL Observations 13631475

Member Type DATA Variables 9

Engine V9 Indexes 0

Created 08/13/2019 17:24:02 Observation Length 72

Last Modified 08/13/2019 17:24:02 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64

Encoding utf-8 Unicode (UTF-8)

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 15013

First Data Page 1

Max Obs per Page 908

Obs in First Data Page 864

Number of Data Set Repairs 0

Filename /folders/myfolders/AdvTblLkup/gdelt_all.sas7bdat

Release Created 9.0401M6

Host Created Linux

Inode Number 131490

Access Permission rw-rw-r--

Owner Name sasdemo

File Size 938MB

File Size (bytes) 983957504

21

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

3 Actor1Code Char 15 $15. $15. Actor1Code

4 Actor1EthnicCode Char 3 $3. $3. Actor1EthnicCode

5 Actor1Type1Code Char 3 $3. $3. Actor1Type1Code

6 Actor2Code Char 15 $15. $15. Actor2Code

7 Actor2EthnicCode Char 3 $3. $3. Actor2EthnicCode

8 Actor2Type1Code Char 3 $3. $3. Actor2Type1Code

2 Day Num 8 BEST. Day

9 EventCode Num 8 BEST. EventCode

1 GlobalEventID Num 8 BEST. GlobalEventID

22

APPENDIX II – LOG OUTPUT FROM COMPARISON OF METHODS

171 /*** FOR COMPARATIVE PURPOSES - data step merge ***/

172

173 proc sort data=sasfiles.gdelt_all out=gdelt_all_sorted;

174 by eventcode;

175 run;

NOTE: There were 13631475 observations read from the data set SASFILES.GDELT_ALL.

NOTE: The data set WORK.GDELT_ALL_SORTED has 13631475 observations and 9 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 42.39 seconds

 cpu time 23.25 seconds

176 proc sort data=sasfiles.cameo_event_codes out=cameo_event_codes_sorted;

177 by cameoeventcode;

178 run;

NOTE: There were 290 observations read from the data set SASFILES.CAMEO_EVENT_CODES.

NOTE: The data set WORK.CAMEO_EVENT_CODES_SORTED has 290 observations and 2 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.07 seconds

 cpu time 0.01 seconds

179 data gdelt_merge;

180 merge gdelt_all_sorted(in=a)

181 cameo_event_codes_sorted(rename=(cameoeventcode=eventcode));

182 by eventcode;

183 if a;

184 run;

23

NOTE: There were 13631475 observations read from the data set WORK.GDELT_ALL_SORTED.

NOTE: There were 290 observations read from the data set WORK.CAMEO_EVENT_CODES_SORTED.

NOTE: The data set WORK.GDELT_MERGE has 13631475 observations and 10 variables.

NOTE: DATA statement used (Total process time):

 real time 23.32 seconds

 cpu time 6.04 seconds

185

186 /*** FOR COMPARATIVE PURPOSES - proc sql join ***/

187 proc sql;

188 create table gdelt_join as

189 select * from sasfiles.gdelt_all a

190 left join sasfiles.cameo_event_codes b

191 on a.eventcode = b.cameoeventcode;

NOTE: Table WORK.GDELT_JOIN created, with 13631475 rows and 11 columns.

192 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 1:08.29

 cpu time 30.92 seconds

196 /*** Method 1 - PROC FORMAT ***/

197

198 data cameo_event_codes;

199 set sasfiles.cameo_event_codes

200 (rename=(cameoeventcode=start eventdescription=label));

201 retain fmtname 'evntcd' type 'N';

202 keep type start label fmtname;

203 run;

NOTE: There were 290 observations read from the data set SASFILES.CAMEO_EVENT_CODES.

NOTE: The data set WORK.CAMEO_EVENT_CODES has 290 observations and 4 variables.

NOTE: DATA statement used (Total process time):

 real time 0.03 seconds

cpu time 0.01 seconds

24

204

205 proc format cntlin=cameo_event_codes;

NOTE: Format EVNTCD has been output.

205! run;

NOTE: PROCEDURE FORMAT used (Total process time):

 real time 0.01 seconds

 cpu time 0.00 seconds

NOTE: There were 290 observations read from the data set WORK.CAMEO_EVENT_CODES.

206

207 data gdelt01;

208 set sasfiles.gdelt_all;

209 eventdescription = put(eventcode,evntcd.);

210 run;

NOTE: There were 13631475 observations read from the data set SASFILES.GDELT_ALL.

NOTE: The data set WORK.GDELT01 has 13631475 observations and 10 variables.

NOTE: DATA statement used (Total process time):

 real time 32.02 seconds

 cpu time 21.28 seconds

211

212 /*** Method 2 - hash object ***/

213

214 data gdelt02(rename=(cameoeventcode=eventcode) drop=rc);

215 If 0 then set sasfiles.cameo_event_codes;

216 if _n_=1 then do;

217 declare hash events (dataset: 'sasfiles.cameo_event_codes');

218 events.definekey ('cameoeventcode');

219 events.definedata('eventdescription');

220 events.definedone ();

221 end;

25

222 do until (eof1);

223 set sasfiles.gdelt_all

224 (rename=(eventcode=cameoeventcode)) end=eof1;

225 rc = events.find();

226 if rc=0 then output;

227 end;

228 run;

NOTE: There were 290 observations read from the data set SASFILES.CAMEO_EVENT_CODES.

NOTE: There were 13631475 observations read from the data set SASFILES.GDELT_ALL.

NOTE: The data set WORK.GDELT02 has 13629110 observations and 10 variables.

NOTE: DATA statement used (Total process time):

 real time 27.33 seconds

cpu time 18.28 seconds

230 /*** Method 3 - double set statement ***/

231

232 proc sort data=sasfiles.gdelt_all out=gdelt_all_sorted;

233 by eventcode;

234 run;

NOTE: There were 13631475 observations read from the data set SASFILES.GDELT_ALL.

NOTE: The data set WORK.GDELT_ALL_SORTED has 13631475 observations and 9 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 33.30 seconds

 cpu time 23.81 seconds

235 proc sort data=sasfiles.cameo_event_codes out=cameo_event_codes_sorted;

236 by cameoeventcode;

237 run;

NOTE: There were 290 observations read from the data set SASFILES.CAMEO_EVENT_CODES.

NOTE: The data set WORK.CAMEO_EVENT_CODES_SORTED has 290 observations and 2 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.04 seconds

 cpu time 0.01 seconds

26

238 data gdelt03;

239 set gdelt_all_sorted;

240 if eventcode = cameoeventcode then output;

241 do while (eventcode > cameoeventcode);

242 set cameo_event_codes_sorted;

243 if eventcode = cameoeventcode then output;

244 end;

245 run;

NOTE: There were 13631475 observations read from the data set WORK.GDELT_ALL_SORTED.

NOTE: There were 288 observations read from the data set WORK.CAMEO_EVENT_CODES_SORTED.

NOTE: The data set WORK.GDELT03 has 13629110 observations and 11 variables.

NOTE: DATA statement used (Total process time):

 real time 17.49 seconds

 cpu time 5.51 seconds

246

247 /*** Method 4 - index ***/

248 proc copy in=sasfiles out=work;

249 select gdelt_all cameo_event_codes;

250 run;

NOTE: Copying SASFILES.GDELT_ALL to WORK.GDELT_ALL (memtype=DATA).

NOTE: There were 13631475 observations read from the data set SASFILES.GDELT_ALL.

NOTE: The data set WORK.GDELT_ALL has 13631475 observations and 9 variables.

NOTE: Copying SASFILES.CAMEO_EVENT_CODES to WORK.CAMEO_EVENT_CODES (memtype=DATA).

NOTE: There were 290 observations read from the data set SASFILES.CAMEO_EVENT_CODES.

NOTE: The data set WORK.CAMEO_EVENT_CODES has 290 observations and 2 variables.

NOTE: PROCEDURE COPY used (Total process time):

 real time 22.64 seconds

 cpu time 15.35 seconds

27

251 proc datasets;

252 modify cameo_event_codes;

253 index create cameoeventcode / unique;

NOTE: Simple index CAMEOEVENTCODE has been defined.

254 quit;

NOTE: MODIFY was successful for WORK.CAMEO_EVENT_CODES.DATA.

NOTE: PROCEDURE DATASETS used (Total process time):

 real time 0.24 seconds

 cpu time 0.04 seconds

256 data gdelt04(rename=(cameoeventcode=eventcode));

257 set gdelt_all(rename=(eventcode=cameoeventcode));

258 set cameo_event_codes key=cameoeventcode/unique;

259 if _iorc_ ne 0 then call missing(eventdescription);

260 run;

NOTE: There were 13631475 observations read from the data set WORK.GDELT_ALL.

NOTE: The data set WORK.GDELT04 has 13631475 observations and 10 variables.

NOTE: DATA statement used (Total process time):

 real time 32.39 seconds

 cpu time 21.11 seconds

262 /*** Method 5 - arrays and DOW loop ***/

263

264 data gdelt05;

265 array descriptions [2042] $71 _temporary_;

266 do until(alldesc);

267 set sasfiles.cameo_event_codes end=alldesc;

268 descriptions[CameoEventCode] = EventDescription;

269 end;

28

270 do until(allevents);

271 set sasfiles.gdelt_all end=allevents;

272 EventDescription = descriptions[EventCode];

273 output;

274 end;

275 stop;

276 drop CameoEventCode;

277 run;

NOTE: There were 290 observations read from the data set SASFILES.CAMEO_EVENT_CODES.

NOTE: There were 13631475 observations read from the data set SASFILES.GDELT_ALL.

NOTE: The data set WORK.GDELT05 has 13631475 observations and 10 variables.

NOTE: DATA statement used (Total process time):

 real time 26.52 seconds

 cpu time 16.62 seconds

